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NUMERICAL METHODS FOR STOCHASTIC DELAY
DIFFERENTIAL EQUATIONS VIA THE WONG–ZAKAI

APPROXIMATION∗

WANRONG CAO† , ZHONGQIANG ZHANG‡ , AND GEORGE EM KARNIADAKIS§

Abstract. We use the Wong–Zakai approximation as an intermediate step to derive numerical
schemes for stochastic delay differential equations. By approximating the Brownian motion with
its truncated spectral expansion and then using different discretizations in time, we present three
schemes: a predictor-corrector scheme, a midpoint scheme, and a Milstein-like scheme. We prove
that the predictor-corrector scheme converges with order half in the mean-square sense while the
Milstein-like scheme converges with order one. Numerical tests confirm the theoretical prediction
and demonstrate that the midpoint scheme is of half-order convergence. Numerical results also
show that the predictor-corrector and midpoint schemes can be of first-order convergence under
commutative noises when there is no delay in the diffusion coefficients.
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mulation
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1. Introduction. Numerical solution of stochastic delay differential equations
(SDDEs) has attracted increasing interest recently, as memory effects in the presence
of noise are modeled with SDDEs in engineering and finance, e.g., [10, 13, 34, 37, 43].
Most numerical methods for SDDEs have focused on the convergence and stability
of time-discretization schemes since the early works [38, 39]. Currently, several time-
discretization schemes have been well studied: the Euler-type schemes (the forward
Euler scheme [1, 21] and the drift-implicit Euler scheme [16, 23, 48]), the Milstein
schemes [3, 14, 15, 20], the split-step schemes [11, 44, 49], and also some multistep
schemes [4, 5, 6, 7].

Although SDDEs can be thought as a special class of stochastic differential equa-
tions (SDEs), the extension of numerical methods for SDEs to SDDEs is nontrivial
especially since the delay may intrigue instabilities in the underlying SDDEs while
the corresponding SDEs are stable; see, e.g., [16, 26]. Also, the formulation of appro-
priate numerical methods requires a somewhat different calculus because of the delay
nature of SDDEs (see the Ito–Taylor expansion, e.g., [20, 35]), or anticipative calculus
(see, e.g., [15]). Further, the presence of time delay affects the convergence order and
computational complexity of numerical methods, as will be shown in section 3.
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Here we employ a different approach, the so-called Wong–Zakai (WZ) approxi-
mation; see, e.g., [24, 40, 42]. The difference between the WZ approximation and the
aforementioned schemes is that in WZ we first approximate the Brownian motion with
an absolute continuous process and then apply proper time-discretization schemes for
the resulting equation while the aforementioned schemes are ready for simulation
without any further time discretization. The WZ approximation thus can be viewed
as an intermediate step for deriving numerical schemes and can provide more flexi-
bility of discretization of Brownian motion before performing any time discretization.
In this paper, we show the flexibility of this approach and derive three numerical
schemes for SDDEs using the Stratonovich formulation with a spectral truncation of
Brownian motion.

In the literature of SDEs and SDDEs, the WZ approximation has been well known
for a long time; see, e.g., [46, 47] for SDEs and [24, 40] for SDDEs. However, there is no
systematic investigation of designing numerical schemes based on WZ approximation.
To the best of our knowledge, the only work addressing full discretization based
on WZ approximation is [32] for SDEs using an approximation of Brownian motion
with mollifying. To derive consistent numerical schemes based on WZ, we require
additional consistency on further time-discretization, i.e., half-order discretization
for the diffusion coefficients. Once this requirement is satisfied, we have consistent
numerical schemes for the underlying SDDEs, according to Theorem 2.2 and the
rule of thumb in section 2.1. Here we will show that further time discretization is
crucial to the design of numerical schemes since it will determine the convergence
orders of schemes: both half-order schemes and first-order schemes can be derived.
We will present three schemes and illustrate how the WZ approximation and time-
discretization work on them; see section 2 for details.

In this paper, we employ the classical piecewise linear interpolation of Brownian
motion in, e.g., [24, 40, 42] and a Fourier approximation of Brownian motion. Specif-
ically, we will derive three distinct schemes using different time-discretization tech-
niques. After approximating the Brownian motion by a spectral expansion, we then
use the trapezoidal rule and the predictor-corrector strategy to obtain a predictor-
corrector scheme and prove its convergence in the mean-square sense. We also use the
midpoint rule within the WZ approximation to derive a fully implicit scheme (implicit
in both drift and diffusion coefficients). These two schemes are convergent with strong
order half for SDDEs, as shown numerically in section 3.

If no delay arises, the predictor-corrector scheme and the midpoint scheme coin-
cide with those for SDEs without delay. The predictor-corrector scheme degenerates
into a family of the predictor-corrector scheme in [2], which were proposed in order
to overcome numerical stability introduced by the Euler scheme and other one-step
explicit schemes. Without delay, our midpoint scheme becomes one of the symplectic-
preserving schemes in [27] for stochastic Hamiltonian systems. Though we will only
focus on the convergence of these schemes and check their numerical performance,
we expect that these schemes have larger stability regions than the Euler scheme for
SDDEs as in the cases without delay.

Based on Taylor expansion of the diffusion coefficients, we also derive a first-order
scheme (called Milstein-like), which is similar to the Milstein scheme [14, 15, 20].
The Milstein-like scheme we propose here can be readily used in routine simulation
unlike the Milstein scheme [14, 15, 20] which requires additional approximation of
the double integrals. Specifically, the double integrals are approximated with spectral
truncation using truncation parameters reciprocal to the time step size to achieve
first-order convergence, which will be shown both in theory and in computation. The
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spectral truncations we use are from the piecewise linear interpolation and a Fourier
expansion. Comparison between these two truncations will be presented for a specific
numerical example in section 3, where it is shown that the Fourier approach is faster
than the piecewise constant approach. It is worth noting that the approximation of
double integrals in the present context is similar to those using numerical integration
techniques which has been long explored; see, e.g., [19, 29].

In general, the first-order schemes such as the Milstein scheme is not as popular as
half-order schemes because of the high cost of simulating double integrals. However,
in certain cases the first-order scheme is preferred, e.g., when a commutative condition
is satisfied and the double integrals can be represented by the increments of Brown-
ian motions. Also, when the coefficients in front of noises are small, we can achieve
satisfactory accuracy with low computational cost since the cost of simulating double
integrals can be low; see, e.g., [28] for SDEs with small noise and Remark 2.7. More-
over, the first-order scheme can be used to improve the computational performance
of multilevel Monte-Carlo methods; see, e.g., [8].

The rest of the paper is organized as follows. In section 2, we show how to derive
our schemes from WZ approximation to the Stratonovich SDDEs. Numerical results
will be presented in section 3 to illustrate the convergence of the three schemes and
to compare their numerical performance. We will show that the Milstein-like scheme
is much slower than the predictor-corrector and midpoint schemes as in each step
the evaluation of double integrals is expensive, no matter what approximation for the
double integrals is used. Finally, we prove in section 4 that the predictor-corrector
scheme is of half-order convergence in the mean-square sense while the Milstein-like
scheme is of first-order convergence.

2. Numerical schemes for SDDEs. Consider the following SDDE with con-
stant delay in Stratonovich form:

dX(t) = f(X(t), X(t− τ))dt +
r∑

l=1

gl(X(t), X(t− τ)) ◦ dWl(t), t ∈ (0, T ],

X(t) = φ(t), t ∈ [−τ, 0],(2.1)

where τ > 0 is a constant, (W (t),Ft) = ({Wl(t), 1 ≤ l ≤ r},Ft) is a system of one-
dimensional independent standard Wiener process, the functions f : Rd × R

d → R
d,

gl : R
d × R

d → R
d, φ(t) : [−τ, 0] → R

d are continuous with E‖φ‖2L∞ < ∞. We also
assume that φ(t) is F0-measurable.

