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A RECURSIVE SPARSE GRID COLLOCATION METHOD FOR
DIFFERENTIAL EQUATIONS WITH WHITE NOISE∗

Z. ZHANG† , M. V. TRETYAKOV‡ , B. ROZOVSKII† , AND G. E. KARNIADAKIS†

Abstract. We consider a sparse grid collocation method in conjunction with a time discretiza-
tion of the differential equations for computing expectations of functionals of solutions to differential
equations perturbed by time-dependent white noise. We first analyze the error of Smolyak’s sparse
grid collocation used to evaluate expectations of functionals of solutions to stochastic differential
equations discretized by the Euler scheme. We show theoretically and numerically that this algo-
rithm can have satisfactory accuracy for small noise magnitude or small integration time, however
it does not converge either with decrease of the Euler scheme’s time step size or with increase of
Smolyak’s sparse grid level. Subsequently, we use this method as a building block for proposing a
new algorithm by combining sparse grid collocation with a recursive procedure. This approach allows
us to numerically integrate linear stochastic partial differential equations over longer times, which is
illustrated in numerical tests on a stochastic advection-diffusion equation.
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1. Introduction. In a number of applications from physics, financial engineer-
ing, biology, and chemistry it is of interest to compute expectations of some functionals
of solutions of ordinary stochastic differential equations (SDE) and stochastic partial
differential equations (SPDE) driven by white noise. Usually, evaluation of such ex-
pectations requires one to approximate solutions of stochastic equations and then to
compute the corresponding averages with respect to the approximate trajectories. We
will not consider the former in this paper (see, e.g., [31] and references therein) and
will concentrate on the latter. The most commonly used approach for computing the
averages is the Monte Carlo technique, which is known for its slow rate of convergence
and hence limiting computational efficiency of stochastic simulations. To speed up
computation of the averages, variance reduction techniques (see, e.g., [31, 32] and
the references therein), quasi-Monte Carlo algorithms [35, 43] and multilevel quasi-
Monte Carlo methods [21], and the multilevel Monte Carlo method [14, 15] have been
proposed and used.

An alternative approach to computing the averages is (stochastic) collocation
methods in random space, which are deterministic methods in comparison with the
Monte Carlo-type methods that are based on a statistical estimator of a mean. The
expectation can be viewed as an integral with respect to the measure corresponding to
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approximate trajectories. In stochastic collocation methods, one uses (deterministic)
high-dimensional quadratures to evaluate these integrals. In the context of uncertainty
quantification where moments of stochastic solutions are sought, collocation methods
and their close counterparts (e.g., Wiener chaos expansion-based methods) have been
very effective in reducing the overall computational cost in engineering problems; see,
e.g., [13, 45, 48].

Stochastic equations or differential equations with randomness can be split into
differential equations perturbed by time-independent noise and by time-dependent
noise. It has been demonstrated in a number of works (see, e.g., [2, 3, 1, 47, 33, 36,
49] and references therein) that stochastic collocation methods can be a competitive
alternative to the Monte Carlo technique and its variants in the case of differential
equations perturbed by time-independent noise. The success of these methods relies
on smoothness in the random space and can usually be achieved when it is sufficient
to consider only a limited number of random variables (i.e., in the case of a low-
dimensional random space). The small number of random variables significantly limits
the applicability of stochastic collocation methods to differential equations perturbed
by time-dependent noise as, in particular, will be demonstrated in this paper.

The class of stochastic collocation methods for SDE with time-dependent white
noise includes cubatures on Wiener space [26], derandomization [34], optimal quanti-
zation [39, 40], and sparse grids of Smolyak type [11, 12, 18]. While derandomization
and optimal quantization aim at finding quadrature rules which are in some sense
optimal for computing a particular expectation under consideration, cubatures on
Wiener space and a stochastic collocation method using Smolyak sparse grid quadra-
tures (a sparse grid collocation method, SGC) use predetermined quadrature rules
in a universal way without being tailored towards a specific expectation unless some
adaptive strategies are applied. Since SGC is endowed with negative weights, it is, in
practice, different from cubatures on Wiener space, where only quadrature rules with
positive weights are used. Among quadrature rules, SGC is of particular interest due
to its computational convenience. It has been considered in computational finance
[11, 18], where high accuracy was observed. We note that the use of SGC in [11, 18]
relies on exact sampling of geometric Brownian motion and of solutions of other sim-
ple SDE models, i.e., SGC in these works was not studied in conjunction with SDE
approximations.

In this paper, we consider a SGC method accompanied by time discretization of
differential equations perturbed by time-dependent noise. Our objective is twofold.
First, using both analytical and numerical results, we warn that straightforward car-
rying over of stochastic collocation methods and, in particular, SGC to the case of
differential equations perturbed by time-dependent noise (SDE or SPDE) usually leads
to a failure. The main reason for this failure is that when integration time increases
and/or time discretization step decreases, the number of random variables in approx-
imation of SDE and SPDE grows quickly. The number of collocation points required
for sufficient accuracy of collocation methods grows exponentially with the number of
random variables. This results in failure of algorithms based on SGC and SDE time
discretizations. Further, due to empirical evidence (see, e.g., [41]), the use of SGC is
limited to problems with random space dimensionality of up to 40. Consequently, SGC
algorithms for differential equations perturbed by time-dependent noise can be used
only over small time intervals unless a cure for its fundamental limitation is found.

In section 2 (after a brief introduction to the sparse grid of Smolyak [44] (see also
[46, 12, 47]) and to the weak-sense numerical integration for SDE (see, e.g., [31])),
we obtain an error estimate for a SGC method accompanied by the Euler scheme
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for evaluating expectations of smooth functionals of solutions of a scalar linear SDE
with additive noise. In particular, we conclude that the SGC can successfully work
for a small noise magnitude and relatively short integration time while in general it
does not converge either with decrease of the time discretization step used for SDE
approximation or with increase of the level of Smolyak’s sparse grid; see Remark 2.6.
Numerical tests in section 4 confirm our theoretical conclusions and we also observe
first-order convergence in time step size of the algorithm using the SGC method as
long as the SGC error is small relative to the error of time discretization of SDE. We
note that our conclusion is, to some extent, similar to that for cubatures on Wiener
space [6], for the Wiener chaos method [19, 23, 24, 50], and for some other functional
expansion approaches [4, 5].

The second objective of the paper is to suggest a possible cure for the aforemen-
tioned deficiencies, which prevent SGC from being used over longer time intervals.
For longer time simulation, deterministic replacements (such as stochastic colloca-
tion methods and functional expansion methods) of the Monte Carlo technique in
simulation of differential equations perturbed by time-dependent noise do not work
effectively unless some restarting strategies allowing it to “forget” random variables
from earlier time steps are employed. Examples of such strategies are the recursive
approach for Wiener chaos expansion methods to compute moments of solutions to
linear SPDE [23, 50] and an approach for cubatures on Wiener space based on com-
pressing the history data via a regression at each time step [22].

Here we exploit the idea of the recursive approach to achieve accurate longer
time integration by numerical algorithms using the SGC. For linear SPDE with time-
independent coefficients, the recursive approach works as follows. We first find an
approximate solution of an SPDE at a relatively small time t = h, and subsequently
take the approximation at t = h as the initial value in order to compute the ap-
proximate solution at t = 2h, and so on, until we reach the final integration time
T = Nh. To find second moments of the SPDE solution, we store a covariance matrix
of the approximate solution at each time step kh and recursively compute the first
two moments. Such an algorithm is proposed in section 3; in section 4 we demonstrate
numerically that this algorithm converges in time step h and that it can work well on
longer time intervals. At the same time, a major challenge remains: how to effectively
use restarting strategies for SGC in the case of nonlinear SDE and SPDE and further
work is needed in this direction.

2. Sparse grid for weak integration of SDE.

2.1. Smolyak’s sparse grid. Sparse grid quadrature is a certain reduction of
product quadrature rules which decreases the number of quadrature nodes and allows
effective integration in moderately high dimensions [44] (see also [46, 38, 12]). Here
we introduce it in the form suitable for our purposes.

We will be interested in evaluating d-dimensional integrals of a function ϕ(y),
y ∈ R

d, with respect to a Gaussian measure:

(2.1) Idϕ :=
1

(2π)d/2

∫
Rd

ϕ(y) exp

(
−1

2

d∑
i=1

y2i

)
dy1 · · · dyd.

Consider a sequence of one-dimensional Gauss–Hermite quadrature rules Qn with
number of nodes n ∈ N for univariate functions ψ(y), y ∈R:

(2.2) Qnψ(y) =
n∑

α=1

ψ(yn,α)wn,α,
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Table 1

The number of sparse grid points for the sparse grid quadrature (2.4) using the one-dimensional
Gauss–Hermite quadrature rule (2.2), when the sparse grid level L ≤ d.

L = 1 L = 2 L = 3 L = 4 L = 5

#S 1 2d+ 1 2d2 + 2d+ 1 4
3
d3 + 2d2 + 14

3
d+ 1 2

3
d4 + 4

3
d3 + 22

3
d2 + 8

3
d+ 1

where yn,1 < yn,2 < · · · < yn,n are the roots of the Hermite polynomial Hn(y) =

(−1)ney
2/2 dn

dyn e
−y2/2 and wn,α = n!/(n2[Hn−1(yn,α)]

2) are the associated weights. It
is known that Qnψ is exactly equal to the integral I1ψ when ψ is a polynomial of
degree less than or equal to 2n− 1, i.e., the polynomial degree of exactness of Gauss–
Hermite quadrature rules Qn is equal to 2n− 1.

We can approximate the multidimensional integral Idϕ by a quadrature expressed
as the tensor product rule

Idϕ ≈ Īdϕ := Qn ⊗Qn · · · ⊗Qnϕ(y1, y2, . . . , yd) = Q⊗d
n ϕ(y1, y2, . . . , yd)(2.3)

=

n∑
α1=1

· · ·
n∑

αd=1

ϕ(yn,α1 , . . . , yn,αd
)wn,α1 · · ·wn,αd

,

where for simplicity we use the same amount on nodes in all the directions. The
quadrature Īdϕ is exact for all polynomials from the space Pk1 ⊗ · · · ⊗ Pkd

with
max ki = 2n − 1, where Pk is the space of one-dimensional polynomials of degree
less than or equal to k (we note in passing that this fact is easy to prove using
probabilistic representations of Idϕ and Īdϕ). Computational costs of quadrature rules
are measured in terms of the number of function evaluations which is equal to nd

in the case of the tensor product (2.3), i.e., the computational cost of (2.3) grows
exponentially fast with dimension.

The sparse grid of Smolyak [44] reduces computational complexity of the tensor
product rule (2.3) via exploiting the difference quadrature formulas:

A(L, d)ϕ :=
∑

d≤|i|≤L+d−1

(Qi1 −Qi1−1)⊗ · · · ⊗ (Qid −Qid−1)ϕ,

where Q0 = 0 and i = (i1, i2, . . . , id) is a multi-index with ik ≥ 1 and |i| = i1 + i2 +
· · · + id. The number L is usually referred to as the level of the sparse grid. The
sparse grid rule (2.4) can also be written in the following form [46]:

(2.4) A(L, d)ϕ =
∑

L≤|i|≤L+d−1

(−1)L+d−1−|i|
(
d− 1

|i| − L

)
Qi1 ⊗ · · · ⊗Qidϕ.

The quadrature A(L, d)ϕ is exact for polynomials from the space Pk1 ⊗· · ·⊗Pkd
with

|k| = 2L− 1, i.e., for polynomials of total degree up to 2L− 1 [38, Corollary 1]. Due
to (2.4), the total number of nodes used by this sparse grid rule is estimated by

#S ≤
∑

L≤|i|≤L+d−1

i1 × · · · × id.

Table 1 lists the number of sparse grid points, #S, up to level 5 when the level is not
greater than d.

The quadrature Īdϕ from (2.3) is exact for polynomials of total degree 2L − 1
when n = L. It is not difficult to see that if the required polynomial exactness (in
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terms of total degree of polynomials) is relatively small then the sparse grid rule
(2.4) substantially reduces the number of function evaluations compared with the
tensor-product rule (2.3). For instance, suppose that the dimension d = 40 and the
required polynomial exactness is equal to 3. Then the cost of the tensor product rule
(2.3) is 340

.
= 1. 215 8 × 1019 while the cost of the sparse grid rule (2.4) based on

one-dimensional rule (2.2) is 3281.
Remark 2.1. In this paper we consider the isotropic SGC. More efficient algo-

rithms might be built using anisotropic SGC methods [18, 37], which employ more
quadrature points along the “most important” direction. Goal-oriented quadrature
rules, e.g., [34, 39, 40], can also be exploited instead of predetermined quadrature
rules used here. However, the effectiveness of adaptive sparse grids relies heavily on
the order of importance in random dimensions of numerical solutions to stochastic dif-
ferential equations, which is not always easy to reach. Furthermore, all these sparse
grids as integration methods in random space grow quickly with random dimensions
and thus cannot be used for longer time integration (usually with large random di-
mensions). Hence, we consider only isotropic SGC.

2.2. Weak-sense integration of SDE. Let (Ω,F , P ) be a probability space
and (w(t),Fw

t ) = ((w1(t), . . . , wr(t))
ᵀ,Fw

t ) be an r-dimensional standard Wiener pro-
cess, where Fw

t , 0 ≤ t ≤ T, is an increasing family of σ-subalgebras of F induced by
w(t).

Consider the system of Ito SDEs

(2.5) dX = a(t,X)dt+

r∑
l=1

σl(t,X)dwl(t), t ∈ (t0, T ], X(t0) = x0,

where X, a, σr are m-dimensional column vectors and x0 is independent of w. We
assume that a(t, x) and σ(t, x) are sufficiently smooth and globally Lipschitz. We are
interested in computing the expectation

(2.6) u(x0) = Ef(Xt0,x0(T )),

where f(x) is a sufficiently smooth function with growth at infinity not faster than a
polynomial:

(2.7) |f(x)| ≤ K(1 + |x|κ)
for some K > 0 and κ ≥ 1.

To find u(x0), we first discretize the solution of (2.5). Let

h = (T − t0)/N, tk = t0 + kh, k = 0, . . . , N.

In application to (2.5) the Euler scheme has the form

(2.8) Xk+1 = Xk + a(tk, Xk)h+

r∑
l=1

σl(tk, Xk)Δkwl,

where X0 = x0 and Δkwl = wl(tk+1) − wl(tk). The Euler scheme can be realized in
practice by replacing the increments Δkwl with Gaussian random variables:

(2.9) Xk+1 = Xk + a(tk, Xk)h+
r∑

l=1

σl(tk, Xk)
√
hξl,k+1,
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where ξr,k+1 are independently and identically distributed (i.i.d.) N (0, 1) random
variables. Due to our assumptions, the following error estimate holds for (2.9) (see,
e.g., [31, Chapter 2]):

(2.10) |Ef(XN )− Ef(X(T ))| ≤ Kh,

where K > 0 is a constant independent of h. This first-order weak convergence can
also be achieved by replacing ξl,k+1 with discrete random variables [31], e.g., the weak
Euler scheme has the form

(2.11) X̃k+1 = X̃k + ha(tk, X̃k) +
√
h

r∑
l=1

σl(tk, X̃k)ζl,k+1, k = 0, . . . , N − 1,

where X̃0 = x0 and ζl,k+1 are i.i.d. random variables with the law

(2.12) P (ζ = ±1) = 1/2.