For the mean-square stability of (2.1), we assume that f, gl, ∂xglgq, and ∂xτ glgq,
(∂x and ∂xτ denote the derivatives with respect to the first and second variables,
respectively), l, q = 1, 2, . . . , r, in (2.1) satisfy the following Lipschitz conditions:

(2.2) |v(x1, y1)− v(x2, y2)|2 ≤ Lv(|x1 − x2|2 + |y1 − y2|2),
and the linear growth conditions

(2.3) |v(x1, y1)|2 ≤ K(1 + |x1|2 + |y1|2)
for every x1, y1, x2, y2 ∈ R

d, where Lv, K are positive constants, which depend only
on v. Under these conditions, (2.1) has a unique sample-continuous and Ft-adapted
strong solution X(t) : [−τ,+∞) → R

d; see, e.g., [25, 30].
The WZ approximation (see, e.g., [46, 47]), is a semidiscretization method, where

Brownian motion is approximated by finite-dimensional absolute continuous stochas-
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tic processes before any discretization in time. There are different types of WZ ap-
proximation; see, e.g., [17, 31, 36, 50]. Here we use an orthogonal expansion approach
for WZ approximation of Brownian motion:

(2.4) W (n)(t) =

n∑
j=1

∫ t

0

mj(s) ds

∫ T

0

mj(t) dW, t ∈ [0, T ],

where {mj(t)}∞j=1 is a complete orthonormal system (CONS) in L2([0, T ]), and ξj =:∫ T

0 mj(t) dW, are mutually independent standard Gaussian random variables. In this
paper, we will use a piecewise version of spectral expansion (2.4) by taking a partition

0 = t0 < t1 < · · · < tNΔ−1 < tNΔ = T and choosing a truncated CONS, {m(n)
j (t)}Nh

j=1

in L2([tn, tn+1]) for n = 0, . . . , NΔ − 1:

(2.5) W (Nh,n)(t) =

NΔ−1∑
n=0

Nh∑
j=1

∫ t

0

χ[tn,tn+1)m
(n)
j (s) dsξ

(n)
j , ξ

(n)
j =

∫ tn+1

tn

m
(n)
j (s) dW,

where χ is the indicator function.
Here different choices of CONS lead to different representations. The orthonormal

piecewise constant basis over time interval [tn, tn+1), with Δ′ = (tn+1 − tn)/Nh,

m
(n)
j (t) =

√
Nh√

tn+1 − tn
χ[tn+(j−1)Δ′,tn+jΔ′), j = 1, 2, . . . , Nh,(2.6)

gives the classical piecewise linear interpolation (see, e.g., [17, 41, 46, 47]) and if
Nh = 1,

W (1,n)(t) = W (tn) + (t− tn)
W (tn+1)−W (tn)

tn+1 − tn
, t ∈ [tn, tn+1].(2.7)

The orthonormal Fourier basis gives Wiener’s representation (see, e.g., [19, 29, 33]):

m
(n)
1 (t) =

1√
tn+1 − tn

, m
(n)
2k (t) =

√
2

tn+1 − tn
sin

(
2kπ

tn+1 − tn
(t− tn)

)
,

m
(n)
2k+1(t) =

√
2

tn+1 − tn
cos

(
2kπ

tn+1 − tn
(t− tn)

)
, t ∈ [tn, tn+1].(2.8)

Note that taking Nh = 1 in (2.8) leads to the piecewise linear interpolation (2.7).
Besides, we can also use the wavelet basis, which gives the Levy–Ciesielsky represen-
tation [18]. More choices of CONS in (2.4) can be found in [22].

Though any CONS in L2([0, T ]) can be used in the spectral approximation (2.4),
the CONS we choose here has an important feature: it contains a constant in the
basis. Consequently, we have the following relation

(2.9)

∫ tn+1

tn

dW̃l(t) = ΔWl,n, ΔWl,n = Wl(tn+1)−Wl(tn).

We will show shortly that this relation with certain time discretizations in WZ will
lead to the formulation of existing schemes when there is no delay in (2.1).
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In this paper, we consider the spectral approximation (2.5) with piecewise con-
stant basis (2.6) and Fourier basis (2.8). With these approximations, we have the
following WZ approximation for (2.1):

dX̃(t) = f(X̃(t), X̃(t− τ))dt +

r∑
l=1

gl(X̃(t), X̃(t− τ))dW̃l(t), t ∈ [0, T ],

X̃(t) = φ(t), t ∈ (−τ, 0],(2.10)

where W̃l(t) can be any approximation of Wl(t) described above. For the piecewise
linear interpolation (2.7), we have the following consistency of the WZ approximation
(2.10) to (2.1).

Theorem 2.1 (consistency, [40]). Suppose f and gl in (2.1) are Lipschitz con-
tinuous and satisfy conditions (2.2) and have second-order continuous and bounded
partial derivatives. Suppose also the initial segment φ(t), t ∈ [−τ, 0], to be on the prob-
ability space (Ω,F , P ) and F0-measurable and right continuous, and E[‖φ‖2L∞ ] < ∞.
For X̃(t) in (2.10) with piecewise linear approximation of Brownian motion (2.7), we
have for any t ∈ (0, T ],

lim
n→∞ sup

0≤s≤t
E[|X(s)− X̃(s)|2] = 0.(2.11)

The consistency of the WZ approximation with spectral approximation (2.5) can
be established by the argument of integration by parts as in [12, 17], under similar
conditions on the drift and diffusion coefficients.

2.1. Derivation of numerical schemes. We will further discretize (2.10) in
time and derive several numerical schemes for (2.1). To this end, we take a uniform
time step size h, which satisfies τ = mh and m is a positive integer; NT = T/h (T is
the final time); tn = nh, n = 0, 1, . . . , NT . For simplicity, we take the partition for
the WZ approximation exactly the same as the time discretization, i.e.,

tn = tn, n = 0, 1, . . . , NT and Δ =: tn − tn−1 = tn − tn−1 = h.

For (2.10), we have the following integral form over [tn, tn+1]:

(2.12)

∫ tn+1

tn

dX̃(t) =

∫ tn+1

tn

f(X̃(t), X̃(t− τ))dt+

r∑
l=1

∫ tn+1

tn

gl(X̃(t), X̃(t− τ))dW̃l(t).

Here we emphasize the following rule of thumb: the time discretization for the diffusion
coefficients have to be at least half-order. Otherwise, the resulting scheme is not
consistent, e.g., Euler-type schemes, in general, converge to the corresponding SDDEs
in the Ito sense instead of those in the Stratonovich sense. In fact, if gl(X̃(t), X̃(t−τ))
(l = 1, . . . , r) is approximated by gl(X̃(tn), X̃(tn − τ)) in (2.12), then we have, for
both Fourier basis (2.8) and piecewise constant basis (2.6),∫ tn+1

tn

dX̃(t) =

∫ tn+1

tn

f(X̃(t), X̃(t− τ))dt +

r∑
l=1

gl(X̃(tn), X̃(tn − τ)ΔWl,n,

where we have used the relation (2.9). This will lead to Euler-type schemes which
converge to the following SDDE in the Ito sense (see, e.g., [1, 23], instead of (2.1)):

dX(t) = f(X(t), X(t− τ))dt +
r∑

l=1

gl(X(t), X(t− τ))dWl(t).
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In the following, three numerical schemes for solving (2.1) are derived using the Tay-
lor expansion and different discretizations in time in (2.12). The first scheme is a
predictor-corrector scheme. Using the trapezoidal rule to approximate the integrals
on the right side of (2.12), we get

Xn+1 = Xn +
h

2

[
f(Xn, Xn−m) + f(Xn+1, Xn−m+1)

]
+

1

2

r∑
l=1

[
gl(Xn, Xn−m) + gl(Xn+1, Xn−m+1)

]
ΔWl,n,(2.13)

where Xn is an approximation of X̃(tn) (thus an approximation of X(tn)) and we
have used the relation (2.9) for both bases (2.6) and (2.8). The initial conditions
are Xn = φ(nh), when n = −m,−m+ 1, . . . , 0. Note that the scheme (2.13) is fully
implicit and is not solvable as ΔWl,n can take any values in the real line. To resolve
this issue, we further apply the left rectangle rule on the right side of (2.12) to obtain
a predictor for Xn+1 in (2.13) so that the resulting scheme is explicit. Taking the
relation (2.9) into account, we obtain a predictor-corrector scheme for SDDE (2.1):

Xn+1 = Xn + hf(Xn, Xn−m) +

r∑
l=1

gl(Xn, Xn−m)ΔWl,n,

Xn+1 = Xn +
h

2

[
f(Xn, Xn−m) + f(Xn+1, Xn−m+1)

]
(2.14)

+
1

2

r∑
l=1

[
gl(Xn, Xn−m) + gl(Xn+1, Xn−m+1)

]
ΔWl,n,

n = 0, 1, . . . , NT − 1.