The following error estimate holds for (2.11)–(2.12) (see, e.g., [31, Chapter 2]):

(2.13) |Ef(X̃N )− Ef(X(T ))| ≤ Kh ,

where K > 0 can be a different constant than in (2.10).
Introducing the function ϕ(y), y ∈ R

rN , so that

(2.14) ϕ(ξ1,1, . . . , ξr,1, . . . , ξ1,N , . . . , ξr,N ) = f(XN ),

we have

u(x0) ≈ ū(x0)

:= Ef(XN ) = Eϕ(ξ1,1, . . . , ξr,1, . . . , ξ1,N , . . . , ξr,N )(2.15)

=
1

(2π)rN/2

∫
RrN

ϕ(y1,1, . . . , yr,1, . . . , y1,N , . . . , yr,N) exp

(
−1

2

rN∑
i=1

y2i

)
dy.

Further, it is not difficult to see from (2.11)–(2.12) and (2.3) that

u(x0) ≈ ũ(x0) := Ef(X̃N ) = Eϕ(ζ1,1, . . . , ζr,1, . . . , ζ1,N , . . . , ζr,N)(2.16)

= Q⊗rN
2 ϕ(y1,1, . . . , yr,1, . . . , y1,N , . . . , yr,N),

where Q2 is the Gauss–Hermite quadrature rule defined in (2.2) with n = 2, i.e.,
y1 = 1, y2 = −1 with weights w1 = w2 = 1/2). Comparing (2.15) and (2.16), we can
say that ũ(x0) is a tensor-product quadrature rule for the multidimensional integral
ū(x0). In other words, the weak Euler scheme (2.11)–(2.12) can be interpreted as the
strong Euler scheme with tensor-product integration in random space.We note that
the approximation, ũ(x0), of ū(x0) satisfies (cf. (2.10) and (2.13))

(2.17) ū(x0)− ũ(x0) = O(h).

Remark 2.2. Let ζl,k+1 in (2.11) be i.i.d. random variables with the law

(2.18) P (ζ = yn,j) = wn,j, j = 1, . . . , n,



COLLOCATION METHOD FOR PDES WITH WHITE NOISE A7

where yn,j are nodes of the Gauss–Hermite quadrature Qn and wn,j are the corre-
sponding quadrature weights (see (2.2)). Then

Ef(X̃N ) = Eϕ(ζ1,N , . . . , ζr,N ) = Q⊗rN
n ϕ(y1,1, . . . , yr,N),

which can be a more accurate approximation of ū(x0) than ũ(x0) from (2.16) but the
weak-sense error for the SDE approximation Ef(X̃N ) − Ef(X(T )) remains of order
O(h).

Practical implementation of ū(x0) and ũ(x0) usually requires the use of the Monte
Carlo technique since the computational cost of, e.g., the tensor product rule in (2.16)
is prohibitively high (cf. section 2.1). In this paper, we consider application of the
sparse grid rule (2.4) to the integral in (2.15) motivated by lower computational cost
of (2.4).

In this approach, the total error has two parts:

|Ef(X(T ))−A(L,N)ϕ| ≤
∣∣∣Ef(X(T ))− Ef(X̃N )

∣∣∣+ ∣∣∣Ef(X̃N )−A(L,N)ϕ
∣∣∣ ,

where A(L,N) is defined in (2.4) and ϕ is from (2.14). The first part is controlled by
the time step size h (see (2.10)), and it converges to zero with order one in h. The
second part is controlled by the sparse grid level L but it depends on h since decrease
of h increases the dimension of the random space. Some illustrative examples will be
presented in section 2.3.

2.2.1. Probabilistic interpretation of SGC. It is not difficult to show that
SGC admits a probabilistic interpretation, e.g., in the case of level L = 2 we have

A(2, N)ϕ(y1,1, . . . , yr,1, . . . , y1,N , . . . , yr,N )(2.19)

= (Q2 ⊗Q1 ⊗ · · · ⊗Q1)ϕ+ (Q1 ⊗Q2 ⊗Q1 ⊗ · · · ⊗Q1)ϕ

+ · · ·+ (Q1 ⊗Q1 ⊗ · · · ⊗Q2)ϕ− (Nr − 1) (Q1 ⊗Q1 ⊗ · · · ⊗Q1)ϕ

=

N∑
i=1

r∑
j=1

Eϕ(0, . . . , 0, ζj,i, 0, . . . , 0)− (Nr − 1)ϕ(0, 0, . . . , 0),

where ζj,i are i.i.d. random variables with the law (2.12). Using (2.16), (2.19), Taylor’s
expansion, and symmetry of ζj,i, we obtain the relationship between the weak Euler
scheme (2.11) and the SGC (2.4):

Ef(X̃N )−A(2, N)ϕ(2.20)

= Eϕ(ζ1,1, . . . , ζr,1, . . . , ζ1,N , . . . , ζr,N )

−
N∑
i=1

r∑
j=1

Eϕ(0, . . . , 0, ζj,i, 0, . . . , 0)− (Nr − 1)ϕ(0, 0, . . . , 0)

=
∑
|α|=4

4

α!
E

⎡
⎣ N∏
i=1

r∏
j=1

(ζj,i)
αj,i

∫ 1

0

(1− z)3Dαϕ(zζ1,1, . . . , zζr,N) dz

⎤
⎦

− 1

3!

N∑
i=1

r∑
j=1

E

[
ζ4j,i

∫ 1

0

(1 − z)3
∂4

(∂yj,i)
4ϕ(0, . . . , 0, zζj,i, 0, . . . , 0) dz

]
,

where the multi-index α = (α1,1, . . . , αr,N ) ∈ N
rN
0 , |α| =

∑N
i=1

∑r
j=1 αj,i, α! =∏N

i=1

∏r
j=1 αj,i!, and Dα = ∂|α|

(∂y1,1)
α1,1 ···(∂yr,N )αr,N . Similarly, we can write down a
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probabilistic interpretation for any L and derive a similar error representation. For
example, we have for L = 3 that

E[ϕ(ζ
(3)
1,1 , . . . , ζ

(3)
r,N )]−A(3, N)ϕ

=
∑
|α|=6

6

α!
E

⎡
⎣ N∏
i=1

r∏
j=1

(ζ
(3)
j,i )

αj,i

∫ 1

0

(1− z)5Dαϕ(zζ
(3)
1,1 , . . . , zζ

(3)
r,N) dz

⎤
⎦

−
∑

|α|=αj,i+αl,k=6

(j−l)2+(i−k)2 �=0

6

αj,i!αk,l!

E

[
(ζ

(3)
j,i )

αj,i(ζ
(3)
l,k )

αl,k

∫ 1

0

(1− z)5Dαϕ(. . . , zζ
(3)
j,i , 0, . . . , 0, zζ

(3)
l,k , . . .) dz

]

−
N∑
i=1

r∑
j=1

6

6!
E

[
(ζj,i)

6

∫ 1

0

(1− z)5Dαϕ(0, . . . , zζj,i, . . . , 0) dz

]
,

where ζj,i are defined in (2.12) and ζ
(3)
j,i are i.i.d. random variables with the law

P (ζ
(3)
j,i = ±√

3) = 1/6, P (ζ
(3)
j,i = 0) = 2/3.

The error of the SGC applied to the weak-sense approximation of SDE is further
studied in section 2.3.

2.2.2. Second-order schemes. In the SGC context, it is beneficial to exploit
higher-order or higher-accuracy schemes for approximating the SDE (2.5) because
they can allow us to reach a desired accuracy using larger time step sizes and therefore
less random variables than the first-order Euler scheme (2.9) or (2.11). For instance,
we can use the second-order weak scheme for (2.5) (see, e.g., [31, Chapter 2]):

Xk+1 = Xk + ha(tk, Xk) +
√
h

r∑
i=1

σi(tk, Xk)ξi,k+1 +
h2

2
La(tk, Xk)(2.21)

+ h

r∑
i=1

r∑
j=1

Λiσj(tk, Xk)ηi,j,k+1

+
h3/2

2

r∑
i=1

(Λia(tk, Xk) + Lσi(tk,Xk))ξi,k+1,

k = 0, . . . , N − 1,

where X0 = x0; ηi,j =
1
2ξiξj−γi,jζiζj/2 with γi,j = −1 if i < j and γi,j = 1 otherwise;

Λl =
m∑
i=1

σi
l

∂

∂xi
, L =

∂

∂t
+

m∑
i=1

ai
∂

∂xi
+

1

2

r∑
l=1

m∑
i,j=1

σi
lσ

i
l

∂2

∂xi∂xj
;

and ξi,k+1 and ζi,k+1 are mutually independent random variables with Gaussian distri-
bution or with the laws P (ξ = 0) = 2/3, P (ξ = ±√

3) = 1/6, and P (ζ = ±1) = 1/2.
The following error estimate holds for (2.21) (see, e.g., [31, Chapter 2]):

|Ef(X(T ))− Ef(XN )| ≤ Kh2.

Roughly speaking, to achieve O(h) accuracy using (2.21), we need only
√
2rN

(
√
rN in the case of additive noise) random variables, while we need rN random
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variables for the Euler scheme (2.9). This reduces the dimension of the random
space and hence can increase efficiency and widen applicability of SGC methods (see,
in particular Example 4.1 in section 4 for a numerical illustration). We note that
when noise intensity is relatively small, we can use high-accuracy low-order schemes
designed for SDE with small noise [30] (see also [31, Chapter 3]) in order to achieve
a desired accuracy using a fewer number of random variables than the Euler scheme
(2.9).

2.3. Illustrative examples. In this section we show limitations of the use of
SGC in a weak approximation of SDE. To this end, it is convenient and sufficient to
consider the scalar linear SDE

(2.22) dX = λXdt+ ε dw(t), X0 = 1,

where λ and ε are some constants.
We will compute expectations Ef(X(T )) for some f(x) and X(t) from (2.22) by

applying the Euler scheme (2.9) and the SGC (2.4). This simple example provides us
with a clear insight as to when algorithms of this type are able to produce accurate
results and when they are likely to fail. Using direct calculations, we first (see Exam-
ples 2.3–2.4 below) derive an estimate for the error |Ef(XN )−A(2, N)ϕ| with XN

from (2.9) applied to (2.22) and for some particular f(x). This will illustrate how the
error of SGC with practical level (no more than six) behaves. Then (Proposition 2.5)
we obtain an estimate for the error |Ef(XN )−A(L,N)ϕ| for a smooth f(x) which
grows no faster than a polynomial function at infinity. We will observe that the con-
sidered algorithm is not convergent in time step h and the algorithm is not convergent
in level L unless when noise intensity and integration time are small.

It follows from (2.10) and (2.13) that

|Ef(XN )−A(L,N)ϕ| ≤
∣∣∣Ef(X̃N )−A(L,N)ϕ

∣∣∣+ |Ef(XN )− Ef(X̃N )|(2.23)

≤
∣∣∣Ef(X̃N )−A(L,N)ϕ

∣∣∣+Kh,

where X̃N is from the weak Euler scheme (2.11) applied to (2.22), which can be

written as X̃N = (1 + λh)N +
∑N

j=1(1 + λh)N−jε
√
hζj . Introducing the function

(2.24) X̄(N ; y) = (1 + λh)N +

N∑
j=1

(1 + λh)N−jε
√
hyj ,

we see that X̃N = X̄(N ; ζ1, . . . , ζN ). We have

(2.25)
∂

∂yi
X̄(N ; y) = (1 + λh)N−iε

√
h and

∂2

∂yi∂yj
X̄(N ; y) = 0.

Then we obtain from (2.20)

(2.26)

R := Ef(X̃N )−A(2, N)ϕ

= ε4h2
∑
|α|=4

4

α!
E

[
N∏
i=1

(ζi(1 + λh)N−i)αi

∫ 1

0

(1−z)3z4 d
4

dx4
f(X̄(N, zζ1, . . . , zζN)) dz

]

− 1

3!
ε4h2

N∑
i=1

E

[
ζ4i

∫ 1

0

(1− z)3z4
d4

dx4
f(X̄(0, . . . , 0, zζi, 0, . . . , 0)) (1+λh)

4N−4idz

]
.
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2.3.1. Nonconvergence in time step h. We will illustrate no convergence in h
for SGC for levels two and three through two examples, where sharp error estimates of
|Ef(XN )−A(2, N)ϕ| are derived for SGC. Higher level SGC can also be considered
but the conclusion does not change. In contrast, the algorithm of tensor-product
integration in random space and the strong Euler scheme in time (i.e., the weak Euler
scheme (2.11)–(2.12)) is convergent with order one in h. We also note that in practice,
typically SGCs with level no more than six are employed.

Example 2.3. For f(x) = xp with p = 1, 2, 3, it follows from (2.26) that R = 0,
i.e., SGC does not introduce any additional error, and hence by (2.23)

|Ef(XN )−A(2, N)ϕ| ≤ Kh, f(x) = xp, p = 1, 2, 3.

For f(x) = x4, we get from (2.26)

R =
6

35
ε4h2

N∑
i=1

N∑
j=i+1

(1 + λh)4N−2i−2j

=
6

35
ε4 ×

⎧⎨
⎩

(1+λh)2N−1
λ2(2+λh)2

[
(1+λh)2N+1
1+(1+λh)2 − 1

]
, λ �= 0, 1 + λh �= 0,

T 2

2 − Th
2 , λ = 0.

We see that R does not go to zero when h→ 0 and that for sufficiently small h > 0

|Ef(XN )−A(2, N)ϕ| ≤ Kh+
6

35
ε4 ×

{ 1
λ2 (1 + e4Tλ), λ �= 0,

T 2

2 , λ = 0.

We observe that the SGC algorithm does not converge with h → 0 for higher
moments. In the considered case of linear SDE, increasing the level L of SGC leads
to the SGC error R being 0 for higher moments, e.g., for L = 3 the error R = 0 for up
to the 5th moment but the algorithm will not converge in h for the 6th moment and
so on (see Proposition 2.5 below). Further (see the continuation of the illustration
below), in the case of, e.g., f(x) = cosx for any L this error R does not converge in h,
which is also the case for nonlinear SDE. We also note that one can expect that this
error R is small when noise intensity is relatively small and either time T is small or
SDE has, in some sense, stable behavior (in the linear case it corresponds to λ < 0).