Theorem 2.2. Assume that f , gl, ∂xglgq, and ∂xτ glgq (l, q = 1, 2, . . . , r) satisfy
the Lipschitz condition (2.2) and also the gl have bounded second-order partial deriva-
tives with respect to all variables. If E[‖φ‖pL∞ ] < ∞, 1 ≤ p ≤ 4, then we have for the
predictor-corrector scheme (2.14),

max
1≤n≤NT

E|X(tn)−Xn|2 = O(h).(2.15)

The proof will be presented in section 4.
Remark 2.3. When τ = 0 both in drift and diffusion coefficients, the scheme

(2.14) degenerates into one family of the predictor-corrector schemes in [2], which can
have a larger stability region than the explicit Euler scheme and some other one-step
schemes, especially for SDEs with multiplicative noises. Moreover, we will numerically
show that if the time delay only exists in the drift term in SDDEs with commutative
noise (for the one-dimensional case, i.e., d = 1, the commutative condition is gl∂xgq−
gq∂xgl = 0, 1 ≤ l, q ≤ r; see, e.g., [19, p. 348], [29, p. 28]), the proposed predictor-
corrector scheme can be convergent with order one in the mean-square sense.

The second scheme is a midpoint scheme. Applying the midpoint rule on the right
side of (2.12), by X(t+ h

2 ) ≈ 1
2 (X(t + h) +X(t)) and (2.9), we obtain the following
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midpoint scheme:

Xn+1 = Xn + hf

(
Xn +Xn+1

2
,
Xn−m +Xn−m+1

2

)
(2.16)

+

r∑
l=1

gl

(
Xn +Xn+1

2
,
Xn−m +Xn−m+1

2

)
ΔW l,n,

n = 0, 1, . . . , NT − 1,

where we have truncated ΔWl,n with ΔW l,n so that the solution to (2.16) has finite
second-order moment and is solvable (see, e.g., [29, section 1.3]). Here ΔW l,n =

ζ(l,n)
√
h instead of ξ(l,n)

√
h, where ζ(l,n) is a truncation of the standard Gaussian

random variable ξ(l,n) (see, e.g., [29, p. 39]):

(2.17) ζ(n) = ξ(n)χ|ξ(n)|≤Ah
+ sgn(ξ(n))Ahχ|ξ(n)|>Ah

, Ah =
√
4| log (h)|.

This fully implicit midpoint scheme is symplectic if τ = 0 [27], which allows long-
time integration for stochastic Hamiltonian systems. As in the case of no delay, the
midpoint scheme complies with the Stratonovich calculus without differentiating the
diffusion coefficients. Again, it is of first-order convergence for Stratonovich SDEs
with commutative noise when no delay arises in the diffusion coefficients. However,
it is of half-order convergence once the delay appears in the diffusion coefficients,
which will be shown numerically in section 3. The proof of a half-order mean-square
convergence is similar to that of Theorem 2.2. Thus, we only present the main idea
of the proof here. Using the estimate E[(ξ(n))2 − (ζ(n))2] ≤ (1 + 4

√| lnh|)h2 (see [27,
Lemma 2.1]) and applying the Taylor expansion for gl in (2.16), we can prove that
the midpoint scheme is of half-order convergence in the mean-square sense as in the
proof of Theorem 2.2 for the predictor-corrector scheme.

Remark 2.4. The relation (2.9) is crucial in the derivation of the schemes (2.14)

and (2.16). If a CONS contains no constants, e.g., {
√

2
tn+1−tn

sin(kπ(s−tn)
tn+1−tn

)}∞k=1, then

from (2.12), ΔWl,n in the scheme (2.14) should be replaced by

(2.18)

∫ tn+1

tn

dW̃l(t) =

Nh∑
j=1

√
2

tn+1 − tn

∫ tn+1

tn

sin

(
jπ(s− tn)

tn+1 − tn

)
dsξ

(n)
l,j ,

which will be simulated with independently and identially distributed (i.i.d.) Gaussian

random variables with zero mean and variance
∑Nh

j=1
2h

j2π2 (1− (−1)j)2. According to

the proof of Theorem 2.2, we require Nh ∼ O(h−1) so that

(2.19) E

[∣∣∣∣∫ tn+1

tn

dW̃l(t)−
∫ tn+1

tn

dWl(t)

∣∣∣∣2
]
∼ O(h2)

to make the corresponding scheme of half-order convergence. Numerical results show
that the scheme (2.14) with ΔWn replaced by (2.18) andNh ∼ O(h−1) leads to similar
accuracy and the same convergence order with the predictor-corrector scheme (2.14)
(numerical results are not present).



A8 W. CAO, Z. ZHANG, AND G. E. KARNIADAKIS

The last scheme is a Milstein-like scheme. When s ∈ [tn, tn+1], we approximate
f(X̃(s), X̃(s− τ)) by f(X̃(tn), X̃(tn − τ)), and by the Taylor’s expansion we have

gl(X̃(s), X̃(s− τ)) ≈ gl(X̃(tn), X̃(tn − τ)) + ∂xgl(X̃(tn), X̃(tn − τ))[X̃(s)− X̃(tn)]

+ ∂xτ gl(X̃(tn), X̃(tn − τ))[X̃(s− τ)− X̃(tn − τ)].(2.20)

Substituting the above approximations into (2.12) and omitting the terms whose order
is higher than one in (2.12), we then obtain the following scheme:

Xn+1 = Xn + hf(Xn, Xn−m) +

r∑
l=1

gl(Xn, Xn−m)Ĩ0

+

r∑
l=1

r∑
q=1

∂xgl(Xn, Xn−m)gq(Xn, Xn−m)Ĩq,l,tn,tn+1,0(2.21)

+

r∑
l=1

r∑
q=1

∂xτ gl(Xn, Xn−m)gq(Xn−m, Xn−2m)χtn≥τ Ĩq,l,tn,tn+1,τ ,

n = 0, 1, . . . , NT − 1,

where

Ĩ0 =

∫ tn+1

tn

dW̃l(t), Ĩq,l,tn,tn+1,0 =

∫ tn+1

tn

∫ t

tn

dW̃q(s)dW̃l(t), tn ≥ 0,

Ĩq,l,tn,tn+1,τ =

∫ tn+1

tn

∫ t−τ

tn−τ

dW̃q(s)dW̃l(t), tn ≥ τ.

Using the Fourier basis (2.8), the three stochastic integrals in (2.21) are computed
by

ĨF0 =

∫ tn+1

tn

m
(1)
i (t)ξ

(n)
l,1 dt = ΔWl,n,(2.22)

ĨFq,l,tn,tn+1,0 =
h

2
ξ
(n)
q,1 ξ

(n)
l,1 −

√
2h

2π
ξ
(n)
q,1

s∑
p=1

1

p
ξ
(n)
l,2p

+
h

2π

s1∑
p=1

1

p
[ξ

(n)
q,2p+1ξ

(n)
l,2p − ξ

(n)
q,2pξ

(n)
l,2p+1],

ĨFq,l,tn,tn+1,τ =
h

2
ξ
(n−m)
q,1 ξ

(n)
l,1 −

√
2h

2π
ξ
(n−m)
q,1

s∑
p=1

1

p
ξ
(n)
l,2p

+
h

2π

s1∑
p=1

1

p
[ξ

(n−m)
q,2p+1ξ

(n)
l,2p − ξ

(n−m)
q,2p ξ

(n)
l,2p+1],

where s = [Nh

2 ] and s1 = [Nh−1
2 ]. When piecewise constant basis (2.6) is used, these

integrals are

ĨL0 =

Nh−1∑
j=0

ΔWl,n,j = ΔWl,n,

ĨLq,l,tn,tn+1,0 =

Nh−1∑
j=0

ΔWl,n,j

[
ΔWq,n,j

2
+

j−1∑
i=0

ΔWq,n,i

]
,(2.23)

ĨLq,l,tn,tn+1,τ =

Nh−1∑
j=0

ΔWl,n,j

[
ΔWq,n−m,j

2
+

j−1∑
i=0

ΔWq,n−m,i

]
,
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where ΔWk,n,j = Wk(tn+
(j+1)h
Nh

)−Wk(tn+
jh
Nh

), k = 1, . . . , r, j = 0, . . . , Nh−1, and
ΔWk,n,−1 = 0. In Example 3.3 of section 3, we will show that the piecewise linear
interpolation is less efficient than the Fourier approximation for achieving the same
order of accuracy.