Example 2.4. Now consider f(x) = cos(x). It follows from (2.26) that

R = ε4h2
∑
|α|=4

4

α!
E

[
N∏
i=1

(ζi(1 + λh)N−i)αi

∫ 1

0

(1− z)3z4

× cos

(
(1 + λh)N + z

N∑
j=1

(1 + λh)N−jε
√
hζj

)
dz

⎤
⎦

− 1

3!
ε4h2

N∑
i=1

(1+λh)4N−4i

∫ 1

0

(1−z)3z4E[ζ4i cos((1+λh)N+z(1+λh)N−iε
√
hζi)] dz
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and after routine calculations we obtain

R = ε4h2 cos((1 + λh)N )⎡
⎣
⎛
⎝1

6

N∑
i=1

(1 + λh)4N−4i + 2
N∑
i=1

N∑
j=i+1

(1 + λh)4N−2i−2j

⎞
⎠

×
∫ 1

0

(1− z)3z4
N∏
l=1

cos(z(1 + λh)N−lε
√
h)dz

+

⎛
⎜⎜⎝2

3

N∑
i,j=1;i�=j

(1 + λh)4N−3i−j + 2
N∑

k,i,j=1
i�=j,i�=k,k �=j

(1 + λh)4N−2k−i−j

⎞
⎟⎟⎠

×
∫ 1

0

(1− z)3z4
∏
l=i,j

sin(z(1 + λh)N−lε
√
h)

N∏
l=1

l �=i,l �=j

cos(z(1 + λh)N−lε
√
h)dz

+4
N∑

i,j,k,m=1
i�=j,i�=k,i�=m,j �=k,j �=m,k �=m

(1 + λh)4N−i−j−k−m

×
∫ 1

0

(1−z)3z4
∏

l=i,j,k,m

sin(z(1+λh)N−lε
√
h)

N∏
l=1

l �=i,l �=j,l �=k,l �=m

cos(z(1+λh)N−lε
√
h)dz

− 1

6

N∑
i=1

(1 + λh)4N−4i

∫ 1

0

(1− z)3z4 cos(z(1 + λh)N−iε
√
h)] dz

]
.

It is not difficult to see that R does not go to zero when h → 0. In fact, taking into
account that | sin(z(1 + λh)N−jε

√
h)| ≤ z(1 + λh)N−jε

√
h, and that there are N4

terms of order h4 and N3 terms of order h3, we get for sufficiently small h > 0

|R| ≤ Cε4(1 + e4Tλ),

where C > 0 is independent of ε and h. Hence

(2.27) |Ef(XN )−A(2, N)ϕ| ≤ Cε4(1 + e4Tλ) +Kh,

and we have arrived at a similar conclusion for f(x) = cosx as for f(x) = x4. Simi-
larly, we can also have for L = 3 that

|Ef(XN )−A(3, N)ϕ| ≤ Cε6(1 + e6Tλ) +Kh.

This example shows, for L = 3, the error of SGC with the Euler scheme in time does
not converge in h.

2.3.2. Error estimate for SGC with fixed level. Now we will address the
effect of the SGC level L. To this end, we will need the following error estimate of a
Gauss–Hermite quadrature. Let ψ(y), y ∈ R, be a sufficiently smooth function whose
derivatives and itself are growing not faster than a polynomial at infinity. Using the
Peano kernel theorem (see, e.g., [9]) and that a Gauss–Hermite quadrature with n-
nodes has the order of polynomial exactness 2n− 1, we obtain, for the approximation
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error Rn,γψ of the Gauss–Hermite quadrature Qnψ,

(2.28) Rn,γ(ψ) := Qnψ − I1ψ =

∫
R

dγ

dyγ
ϕ(y)Rn,γ(Γy,γ) dy, 1 ≤ γ ≤ 2n,

where Γy,γ(z) = (z − y)γ−1/(γ − 1)! if z ≥ y and 0 otherwise. One can show (see,
e.g., [27, Theorem 2]) that there is a constant c > 0 independent of n and y such that
for any 0 < β < 1

(2.29) |Rn,γ(Γy,γ)| ≤ c√
2π
n−γ/2 exp

(
−βy

2

2

)
, 1 ≤ γ ≤ 2n.

We also note that (2.29) and the triangle inequality imply, for 1 ≤ γ ≤ 2(n− 1),

(2.30) |Rn,γ(Γy,γ)−Rn−1,γ(Γy,γ)| ≤ c√
2π

[n−γ/2 + (n− 1)−γ/2] exp

(
−βy

2

2

)
.

Now we consider an error of the sparse grid rule (2.4) accompanied by the Euler
scheme (2.9) for computing expectations of solutions to (2.22).

Proposition 2.5. Assume that a function f(x) and its derivatives up to 2Lth
order satisfy the polynomial growth condition (2.7). Let XN be obtained by the Euler
scheme (2.9) applied to the linear SDE (2.22) and A(L,N)ϕ be the sparse grid rule
(2.4) with level L applied to the integral corresponding to Ef(XN ) as in (2.15). Then
for any L and sufficiently small h > 0

(2.31)

|Ef(XN )−A(L,N)ϕ| ≤ Kε2L(1 + eλ(2L+κ)T )
(
1 + (3c/2)

L∧N
)
β−(L∧N)/2TL,

where K > 0 is independent of h, L, and N ; c and β are from (2.29); κ is from
(2.7).

Proof. We recall (see (2.15)) that

Ef(XN ) = INϕ =
1

(2π)N/2

∫
RrN

ϕ(y1, . . . , yN ) exp

(
−1

2

N∑
i=1

y2i

)
dy.

Introduce the integrals

(2.32) I
(k)
1 ϕ =

1√
2π

∫
R

ϕ(y1, . . . , yk, . . . , yN) exp

(
−y

2
k

2

)
dyk, k = 1, . . . , N,

and their approximations Q
(k)
n by the corresponding one-dimensional Gauss–Hermite

quadratures with n nodes. Also, let U (k)
ik

= Q
(k)
ik

−Q
(k)
ik−1.

Using (2.4) and the recipe from the proof of Lemma 3.4 in [37], we obtain

(2.33) INϕ−A(L,N)ϕ =

N∑
l=2

S(L, l)⊗N
k=l+1 I

(k)
1 ϕ+ (I

(1)
1 −Q

(1)
L )⊗N

k=2 I
(k)
1 ϕ,

where

(2.34) S(L, l) =
∑

i1+···+il−1+il=L+l−1

⊗l−1
k=1U (k)

ik
⊗ (I

(l)
1 −Q

(l)
il
).
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Due to (2.28), we have for n > 1 and 1 ≤ γ ≤ 2(n− 1)

Unψ = Qnψ −Qn−1ψ = [Qnψ − I1(ψ)] − [Qn−1ψ − I1(ψ)](2.35)

=

∫
R

dγ

dyγ
ψ(y)[Rn,γ(Γy,γ)−Rn−1,γ(Γy,γ)] dy,

and for n = 1

(2.36) Unψ = Q1ψ −Q0ψ = Q1ψ = ψ(0).

By (2.34), (2.32), and (2.28), we obtain for the first term in the right-hand side of
(2.33)

S(L, l)⊗N
n=l+1 I

(n)
1 ϕ =

∑
i1+···+il=L+l−1

⊗l−1
n=1U (k)

ik
⊗ (I

(l)
1 −Q

(l)
il
)⊗N

n=l+1 I
(n)
1 ϕ

=
∑

i1+···+il=L+l−1

⊗l−1
n=1U (k)

ik
⊗ (I

(l)
1 −Q

(l)
il
)

⊗
∫
RN−l

ϕ(y)
1

(2π)(N−l)/2
exp

(
−

N∑
k=l+1

y2k
2

)
dyl+1 . . . dyN

= −
∑

i1+···+il=L+l−1

⊗l−1
n=1U (k)

ik
⊗
∫
RN−l+1

d2il

dy2ill

ϕ(y)Ril,2il(Γyl,2il)

× 1

(2π)(N−l)/2
exp

(
−

N∑
k=l+1

y2k
2

)
dyl . . . dyN .

Now consider two cases: if il−1 > 1 then by (2.35)

S(L, l)⊗N
n=l+1 I

(n)
1 ϕ

= −
∑

i1+···+il=L+l−1

⊗l−2
n=1U (k)

ik
⊗
∫
RN−l+2

d2il−1−2

dy
2il−1−2
l−1

d2il

dy2ill

ϕ(y)Ril ,2il(Γyl,2il)

×[Ril−1,2il−1−2(Γyl−1,2il−1−2)−Ril−1−1,2il−1−2(Γyil−1
,2il−1−2)]

× 1

(2π)(N−l)/2
exp

(
−

N∑
k=l+1

y2k
2

)
dyl−1 . . . dyN ;

otherwise (i.e., if il−1 = 1) by (2.36)

S(L, l)⊗N
n=l+1 I

(n)
1 ϕ

= −
∑

i1+···+il=L+l−1

⊗l−2
n=1U (k)

ik
⊗
∫
RN−l+1

Q
(l−1)
1

d2il

dy2ill

ϕ(y)Ril ,2il(Γyl,2il)

× 1

(2π)(N−l)/2
exp

(
−

N∑
k=l+1

y2k
2

)
dyl . . . dyN .
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Repeating the above process for il−2, . . . , i1, we obtain

(2.37)

S(L, l)⊗N
n=l+1 I

(n)
1 ϕ

=
∑

i1+···+il=L+l−1

∫
R

N−#Fl−1

[⊗m∈Fl−1
Q

(m)
1 D2αlϕ(y)]

×Rl,αl
(y1, . . . , yl)

1

(2π)(N−l)/2
exp

(
−

N∑
k=l+1

y2k
2

) ∏
n∈Gl−1

dyn × dyl . . . dyN ,

where the multi-index αl = (i1−1, . . . , il−1−1, il, 0, . . . , 0) with the mth element αm
l ,

the sets Fl−1 = Fl−1(αl) = {m : αm
l = 0, m = 1, . . . , l − 1}, and Gl−1 = Gl−1(αl) =

{m : αm
l > 0, m = 1, . . . , l − 1}, the symbols #Fl−1 and #Gl−1 stand for the number

of elements in the corresponding sets, and

Rl,αl
(y1, . . . , yl) = −Ril,2il(Γyl,2il)

⊗n∈Gl−1
[Rin,2in−2(Γyn,2in−2)−Rin−1,2in−2(Γyn,2in−2)].

Note that #Gl−1 ≤ (L− 1) ∧ (l − 1) and also recall that ij ≥ 1, j = 1, . . . , l.
Using (2.29), (2.30), and the inequality∏

n∈Gl−1

[i−(in−1)
n + (in − 1)−(in−1)]i−il

l ≤ (3/2)#Gl−1,

we get

|Rl,α(y1, . . . , yl)| ≤
∏

n∈Gl−1

[i−(in−1)
n + (in − 1)−(in−1)]i−il

l

c#Gl−1+1

(2π)(#Gl−1+1)/2
(2.38)

× exp

⎛
⎝−

∑
n∈Gl−1

βy2n
2

− βy2l
2

⎞
⎠

≤ (3c/2)#Gl−1+1

(2π)(#Gl−1+1)/2
exp

⎛
⎝−

∑
n∈Gl−1

βy2n
2

− βy2l
2

⎞
⎠ .

Substituting (2.38) in (2.37), we arrive at∣∣∣S(L, l)⊗N
n=l+1 I

(n)
1 ϕ

∣∣∣(2.39)

≤
∑

i1+···+il=L+l−1

(3c/2)#Gl−1+1

(2π)(N−#Fl−1)/2

∫
R

N−#Fl−1

∣∣∣⊗m∈Fl−1
Q

(m)
1 D2αlϕ(y)

∣∣∣

× exp

⎛
⎝−

∑
n∈Gl−1

βy2n
2

− βy2l
2

−
N∑

k=l+1

y2k
2

⎞
⎠ ∏

n∈Gl−1

dyn × dyl . . . dyN .

Using (2.25) and the assumption that | d2L

dx2L f(x)| ≤ K(1 + |x|κ) for some K > 0 and
κ ≥ 1, we get

∣∣D2αlϕ(y)
∣∣ = ε2LhL

∣∣∣∣ d2Ldx2L
f(X̄(N, y))

∣∣∣∣ (1 + λh)2LN−2
∑l

i=1 iαi
l(2.40)

≤ Kε2LhL(1 + λh)2LN−2
∑l

i=1 iαi
l (1 + |X̄(N, y)|κ).
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Substituting (2.40) and (2.24) in (2.39) and doing further calculations, we obtain∣∣∣S(L, l)⊗N
n=l+1 I

(n)
1 ϕ

∣∣∣(2.41)

≤ Kε2LhL(1 + eλκT )(1 + (3c/2)L∧l)β−(L∧l)/2

×
∑

i1+···+il=L+l−1

(1 + λh)2LN−2
∑l

i=1 iαi
l

≤ Kε2LhL(1 + eλ(2L+κ)T )(1 + (3c/2)L∧l)β−(L∧l)/2

(
L+ l − 2

L− 1

)
≤ Kε2LhL(1 + eλ(2L+κ)T )(1 + (3c/2)L∧l)β−(L∧l)/2lL−1

with a new K > 0 which does not depend on h, ε, L, c, β, and l. In the last line of
(2.41) we used

(
L+ l − 2

L− 1

)
=

L−1∏
i=1

(
1 +

l − 1

i

)
≤
[

1

L− 1

L−1∑
i=1

(
1 +

l − 1

i

)]L−1

≤ lL−1.

Substituting (2.41) in (2.33) and observing that |(I(1)1 −Q
(1)
L )⊗N

k=2 I
(k)
1 ϕ| is of order

O(hL), we arrive at (2.31).
Remark 2.6. Due to Examples 2.3 and 2.4, the error estimate (2.31) proved in

Proposition 2.5 is quite sharp and we conclude that in general the SGC algorithm
for weak approximation of SDE does not converge with either decrease of time step
h or with increase of the level L. At the same time, the algorithm is convergent in
L (when L ≤ N) if ε2T is sufficiently small and SDE has some stable behavior (e.g.,
λ ≤ 0). Furthermore, the algorithm is sufficiently accurate when noise intensity ε and
integration time T are relatively small.

Remark 2.7. It follows from the proof (see (2.40)) that if d2L

dx2L f(x) = 0 then the
error IN (ϕ) − A(L,N)ϕ = 0. We emphasize that this is a feature of the linear SDE
(2.22) thanks to (2.25), while in the case of nonlinear SDE this error remains of the
form (2.31) even if the 2Lth derivative of f is zero. See also the discussion at the end
of Example 2.3 and numerical tests in Example 4.1.