The scheme (2.21) can be seen as further discretization of the Milstein scheme for
Stratonovich SDDEs proposed in [15]:

XM
n+1 = XM

n + hf(XM
n , XM

n−m) +
r∑

l=1

gl(X
M
n , XM

n−m)ΔWl,n

+

r∑
l=1

r∑
q=1

∂xgl(X
M
n , XM

n−m)gq(X
M
n , XM

n−m)Iq,l,tn,tn+1,0(2.24)

+

r∑
l=1

r∑
q=1

∂xτ gl(X
M
n , XM

n−m)gq(X
M
n−m, XM

n−2m)χtn≥τ Iq,l,tn,tn+1,τ ,

n = 0, 1, . . . , NT − 1,

as the double integrals approximated by either the Fourier expansion or the piecewise
linear interpolation, Ĩ0, Ĩq,l,tn,tn+1,0, and Ĩq,l,tn,tn+1,τ are, respectively, approximations
of the following integrals

I0 =

∫ tn+1

tn

◦dWl(t), Iq,l,tn,tn+1,0 =

∫ tn+1

tn

∫ t

tn

◦dWq(s) ◦ dWl(t), tn ≥ 0,

Iq,l,tn,tn+1,τ =

∫ tn+1

tn

∫ t−τ

tn−τ

◦dWq(s) ◦ dWl(t), tn ≥ τ.

In [15], Iq,l,tn,tn+1,0 and Iq,l,tn,tn+1,τ are approximated in a similar fashion. The
Brownian motion Wq therein is approximated by the sum of (t−tn)/(tn+1−tn)Wq(tn)
and a truncated Fourier expansion of the Brownian bridge Wq(t) − (t − tn)/
(tn+1 − tn)Wq(tn) for tn ≤ t ≤ tn+1; see also [9] and [19, section 5.8]. It can be
readily checked that this approximation is equivalent to the Fourier approximation
(2.22). In numerical simulations (results are not present), these two approximations
lead to a small difference in computational cost and accuracy but the convergence
order is the same.

As we note in the beginning of section 2, the choice of complete orthonormal bases
is arbitrary. However, the use of general spectral approximation may lead to different
accuracy; see, e.g., [22] for a detailed comparison of some spectral approximations of
multiple Stratonovich integrals.

In addition to the Fourier approximation, several methods of approximating
Iq,l,tn,tn+1,0 have been proposed: applying the trapezoid rule (see, e.g., [29, sec-
tion 1.4]) and the modified Fourier approximation (see, e.g., [45]). We note that
the use of the trapezoid rule leads to a formula similar to (2.23), which is shown
to be less efficient than the Fourier approximation; see Example 3.3 of section 3.
In [45], Iq,l,tn,tn+1,0 is approximated with the sum of a Fourier approximation and
a tail process Aq,l,tn,tn+1, where the tail Aq,l,tn,tn+1 is modeled with the product of
r(r−1)/2-dimensional i.i.d. Gaussian random variables and a functional of increments
of Brownian motion ΔWl,n. It is shown in [9] that the modified Fourier approxima-

tion in [45] requires O(r4
√
h) i.i.d. Gaussian random variables to maintain the first-

order convergence while the Fourier approximation requires O(r2h−1) i.i.d. Gaussian
random variables. However, it is difficult to extend this approach to approximate
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Iq,l,tn,tn+1,τ even when r is small because a tail Aq,l,tn,tn+1,0 will be correlated with
Aq,l,tn,tn+1,τ , which is difficult to identify and brings no computational benefits.

To make the scheme (2.21) of first-order convergence, it is important to efficiently

compute the double integrals Ĩq,l,tn,tn+1,0 and Ĩq,l,tn,tn+1,τ . In the following, we discuss
how to choose the truncation parameters for the spectral approximation of Brownian
motion.

Lemma 2.5. For the Fourier basis (2.8), it holds that

ĨF0 = I0,(2.25)

E[(ĨFq,l,tn ,tn+1,0 − Iq,l,tn,tn+1,0)
2] = ς(Nh)

2Δ2

(Nhπ)2
+

∞∑
i=M

Δ2

(iπ)2
≤ c

Δ2

π2M
,(2.26)

E[(ĨFq,l,tn,tn+1,τ − Iq,l,tn,tn+1,τ )
2] = ς(Nh)

2Δ2

(Nhπ)2
+

∞∑
i=M

Δ2

(iπ)2
≤ c

Δ2

π2M
,(2.27)

where ς(Nh) = 0 if Nh is odd and 1 otherwise, and M is the integer part of Nh/2+1.
The proof of this lemma can be found in section 4. With Lemma 2.5, we can

show that the Milstein-like scheme (2.21) can be of first-order convergence in the
mean-square sense; see section 4.

Theorem 2.6. Assume that f , gl, ∂xglgq, and ∂xτ glgq (l, q = 1, 2, . . . , r) satisfy
the Lipschitz condition (2.2) and also the gl have bounded second-order partial deriva-
tives with respect to all variables. If E[‖φ‖pL∞ ] < ∞, 1 ≤ p ≤ 4, then we have for the
Milstein-like scheme (2.21),

(2.28) max
1≤n≤NT

E|X(tn)−Xn|2 = O(h2),

when the double integrals Ĩq,l,tn,tn+1,0, Ĩq,l,tn,tn+1,τ are computed by (2.22) and Nh is
of the order of 1/h.

When (2.23) is used in the Milstein-like scheme (2.21), the first-order strong
convergence can be proved similarly when Nh is of the order of 1/h. This is similar
to the simulation of double integrals using the Fourier approximation in [15, 20].

Remark 2.7. In practice, the cost of simulating double integrals is prohibitively
expensive. However, there are cases where we can reduce or even avoid the simulation
of double integrals. For example, when the diffusion coefficients are small and of
the order ε and the coefficients at the double integrals are of order ε2, we may take
ε2/M ∼ O(h) to achieve an accuracy of O(h) in the mean-square sense, according
to the proof of Theorem 2.6. Thus, only a small M is required if ε ∼ O(

√
h). Also,

when the diffusion coefficients contain no delay and satisfy the so-called commutative

noises, i.e., ∂gl(x)
∂x gq(x) =

∂gq(x)
∂x gl(x), the Milstein-like scheme can be rewritten as

XM
n+1 = XM

n + hf(XM
n , XM

n−m) +
r∑

l=1

gl(X
M
n )ΔWl,n

+
1

2

r∑
l=1

r∑
q=1

∂xgl(X
M
n )gq(X

M
n )ΔWl,nΔWq,n, n = 0, 1, . . . , NT − 1.

In this case, only Wiener increments are used and the Milstein scheme is of low cost.

3. Numerical results. In this section, we test the convergence order of the pro-
posed schemes and compare their numerical performance. In the first two examples,
we test the predictor-corrector scheme (2.14) and midpoint scheme (2.16) for multiple
noises and show both methods are of half-order mean-square convergence. Further,
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Table 1

Convergence order of the predictor-corrector scheme (left) and the midpoint scheme (right) for
Example 3.1 at T = 20 with ten white noises using np = 4000 sample paths.

τ h ρh,T Order Time (s.) ρh,T Order Time (s.)

2−8 4.050e-02 0.51 220 6.698e-02 0.61 807
2−9 2.851e-02 0.56 420 4.378e-02 0.44 1591

1
16

2−10 1.936e-02 0.48 818 3.237e-02 0.53 3157
2−11 1.390e-02 ∗a 1620 2.239e-02 ∗ 6289
2−12 ∗ ∗ 3221 ∗ ∗ 12573

2−8 3.955e-02 0.54 219 5.942e-02 0.51 805
2−9 2.728e-02 0.55 417 4.189e-02 0.48 1586

1
4

2−10 1.861e-02 0.46 816 3.000e-02 0.47 3148
2−11 1.359e-02 ∗ 1615 2.164e-02 ∗ 6284
2−12 ∗ ∗ 3215 ∗ ∗ 12557

2−8 3.914e-02 0.53 221 5.725e-02 0.48 805
2−9 2.711e-02 0.54 422 4.092e-02 0.51 1588

1 2−10 1.873e-02 0.46 820 2.887e-02 0.47 3148
2−11 1.364e-02 ∗ 1627 2.086e-02 ∗ 6289
2−12 ∗ ∗ 3236 ∗ ∗ 12569

aNo results from a smaller time step size are available and the convergence order
is absent.

we show that both schemes converge with order one in the mean-square sense for
an SDDE with single white noise and no time delay in diffusion coefficients. In the
last example, we test the Milstein-like scheme (2.21) and show that it is of first-order
convergence for SDDEs with multiple white noises.

Throughout this section, the strong error of numerical solutions is defined as

ρh,T =

(
1

np

np∑
i=1

|Xh(T, ωi)−Xh
2
(T, ωi)|2

)1/2

,

where ωi denotes the ith single sample path and np is the number of paths.
The numerical tests were performed using MATLAB R2012a on a Dell Optiplex

780 computer with CPU (E8500 3.16 GHz). We used the Mersenne twister random
generator with seed 1 and took a large number of paths so that the statistical error can
be ignored. Newton’s method with tolerance h2/100 was used to solve the nonlinear
algebraic equations at each step of the implicit schemes.