Remark 2.8. We note that it is possible to prove a proposition analogous to
Proposition 2.5 for a more general SDE, e.g., for SDE with additive noise. Since such
a proposition does not add further information to our discussion of the use of SGC
and its proof is more complex than in the case of (2.22), we do not consider such a
proposition here.

3. Recursive collocation algorithm for linear SPDE. In the previous sec-
tion we have demonstrated the limitations of SGC algorithms in application to SDE
that, in general, such an algorithm will not work unless integration time T and noise
magnitude are small. It is not difficult to understand that SGC algorithms have the
same limitations in the case of SPDE as well, which, in particular, is demonstrated
in Example 4.2, where a stochastic Burgers equation is considered. To cure this defi-
ciency and achieve longer time integration in the case of linear SPDE, we will exploit
the idea of the recursive approach proposed in [23, 50] in the case of a Wiener chaos
expansion method. To this end, we apply the algorithm of SGC accompanied by a
time discretization of SPDE over a small interval [(k−1)h, kh] instead of the whole in-
terval [0, T ] as we did in the previous section and build a recursive scheme to compute
the second-order moments of the solutions to linear SPDE.
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Consider the following linear SPDE in Ito’s form:

(3.1)

du(t, x) = [Lu(t, x) + f(x)] dt+

r∑
l=1

[Mlu(t, x) + gl(x)] dwl(t), (t, x) ∈ (0, T ]×D,

u(0, x) = u0(x), x ∈ D,
where D is an open domain in R

m and (w(t),Ft) is a Wiener process as in (2.5), and

Lu(t, x) =
m∑

i,j=1

aij (x)
∂2

∂xi∂xj
u(t, x) +

m∑
i=1

bi(x)
∂

∂xi
u(t, x) + c (x)u(t, x),(3.2)

Mlu(t, x) =

m∑
i=1

αl
i(x)

∂

∂xi
u(t, x) + βl (x)u(t, x).

We assume that D is either bounded with regular boundary or that D = R
m. In the

former case we consider periodic boundary conditions and in the latter the Cauchy
problem. We also assume that the coefficients of the operators L andM are uniformly
bounded and

L̃ := L− 1

2

∑
1≤l≤r

MlMl

is nonnegative definite. When the coefficients of L and M are sufficiently smooth,
existence and uniqueness results for the solution of (3.1)–(3.2) are available, e.g., in
[42] and under weaker assumptions; see, e.g., [28, 25].

We will continue to use the notation from the previous section: h is a step of
uniform discretization of the interval [0, T ], N = T/h, and tk = kh, k = 0, . . . , N. We
apply the trapezoidal rule in time to the SPDE (3.1):

uk+1(x) = uk(x) + h

[
L̃uk+1/2(x) − 1

2

r∑
l=1

Mlgl(x) + f(x)

]
(3.3)

+

r∑
l=1

[
Mlu

k+1/2(x) + gl(x)
]√

h (ξlh)k+1 , x ∈ D,

u0(x) = u0(x),

where uk(x) approximates u(tk, x), u
k+1/2 = (uk+1 + uk)/2, and (ξlh)k are i.i.d.

random variables so that

(3.4) ξh =

⎧⎨
⎩

ξ, |ξ| ≤ Ah,
Ah, ξ > Ah,

−Ah, ξ < −Ah,

with ξ ∼ N (0, 1) and Ah =
√
2p| lnh| with p ≥ 1. We note that the cut-off of the

Gaussian random variables is needed in order to ensure that the implicitness of (3.3)
does not lead to nonexistence of the second moment of uk(x) [29, 31]. Based on
the standard results of numerics for SDE [31], it is natural to expect that under
some regularity assumptions on the coefficients and the initial condition of (3.1), the
approximation uk(x) from (3.3) converges with order 1/2 in the mean square sense
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and with order 1 in the weak sense and in the latter case one can use discrete random
variables ζl,k+1 from (2.12) instead of (ξlh)k+1 (see also, e.g., [10, 17, 20] but we are
not proving such a result here).

In what follows it will be convenient to also use the notation: ukH(x;φ(·)) =
ukH(x;φ(·); (ξlh)k, l = 1, . . . , r) for the approximation (3.3) of the solution u(tk, x) to
the SPDE (3.1) with f(x) = 0 and gl(x) = 0 for all l (homogeneous SPDE) and with
the initial condition φ(·) prescribed at time

t = tk−1;u
k
O(x) = ukO(x; (ξlh)k, l = 1, . . . , r)

for the approximation (3.3) of the solution u(tk, x) to the SPDE (3.1) with the initial
condition φ(x) = 0 prescribed at time t = tk−1. Note that ukO(x) = 0 if f(x) = 0 and
gl(x) = 0 for all l.

Let {ei} = {ei(x)}i≥1 be a complete orthonormal system (CONS) in L2(D) with
boundary conditions satisfied and (·, ·) be the inner product in that space. Then we
can write

(3.5) uk−1(x) =

∞∑
i=1

ck−1
i ei(x)

with ck−1
i = (uk−1, ei) and, due to the SPDE’s linearity,

uk(x) = ukO(x) +
∞∑
i=1

ck−1
i ukH(x; ei(·)).

We have

c0l = (u0, el), ckl = qkOl +
∞∑
i=1

ck−1
i qkHli, l = 1, 2, . . . , k = 1, . . . , N,

where qkOl = (ukO, el) and q
k
Hli = (ukH(·; ei), el(·)).

Using (3.5), we represent the second moment of the approximation uk(x) from
(3.3) of the solution u(tk, x) to the SPDE (3.1) as follows:

(3.6) E[uk(x)]2 =
∞∑

i,j=1

Ck
ijei(x)ej(x),

where the covariance matrix Ck
ij = E[cki c

k
j ]. Introducing also the means Mk

i , one can
obtain the recurrent relations in k :

(3.7)

M0
i = c0i = (u0, ei), C0

ij = c0i c
0
j ,

Mk
i = E[qkOi] +

∞∑
l=1

Mk−1
l E[qkHil],

Ck
ij = E[qkOiq

k
Oj ] +

∞∑
l=1

Mk−1
l

(
E[qkOiq

k
Hjl] + E[qkOjq

k
Hil]

)
+

∞∑
l,p=1

Ck−1
lp E[qkHilq

k
Hjp],

i, j = 1, 2, . . . , k = 1, . . . , N.

Since the coefficients of the SPDE (3.1) are time independent, all the expectations
involving the quantities qkOi and qkHil in (3.7) do not depend on k and hence it is
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sufficient to compute them just once, on a single step k = 1, and we get

M0
i = c0i = (u0, ei), C0

ij = c0i c
0
j ,(3.8)

Mk
i = E[q1Oi] +

∞∑
l=1

Mk−1
l E[q1Hil ],

Ck
ij = E[q1Oiq

1
Oj ] +

∞∑
l=1

Mk−1
l

(
E[q1Oiq

1
Hjl] + E[q1Ojq

1
Hil]

)
+

∞∑
l,p=1

Ck−1
lp E[q1Hilq

1
Hjp],

i, j = 1, 2, . . . , k = 1, . . . , N.