We first test the convergence order of the predictor-corrector scheme (2.14) and
the midpoint scheme (2.16) for an SDDE with several noises.

Example 3.1. Consider (2.1) with the following coefficients:

f = −15X(t) + 2 sin(X(t− τ)),

g1 = sin(X(t)) + 0.5X(t− τ), g2 = 0.9X(t), g3 = 0.2X(t) + 0.2X(t− τ),

g4 = 2 sin(X(t)), g5 = 0.8X(t) + cos(X(t− τ)), g6 = X(t) + 0.5 sin(X(t− τ)),

g7 = 2 cos(X(t− τ)), g8 = −X(t) + cos(X(t− τ)), g9 = 0.5X(t)−X(t− τ),

g10 = 1.5 cos(X(t− τ)),

and the initial function is φ(t) = t+ 0.2.
In this example, we test the convergence order of the predictor-corrector and

midpoint schemes at T = 20 and with different time delays τ = 2−4, 2−2, 1.
In Table 1, we observe that both schemes are convergent with order half in the

mean-square sense. Different time delays do not influence the convergence order of
these schemes.
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The number of operations of the predictor-corrector scheme for (2.1) is (5r +
6)dT/h. For the midpoint scheme, the number of operations is 6CI(r+1)dT/h, where
CI is the maximum number of Newton’s iterations in each time step. In Table 1, we
observe that for both schemes, the computational cost doubles when step sizes reduce
by half. The CPU time of the midpoint scheme is about four times what the predictor-
corrector scheme costs, which is consistent with the prediction as the observed CI is
around 4.

We now test the convergence order for the predictor-corrector scheme (2.14)
and the midpoint scheme (2.16) for SDDEs with different types of noises: non-
commutative noise, single noise. We will show that the time delay in a diffusion
coefficient keeps both methods only convergent at half-order, while for the SDDE
with single noise, the two schemes can be of first-order accuracy in the mean-square
sense if the time delay does not appear explicitly in the diffusion coefficients.

Example 3.2. Consider (2.1) in one-dimension and assume the initial function
φ(t) = t+ 0.2, with different diffusion coefficients:

• noncommutative white noises without delay in the diffusion coefficients:

(3.1) dX = [−X(t)+sin(X(t−τ))] dt+sin(X(t))◦ dW1(t)+0.5X(t)◦dW2(t),

where the noises are noncommutative as ∂x(sin(x))0.5x−∂x(0.5x)sin(x) �= 0;
• single white noise without delay in the diffusion coefficients:

(3.2) dX = [−X(t) + sin(X(t− τ))] dt + sin(X(t)) ◦ dW (t);

• single white noise with delay in the diffusion coefficients:

(3.3) dX = [−X(t) + sin(X(t− τ))] dt + sin(X(t− τ)) ◦ dW (t).

From Figure 1(a) (noncommutative noises, (3.1)) and Figure 1(c) (single delayed
diffusion, (3.3)), we observe the half-order strong convergence. In contrast, for (3.2)
(single noise, nondelayed diffusion) in Figure 1(b), the convergence order of these two
schemes becomes one in the mean-square sense.

From this example, we conclude that for the predictor-corrector and midpoint
schemes, when the time delay only appears in the drift term, the convergence order
is one for the equation with single noise (commutative noises) and half for the one
with noncommutative noises. However, when the diffusion coefficients contain time
delays, these two schemes are only half-order even for equations with a single white
noise; see equation (3.3).

In the last example, we test the Milstein-like scheme (2.21) using different bases,
i.e., the piecewise constant basis (2.6) and the Fourier basis (2.8), and compare its
numerical performance with the predictor-corrector and midpoint schemes. For the
Milstein-like scheme, we show that for multiple noises, the computational cost for
achieving the same accuracy is much higher than the other two schemes, while for
single noise, the computational cost for the same accuracy is lower.

Example 3.3. We consider the Milstein-like scheme (2.21) for

dX(t) = [−9X(t) + sin(X(t− τ))]dt + [sin(X(t)) +X(t− τ)] ◦ dW1(t)

+ [X(t) + cos(0.5X(t− τ))] ◦ dW2(t), t ∈ (0, T ],

X(t) = t+ τ + 0.1, t ∈ [−τ, 0](3.4)

and

dX(t) = [−2X(t) + 2X(t− τ)]dt + [sin(X(t)) +X(t− τ)] ◦ dW (t), t ∈ (0, T ],

X(t) = t+ τ, t ∈ [−τ, 0].(3.5)
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Predictor−Corrector scheme (c)
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Fig. 1. Mean-square convergence test of the predictor-corrector (left column) and midpoint
schemes (right column) on Example 3.2 at T = 5 with different τ using np = 10000 sample paths.
(a) multi-white-noises with nondelayed diffusion coefficient; (b) single white noise with nondelayed
diffusion coefficient; (c) single white noise with delayed diffusion coefficient.

To reduce the computational cost, the double integrals are computed by the
Fourier expansion approximation (2.22) and the following relation

(3.6) Ĩq,l,tn,tn+1,0 = ΔWl,nΔWq,n − Ĩl,q,tn,tn+1,0, Ĩl,l,tn,tn+1,0 =
(ΔWl,n)

2

2
.

We also use the following relations:

Ĩq,l,tn,tn+ph,0 =

p−1∑
j=0

[
Ĩq,l,tn+jh,tn+(j+1)h,0 +ΔWl,n+jχj≥1

j−1∑
i=0

ΔWq,n+i

]
,

Ĩq,l,tn,tn+ph,τ =

p−1∑
j=0

[
Ĩq,l,tn+jh,tn+(j+1)h,τ +ΔWl,n+jχj≥1

j−1∑
i=0

ΔWq,n−m+i

]
.
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Table 2

Convergence order of the Milstein-like scheme (left) for (3.4) at T = 1 and comparison with
the convergence order of the predictor-corrector scheme (middle) and the midpoint scheme (right)
using np = 4000 sample paths. The upper rows are with τ = 1/16 and the lower are with τ = 1/4.

h ρh,T Order Time (s.) ρh,T Order Time (s.) ρh,T Order Time (s.)

2−4 9.832e-02 1.27 0.72 7.164e-02 0.94 0.05 5.000e-02 0.60 0.16
2−5 4.090e-02 1.09 1.0 3.734e-02 0.69 0.10 3.304e-02 0.55 0.29
2−6 1.921e-02 0.99 1.7 2.308e-02 0.51 0.12 2.263e-02 0.51 0.41
2−7 9.703e-03 ∗a 3.3 1.616e-02 ∗ 0.25 1.590e-02 ∗ 0.79
2−8 ∗ ∗ 6.4 ∗ ∗ 0.40 ∗ ∗ 1.54

2−4 9.307e-02 1.28 0.56 6.956e-02 0.96 0.04 5.050e-02 0.68 0.11
2−5 3.824e-02 1.08 0.93 3.582e-02 0.70 0.10 3.155e-02 0.56 0.22
2−6 1.804e-02 0.99 1.6 2.205e-02 0.62 0.17 2.133e-02 0.58 0.39
2−7 9.069e-03 ∗ 2.8 1.434e-02 ∗ 0.26 1.425e-02 ∗ 0.78
2−8 ∗ ∗ 5.5 ∗ ∗ 0.45 ∗ ∗ 1.59

aNo results from a smaller time step size are available and the convergence order is absent.

Table 3

Convergence order of the Milstein-like scheme (left) for (3.5) (single white noise) at T = 1
and comparison with the convergence order of the predictor-corrector scheme (middle) and midpoint
scheme (right) using np = 4000 sample paths. The delay τ is taken as 1/4.

h ρh,T Order Time (s.) h ρh,T Order Time (s.) ρh,T Order Time (s.)

2−4 3.164e-02 0.91 0.19 2−7 1.252e-02 0.44 0.18 1.263e-02 0.45 0.59
2−5 1.688e-02 0.99 0.28 2−8 9.219e-03 0.51 0.37 9.246e-03 0.51 1.09
2−6 8.499e-03 0.90 0.46 2−9 6.462e-03 0.49 0.56 6.471e-03 0.48 2.05
2−7 4.570e-03 ∗a 0.79 2−10 4.617e-03 ∗ 1.03 4.627e-03 ∗ 3.97
2−8 ∗ ∗ 1.40 2−11 ∗ ∗ 1.91 ∗ ∗ 7.58

aNo results from a smaller time step size are available and the convergence order is absent.

In Table 2, we show that for (3.4), the Milstein-like scheme (2.21) converges with
order one in the mean-square sense. Compared to the predictor-corrector scheme or
the midpoint scheme, when the time step sizes are the same, the computational cost
for the Milstein-like scheme (2.21) is several times higher. In fact, in the Milstein-
like scheme, the extra computational cost comes from evaluating the double integrals
ĨFq,l,tn,tn+1,0

and ĨFq,l,tn,tn+1,τ
at each time step, which requires 7/(2h)(3r2 − r)/2 op-

erations when we take the relation (3.6) into account.
We also test the Milstein-like scheme (2.21) using the piecewise constant basis

(2.6). The computational cost is even higher than that of using the Fourier basis for
the same time step size. Actually, the number of operations for evaluating double in-
tegrals using (2.23) is (1/(2h2)+5/(2h)−1)(3r2−r)/2, which is O(1/h2), much higher
than that of using the Fourier basis, O(1/h). Our numerical tests (not presented here)
confirmed the fast increase in the number of operations.

However, the number of operations of the Milstein-like scheme can be significantly
reduced when there is just a single diffusion coefficient. In Table 3, we observe that
the Milstein-like scheme for (3.5) is still of first-order convergence but the predictor-
corrector scheme and the midpoint scheme are only of half-order convergence. For the
same accuracy, the computational cost for the Milstein-like scheme using the Fourier
basis is less than that for the other two schemes. In fact, for single noise, we only need
to compute one double integral Ĩ1,1,tn,tn+1,τ . Moreover, when the coefficients of the
diffusion coefficient are small, a small number of Fourier modes is required for large
time step sizes, i.e., Nh can be O(1) instead of O(h−1). The computational cost can
thus be reduced somewhat; see, e.g., [28] and [29, Chapter 3] for such a discussion for
equations with small noises without delay.
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In summary, the proposed predictor-corrector scheme and midpoint scheme are
convergent with half-order in the mean-square sense; see Example 3.1. We also show
that these two schemes can be of first-order in the mean-square sense if the underlying
SDDEs with single noise (commutative noise) and the time delay are only in the drift
coefficients; see Example 3.2. In Example 3.3 the numerical tests show that our
proposed Milstein-like scheme is of first-order in the mean-square sense for SDDEs
with noncommutative noise wherever the time delay appears, i.e., in the drift and/or
diffusion coefficients. Compared to the other two schemes, the Milstein-like scheme
is more accurate but is more expensive as it requires evaluations of double integrals,
with cost inversely proportional to the time step size and proportional to the square of
the number of noises. However, for SDDEs with single noise, the Milstein-like scheme
(with the Fourier basis) can be superior to the predictor-corrector scheme and the
midpoint scheme in terms of both accuracy and computational cost.

4. Proofs. In this section, we prove Theorems 2.2 and 2.6 and Lemma 2.5. While
proofs of Theorems 2.2 and 2.6 are presented only for the one-dimensional problem
(2.1) (d = 1), they can be extended to the multidimensional case d > 1 without
difficulty.

Proof of Theorem 2.2. We recall that for the Milstein scheme (2.24) (see [15]),
max1≤n≤NT E|X(tn) −XM

n |2 = O(h2). Then by the triangle inequality, it suffices to
prove

(4.1) max
1≤n≤NT

E|XM
n −Xn|2 = O(h).

We denote that fn = f(Xn, Xn−m) and gl,n = gl(Xn, Xn−m) and also

ρfn = f(Xn+1, Xn−m+1)− fn,(4.2)

ρgl,n = gl(Xn+1, Xn−m+1)

−
[
gl,n + ∂xgl,n

r∑
q=1

gq,nΔWq,n + ∂xτ gl,n

r∑
q=1

gq,n−mΔWq,n−m

]
.

With (4.2), we can rewrite (2.14) as follows:

Xn+1 = Xn + hfn +

r∑
l=1

gl,nΔWl,n +
1

2

r∑
l=1

r∑
q=1

∂xgl,nΔWq,nΔWl,n

+
1

2

r∑
l=1

r∑
q=1

∂xτ gl,n gq,n−mΔWq,n−mΔWl,n + ρn,(4.3)

where ρn = hρfn + 1
2

∑r
l=1 ρgl,nΔWl,n.

It can be readily checked that if f , gl satisfy the Lipschitz condition (2.2), and gl
has bounded second-order derivatives (l = 1, . . . , r), then by the predictor-corrector
scheme (2.14) and Taylor’s expansion of gl(Xn+1, Xn−m+1), we have h

2
E[ρ2fn ] ≤ Ch3,

E[(ρgl,nΔWl,n)
2] ≤ Ch3, and thus by the triangle inequality,

(4.4) E[ρ2n] ≤ Ch3,

where the constant C depends on r and Lipschitz constants, but is independent of h.



A16 W. CAO, Z. ZHANG, AND G. E. KARNIADAKIS

Subtracting (4.3) from (2.24) and taking expectation after squaring over both
sides, we have

E[(XM
n+1 −Xn+1)

2] = E[(XM
n −Xn)

2] + 2E

[
(XM

n −Xn)

(
4∑

i=0

Ri − ρn

)]

− 2

4∑
i=0

E[ρnRi] +

4∑
i,j=0

E[RiRj ] + E[ρ2n],(4.5)

where we denote fM
n = f(XM

n , XM
n−m) and gMl,n = gl(X

M
n , XM

n−m) and

R0 = h(fM
n − fn) +

r∑
l=1

(gMl,n − gl,n)ΔWl,n,

R1 =

r∑
l=1

r∑
q=1

[
∂xg

M
l,ng

M
q,n − ∂xgl,ngq,n

] ΔWq,nΔWl,n

2
,

R2 =

r∑
l=1

r∑
q=1

[
∂xτ g

M
l,ng

M
q,n−m − ∂xτ gl,ngq,n−m

] ΔWq,n−mΔWl,n

2
,

R3 =

r∑
l=1

r∑
q=1

∂xg
M
l,ng

M
q,n

(
Iq,l,tn,tn+1,0 −

ΔWq,nΔWl,n

2

)
,

R4 =

r∑
l=1

r∑
q=1

∂xτ g
M
l,ng

M
q,n−m

(
Iq,l,tn,tn+1,τ − ΔWq,n−mΔWl,n

2

)
.

By the Lipschitz condition for f and gl, and adaptedness of Xn, X
M
n , we have

(4.6) E[R2
0] ≤ C(h2 + h)(E[(XM

n −Xn)
2] + E[(XM

n−m −Xn−m)2]).

To bound E[R2
i ] (i = 1, 2, 3, 4), we require that Xn and XM

n have bounded moments
of up to fourth order, which can be readily checked using the predictor-corrector
scheme (2.14) and the milstein scheme (2.24) under our assumptions. By the Lipschitz
condition of gl and ∂xτ glgq, we have

E[R2
2] ≤ C max

1≤l,q≤r
E[(
∣∣XM

n −Xn

∣∣+ ∣∣XM
n−m −Xn−m

∣∣)2(ΔWq,n−mΔWl,n)
2],

whence by the Cauchy inequality and the boundedness of E[X4
n] and E[(XM

n )4], we
have E[R2

2] ≤ Ch2. Similarly, we have E[R2
1] ≤ Ch2. By Lemma 2.5, and linear growth

condition (2.3) for ∂xτ glgq, we obtain

E[R2
4] ≤ C max

1≤l<q≤r
E

[
(1 +

∣∣XM
n

∣∣2 + ∣∣XM
n−m

∣∣2)(Iq,l,tn,tn+1,τ − ΔWq,n−mΔWl,n

2

)2
]

≤ Ch2,

since XM
n , XM

n−m have bounded fourth-order moments and by the Burkholder–Davis–
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Gundy inequality, it holds that for l �= q

E

[(
Iq,l,tn,tn+1,τ −

ΔWq,n−mΔWl,n

2

)4
]

= E

[(∫ tn+1

tn

(
Wq(t− τ)− Wq(tn+1 − τ) +Wq(tn − τ)

2

)
◦ dWl

)4
]

≤ C

(
E

[∫ tn+1

tn

(
Wq(t− τ)− Wq(tn+1 − τ) +Wq(tn − τ)

2

)2

ds

])2

≤ Ch4.

Similarly, we have E[R2
3] ≤ Ch2. Thus we have proved that

(4.7) E[R2
i ] ≤ Ch2, i = 1, 2, 3, 4.

By the basic inequality 2ab ≤ a2 + b2, we have

(4.8) 2
∣∣E[(XM

n −Xn)ρn]
∣∣ ≤ hE[(XM

n −Xn)
2] + h−1

E[ρ2n].

By the fact that Xn and XM
n are Ftn -measurable and the Lipschitz condition for f ,

2E[(XM
n −Xn)R0] = 2hE[(XM

n −Xn)(fn − fn−m)]

≤ Ch(E[(XM
n −Xn)

2] + E[(XM
n−m −Xn−m)2]).(4.9)

Further, by the Lipschitz condition (2.2) for ∂xglgl, we have

2E[(XM
n −Xn)R1] =

r∑
l=1

E[(XM
n −Xn)∂xg

M
l,ng

M
l,n − ∂xgl,ngl,n)]E[(ΔWl,n)

2]

≤ Ch(E[(XM
n −Xn)

2] + E[(XM
n−m −Xn−m)2]).(4.10)

By the adaptedness of Xn, X
M
n , and E[ΔWl,n] = E[(Iq,l,tn ,tn+1,0 − ΔWq,nΔWl,n

2 )] = 0,
we have

(4.11) E[(XM
n −Xn)Ri] = 0, i = 2, 3.

Again by the adaptedness of Xn and XM
n , we can have

(4.12) E[(XM
n −Xn)R4] = 0.

In fact, by Lemma 2.5, we can represent Iq,l,tn,tn+1,τ as
(4.13)

Iq,l,tn,tn+1,τ =
h

2
ξ
(n−m)
q,1 ξ

(n)
l,1 +

h

2π

∞∑
p=1

1

p
[ξ

(n)
q,2p+1ξ

(n−m)
l,2p −ξ

(n−m)
q,2p ξ

(n)
l,2p+1−

√
2ξ

(n−m)
q,1 ξ

(n)
l,2p].

Then by the facts E[
∣∣(XM

n −Xn)R4

∣∣] ≤ (E[(XM
n − Xn)

2])1/2(E[R2
4])

1/2 ≤ Ch and

E[(XM
n − Xn)ξ

(n)
l,k ] = 0 for any k ≥ 1, we obtain (4.12) from Lebesgue’s dominated

convergence theorem.
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By (4.11)–(4.12) and the Cauchy inequality, from (4.5) we have, for n ≥ m,

E[(XM
n+1 −Xn+1)

2]

≤ E[(XM
n −Xn)

2] + 2E[(XM
n −Xn)(R0 +R1 − ρn)] + C

4∑
i=0

E[R2
i ] + CE[ρ2n]

and further by (4.4), (4.6)–(4.8), and (4.9)–(4.10), we obtain, for n ≥ m,

E[XM
n+1 −Xn+1]

2

≤ (1 + Ch)E[(XM
n −Xn)

2] + ChE[(XM
n−m −Xn−m)2])

+ (C + h−1)E[ρ2n] + C

4∑
i=0

E[R2
i ]

≤ (1 + Ch)E[(XM
n −Xn)

2] + ChE[(XM
n−m −Xn−m)2] + Ch2,(4.14)

where C is independent of h. Similarly, we can obtain that (4.14) holds for n =
1, . . . ,m− 1. Taking the maximum over both sides of (4.14) and noting that XM

i −
Xi = 0 for −m ≤ i ≤ 0, we have

max
1≤i≤n+1

E[(XM
i −Xi)

2] ≤ (1 + Ch) max
1≤i≤n

E[(XM
i −Xi)

2] + Ch2.

Then (4.1) follows from the discrete Gronwall inequality.
Proof of Lemma 2.5. From (2.22), the formula (2.25) can be readily obtained.

Now we consider (2.26). For l = q, it holds that

Ĩl,l,tn,tn+1,0 = Il,l,tn,tn+1,0 = (ΔWl,n)
2/2

if (2.5) with either piecewise constant basis (2.6) or Fourier basis (2.8) is used. For
any orthogonal expansion (2.4), we have

E[

∫ tn+1

tn

(W̃q(s)−Wq(s)) dWl

∫ tn+1

tn

W̃q(s) d(W̃l −Wl)] = 0

and thus by Wq(tn) = W̃q(tn), Ito’s isometry, and integration by parts, we have, when
l �= q,

E[(Ĩq,l,tn,tn+1,0 − Iq,l,tn,tn+1,0)
2]

= E

[(∫ tn+1

tn

[W̃q(s)−Wq(s)] ◦ dWl +

∫ tn+1

tn

W̃q(s) d[W̃l −Wl]

)2
]

= E

[(∫ tn+1

tn

[W̃q(s)−Wq(s)] dWl

)2
]
+ E

[(∫ tn+1

tn

W̃q(s) d[W̃l −Wl]

)2
]

=

∫ tn+1

tn

E

[
[W̃q(s)−Wq(s)]

2
]
ds+ E

[(
−
∫ tn+1

tn

[W̃l −Wl] dW̃q(s)

)2
]
.(4.15)

Then by the mutual independence of all Gaussian random variables ξ
(n)
q,i , i = 1, 2, . . . ,

q = 1, 2, . . . , r, we obtain E[[W̃q(s) − Wq(s)]
2] =

∑∞
i=Nh+1 M

2
i (s), where Mi(s) =
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tn
mi(θ) dθ and for l �= q,

E

[(∫ tn+1

tn

[W̃l(s)−Wl(s)] dW̃q

)2
]

= E

⎡⎢⎣
⎛⎝ ∞∑

i=Nh+1

Nh∑
j=1

∫ tn+1

tn

Mi(s)mj(s) dsξ
(n)
l,i ξ

(n)
q,j

⎞⎠2
⎤⎥⎦

=

∞∑
i=Nh+1

Nh∑
j=1

(∫ tn+1

tn

Mi(s)mj(s) ds

)2

.

Then by (4.15), we have

E

[
(Ĩq,l,tn,tn+1,0 − Iq,l,tn,tn+1,0)

2
]

=
∞∑

i=Nh+1

∫ tn+1

tn

M2
i (s) ds+

∞∑
i=Nh+1

Nh∑
j=1

(∫ tn+1

tn

Mi(s)mj(s) ds

)2

.(4.16)

In (4.16), we consider the Fourier basis (2.8). Then it can readily checked that

(4.17)

∞∑
i=Nh+1

Nh∑
j=1

(∫ tn+1

tn

Mi(s)mj(s) ds

)2

=

(∫ tn+1

tn

MNh+1(s)mNh
(s) ds

)2

when Nh is even and
∑∞

i=Nh+1

∑Nh

j=1(
∫ tn+1

tn
Mi(s)mj(s) ds)

2 = 0 when Nh is odd.

Moreover, for i ≥ 2, it holds from simple calculations that

(4.18)

∫ tn+1

tn

M2
i (s) ds =

3Δ2

(2
i/2�π)2 if i is even and
Δ2

(2
i/2�π)2 otherwise.

Then by (4.16), (4.17), we have

E[(ĨFq,l,tn ,tn+1,0 − Iq,l,tn,tn+1,0)
2]

=
∞∑

i=Nh+1

∫ tn+1

tn

M2
i (s) ds+

∞∑
i=Nh+1

Nh∑
j=1

(∫ tn+1

tn

Mi(s)mj(s) ds

)2

= ς(Nh)
Δ2

(Nhπ)2
+

∞∑
i=Nh+1

3ς(i)Δ2

(2[i/2]π)2
= ς(Nh)

2Δ2

(Nhπ)2
+

∞∑
i=M

Δ2

(iπ)2
.

Hence, we arrive at (2.26) by the fact
∑∞

i=M
1
i2 ≤ 1

M . Similarly, we can obtain
(2.27).

Proof of Theorem 2.6. Subtracting (2.21) from (2.24) and taking expectation
after squaring over both sides, we have

E[(XM
n+1 −Xn+1)

2] = E[(XM
n −Xn)

2] + 2

4∑
i=0

E[(XM
n −Xn)Ri] +

4∑
i,j=0

E[RiRj ],



A20 W. CAO, Z. ZHANG, AND G. E. KARNIADAKIS

where we denote fM
n = f(XM

n , XM
n−m) and gMl,n = gl(X

M
n , XM

n−m) and

R0 = h(fM
n − fn) +

r∑
l=1

(gMl,n − gl,n)ΔWl,n,

R1 =

r∑
l=1

r∑
q=1

[
∂xg

M
l,ng

M
q,n − ∂xgl,ngq,n

]
ĨFq,l,tn,tn+1,0,

R2 =

r∑
l=1

r∑
q=1

[
∂xτ g

M
l,ng

M
q,n−m − ∂xτ gl,ngq,n−m

]
ĨFq,l,tn,tn+1,τ ,

R3 =
r∑

l=1

r∑
q=1

∂xg
M
l,ng

M
q,n(Iq,l,tn,tn+1,0 − ĨFq,l,tn,tn+1,0),

R4 =

r∑
l=1

r∑
q=1

∂xτ g
M
l,ng

M
q,n−m(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ ).

Similarly to the proof of Theorem 2.2, we have

E[R2
0] ≤ C(h2 + h)(E[(XM

n −Xn)
2] + E[(XM

n−m −Xn−m)2]),(4.19)

E[R2
1] ≤ C max

1≤l,q≤r
E[(
∣∣XM

n −Xn

∣∣2 + ∣∣XM
n−m −Xn−m

∣∣2)]E[(ĨFq,l,tn,tn+1,0)
2],

E[R2
2] ≤ C max

1≤l,q≤r
E[(
∣∣XM

n −Xn

∣∣2 + ∣∣XM
n−m −Xn−m

∣∣2)(ĨFq,l,tn,tn+1,τ )
2],

E[R2
3] ≤ C max

1≤l<q≤r
E[(1 +

∣∣XM
n

∣∣2 + ∣∣XM
n−m

∣∣2)]E[(Iq,l,tn ,tn+1,0 − ĨFq,l,tn,tn+1,0)
2],

E[R2
4] ≤ C max

1≤l<q≤r
E[(1 +

∣∣XM
n

∣∣2 + ∣∣XM
n−m

∣∣2)(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ )
2].

First, we establish the following estimations:

(4.20) E[R2
i ] ≤ Ch3, i = 3, 4.

The case for i = 3 follows directly from Lemma 2.5 and boundedness of moments of
Xn and XM

n . By Lemma 2.5 and (2.22), we have

E

[
(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ )

4
]

= E

⎡⎣(−√
2h

2π
ξ
(n−m)
q,1

∞∑
p=s+1

1

p
ξ
(n)
l,2p +

h

2π

∞∑
p=s1+1

1

p
[ξ

(n−m)
q,2p+1ξ

(n)
l,2p − ξ

(n−m)
q,2p ξ

(n)
l,2p+1]

)4
⎤⎦

≤ Ch4

⎡⎣( ∞∑
p=s+1

1

p2

)2

+

( ∞∑
p=s1+1

1

p2

)2
⎤⎦ ≤ C

h4

N2
h

,

where s = [Nh

2 ] and s1 = [Nh−1
2 ]. As Nh is of the order of h−1, we have

(4.21) E[(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ )
4] ≤ Ch6.

Then by the fact that Xn and XM
n have bounded fourth-order moments, the Cauchy

inequality, and (4.21), we reach (4.20) when i = 4.
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Second, we estimate E[R2
i ], i = 1, 2. By (2.22), the Lipschitz condition (2.2), and

Nh is of the order of h−1, we have

(4.22) E[R2
1] ≤ Ch(E[(XM

n −Xn)
2] + E[(XM

n−m −Xn−m)2]).

Now we require an estimation of E[R2
2]. By the Lipschitz condition (2.2), the adapt-

edness of XM
n−m and Xn−m, and the Cauchy inequality (twice), we have

E[R2
2] ≤ C max

1≤l,q≤r

{
E

[∣∣XM
n −Xn

∣∣2 (ĨFq,l,tn,tn+1,τ )
2
]

+ E

[∣∣XM
n−m −Xn−m

∣∣2 (ĨFq,l,tn,tn+1,τ )
2
]}

,

≤ C max
1≤l,q≤r

(
E

[∣∣XM
n −Xn

∣∣4])1/4(E [(ĨFq,l,tn,tn+1,τ )
8
])1/4(

E

[∣∣XM
n −Xn

∣∣2])1/2
+ Ch2

E
[
(XM

n−m −Xn−m)2
]
.

It can be readily checked from (2.22) that E[(ĨFq,l,tn,tn+1,τ
)8] ≤ Ch8. Hence, from the

boundedness of moments, we have

(4.23) E[R2
2] ≤ Ch2(E[(XM

n −Xn)
2])1/2 + Ch2

E[(XM
n−m −Xn−m)2].

Now estimate E[(XM
n − Xn)Ri], i = 0, 1, 2, 3, 4. By the adaptedness of Xn and

the Lipschitz condition of f , we have

(4.24) E[(XM
n −Xn)R0] ≤ ChE[(

∣∣XM
n −Xn

∣∣2 + ∣∣XM
n−m −Xn−m

∣∣2)].
By the adaptedness of Xn and E[Ĩq,l,tn,tn+1,0] = δq,lh/2 (δq,l is the Kronecker delta)
and the Lipschitz condition of ∂xglgq, we have

(4.25) E[(XM
n −Xn)R1] ≤ ChE[(

∣∣XM
n −Xn

∣∣2 + ∣∣XM
n−m −Xn−m

∣∣2)].
By the adaptedness of Xn and E[ĨFq,l,tn,tn+1,0

− Iq,l,tn,tn+1,0] = 0, we have

(4.26) E[(XM
n −Xn)R3] = 0.

Similarly to the proof of (4.12), we have

E[(XM
n −Xn)R4] = 0.(4.27)

Then by (4.19), (4.20)–(4.23), (4.24)–(4.27), and the Cauchy inequality, we have

E[(XM
n+1 −Xn+1)

2] ≤ (1 + Ch)E[(XM
n −Xn)

2] + ChE[(XM
n−m −Xn−m)2]

+Ch2(E[(XM
n −Xn)

2])1/2 + Ch3,(4.28)

where n ≥ m. Similarly, we have that (4.28) holds also for 1 ≤ n ≤ m− 1. From here
and by the nonlinear Gronwall inequality, we reach the conclusion (2.28).

5. Conclusion. Using the WZ approximation as an intermediate step, we have
presented three numerical schemes for SDDEs: a predictor-corrector scheme, a mid-
point scheme, and a Milstein-like scheme. The first two schemes are of half order
convergence in the mean-square sense while both schemes are of first order in the
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mean-square sense if the underlying SDDEs with single noise (commutative noise)
and the time delay are only in the drift coefficients. In the Milstein-like scheme, a rel-
atively simple algorithm for approximating the stochastic double integrals with and
without time delay has been given by a truncated spectral expansion of Brownian
motion. With a great enough number of modes in the spectral expansion of Brownian
motion, the Milstein-like scheme is shown theoretically and numerically to be of first-
order mean-square convergence. Though the Milstein-like scheme is more expensive
than the other two schemes in general, the Milstein-like scheme (with the Fourier
approximation of Brownian motion) is superior to the predictor-corrector scheme and
the midpoint scheme in terms of accuracy and computational cost for SDDEs with a
single noise.
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[12] I. Gyöngy and A. Shmatkov, Rate of convergence of Wong-Zakai approximations for stochas-
tic partial differential equations, Appl. Math. Optim., 54 (2006), pp. 315–341.

[13] D. G. Hobson and L. C. G. Rogers, Complete models with stochastic volatility, Math. Fi-
nance, 8 (1998), pp. 27–48.

[14] N. Hofmann and T. Müller-Gronbach, A modified Milstein scheme for approximation of
stochastic delay differential equations with constant time lag, J. Comput. Appl. Math., 197
(2006), pp. 89–121.

[15] Y. Hu, S.-E. A. Mohammed, and F. Yan, Discrete-time approximations of stochastic delay
equations: The Milstein scheme, Ann. Probab., 32 (2004), pp. 265–314.

[16] C. Huang, S. Gan, and D. Wang, Delay-dependent stability analysis of numerical methods for
stochastic delay differential equations, J. Comput. Appl. Math., 236 (2012), pp. 3514–3527.

[17] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-
Holland, Amsterdam, 1981.



NUMERICAL SDDES VIA WONG–ZAKAI APPROXIMATION A23

[18] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer-
Verlag, New York, 1991.

[19] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer-Verlag, Berlin, 1992.

[20] P. E. Kloeden and T. Shardlow, The Milstein scheme for stochastic delay differential equa-
tions without using anticipative calculus, Stochastic Anal. Appl., 30 (2012), pp. 181–202.

[21] U. Küchler and E. Platen, Strong discrete time approximation of stochastic differential
equations with time delay, Math. Comput. Simulation, 54 (2000), pp. 189–205.

[22] D. F. Kuznetsov, Strong Approximation of Multiple Ito and Stratonovich Stochastic Inte-
grals: Multiple Fourier Series Approach, St. Petersburg State Polytechnic University, St.
Petersburg, 2011, (in Russian).

[23] M. Liu, W. Cao, and Z. Fan, Convergence and stability of the semi-implicit Euler method
for a linear stochastic differential delay equation, J. Comput. Appl. Math., 170 (2004),
pp. 255–268.
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