These expectations can be approximated by quadrature rules from section 2.1. If the
number of noises r is small, then it is natural to use the tensor product rule (2.3) with
one-dimensional Gauss–Hermite quadratures of order n = 2 or 3 (note that when
r = 1, we can use just a one-dimensional Gauss–Hermite quadrature of order n = 2
or 3). If the number of noises r is large then it might be beneficial to use the sparse
grid quadrature (2.4) of level L = 2 or 3. More specifically,

E[q1Oi]
.
=

η∑
p=1

(u1O(·; yp), ei(·))Wp, E[q1Hil]
.
=

η∑
p=1

(u1H(·; el; yp), ei(·))Wp,(3.9)

E[q1Oiq
1
Oj ]

.
=

η∑
p=1

(u1O(·; yp), ei(·))(u1O(·; yp), ej(·))Wp,

E[q1Oiq
1
Hjl]

.
=

η∑
p=1

(u1O(·; yp), ei(·))(u1H(·; el; yp), ej(·))Wp,

E[q1Hilq
1
Hjk]

.
=

η∑
p=1

(u1H(·; el; yp), ei(·))(u1H(·; ek; yp), ej(·))Wp,

where yp ∈ R
r are nodes of the quadrature, Wp are the corresponding quadrature

weights, and η = nr in the case of the tensor-product rule (2.3) with one-dimensional
Gauss–Hermite quadratures of order n or η is the total number of nodes #S used
by the sparse grid quadrature (2.4) of level L. To find u1O(x; yp) and u

1
H(x; el; yp), we

need to solve the corresponding elliptic PDE problems, which we do using the spectral
method in physical space, i.e., using a truncation of the CONS {el}l∗l=1 to represent
the numerical solution.

To summarize, we formulate the following deterministic recursive algorithm for
the second-order moments of the solution to the SPDE problem (3.1).

Algorithm 3.1. Choose the algorithm’s parameters: a complete orthonormal
basis {el(x)}l≥1 in L2(D) and its truncation {el(x)}l∗l=1; a time step size h; and a
quadrature rule (i.e., nodes yp and the quadrature weights Wp, p = 1, . . . , η).

Step 1. For each p = 1, . . . , η and l = 1, . . . , l∗, find approximations ū1O(x; yp) ≈
u1O(x; yp) and ū

1
H(x; el; yp) ≈ u1H(x; el; yp) using the spectral method in physical space.

Step 2. Using the quadrature rule, approximately find the expectations as in
(3.9) but with the approximate ū1O(x; yp) and ū1H(x; el; yp) instead of u1O(x; yp) and
u1H(x; el; yp), respectively.

Step 3. Recursively compute the approximations of the means Mk
i , i = 1, . . . , l∗,

and covariance matrices {Ck
ij , i, j = 1, . . . , l∗} for k = 1, . . . , N according to (3.8)

with the approximate expectations found in Step 2 instead of the exact ones.
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Step 4. Compute the approximation of the second-order moment E[uk(x)]2 using
(3.6) with the approximate covariance matrix found in Step 3 instead of the exact one
{Ck

ij}.
We emphasize that Algorithm 3.1 for computing moments does not have a sta-

tistical error. Based on the error estimate in Proposition 2.5, we expect the one-step
error of SGC for our recursive algorithm is of order hL. Hence, we expect the total
global error from trapezoidal rule in time and SGC to be O(h) + O(hL−1). Error
analysis of this algorithm will be considered elsewhere.

Remark 3.2. Algorithms analogous to Algorithm 3.1 can also be constructed
based on other time-discretization methods than the trapezoidal rule used here or
based on other types of SPDE approximations, e.g., one can exploit the Wong–Zakai
approximation.

Remark 3.3. The cost of this algorithm is, similar to the algorithm in [50], T
Δηl

4
∗

and the storage is ηl2∗. The total cost can be reduced by employing some reduced-order
methods in physical space and be proportional to l2∗ instead of l4∗. The discussion on
computational efficiency of the recursive Wiener chaos method is also valid here; see
[50, Remark 4.1].

Remark 3.4. Choosing an orthonormal basis is an important topic in the research
of spectral methods, which can be found in [16] and many subsequent works. Here
we choose a Fourier basis for (3.1) because of periodic boundary conditions.

4. Numerical experiments. In this section we illustrate via three examples
how the SGC algorithms can be used for the weak-sense approximation of SDE and
SPDE. The first example is a scalar SDE with multiplicative noise, where we show
that the SGC algorithm’s error is small when the noise magnitude is small. We also
observe that when the noise magnitude is large, the SGC algorithm does not work
well. In the second example we demonstrate that the SGC can be successfully used
for simulating the Burgers equation with additive noise when the integration time
is relatively small. In the last example we show that the recursive algorithm from
section 3 works effectively for computing moments of the solution to an advection-
diffusion equation with multiplicative noise over a longer integration time.

In all the tests we limit the dimension of random spaces to 40, which is an empirical
limitation of the SGC of Smolyak on the dimensionality [41]. Also, we take the sparse
grid level as less than or equal to five in order to avoid an excessive number of sparse
grid points. All the tests were run using MATLAB R2012b on a Macintosh desktop
computer with Intel Xeon CPU E5462 (quad-core, 2.80 GHz).

Example 4.1 (modified Cox–Ingersoll–Ross; see, e.g., [7]). Consider the Ito SDE

(4.1) dX = −θ1X dt+ θ2
√
1 +X2 dw(t), X(0) = x0.

For θ22 − 2θ1 �= 0, the first two moments of X(t) are equal to

EX(t) = x0 exp(−θ1t), EX2(t) = − θ22
θ22 − 2θ1

+

(
x20 +

θ22
θ22 − 2θ1

)
exp((θ22 − 2θ1)t).

In this example we test the SGC algorithms based on the Euler scheme (2.8) and
on the second-order weak scheme (2.21). We compute the first two moments of the
SDE’s solution and use the relative errors to measure the accuracy of the algorithms
as

(4.2) ρr1(T ) =
|EX(T )− EXN |

|EX(T )| , ρr2(T ) =

∣∣EX2(T )− EX2
N

∣∣
EX2(T )

.
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Table 2

Comparison of the SGC algorithms based on the Euler scheme (left) and on the second-order
scheme (2.21) (right). The parameters of the model (4.1) are x0 = 0.1, θ1 = 1, θ2 = 0.3, and T = 1.

h L ρr1(1) order ρr2(1) order L ρr1(1) order ρr2(1) order

5×10−1 2 3.20×10−1 – 3.72×10−1 – 3 6.05× 10−2 – 8.52×10−2 –

2.5×10−1 2 1.40×10−1 1.2 1.40×10−1 1.4 3 1.14×10−2 2.4 2.10×10−2 2.0

1.25×10−1 2 6.60× 10−2 1.1 4.87×10−2 1.5 3 1.75×10−3 2.7 6.73×10−3 1.6

6.25×10−2 2 3.21×10−2 1.0 8.08×10−3 2.6 4 3.64×10−4 2.3 1.21×10−3 2.5

3.125×10−2 2 1.58×10−2 1.0 1.12×10−2 −0.5 4 8.48×10−4 −1.2 3.75×10−4 1.7

2.5×10−2 2 1.26×10−2 1.49×10−2 2 9.02×10−4 5.72×10−2

2.5×10−2 3 1.26×10−2 1.48×10−2 3 9.15×10−5 2.84×10−3

2.5×10−2 4 1.26×10−2 1.55×10−2 4 1.06×10−4 2.77×10−4

2.5×10−2 5 1.26×10−2 1.56×10−2 5 1.06×10−4 1.81×10−4

Table 3

Comparison of the SGC algorithms based on the Euler scheme (left) and on the second-order
scheme (2.21) (right). The parameters of the model (4.1) are x0 = 0.08, θ1 = −1, θ2 = 2, and
T = 1. The sparse grid level L = 4.

h ρr1(1) order ρr2(1) ρr1(1) ρr2(1)

5×10−1 1.72×10−1 – 9.61×10−1 2.86×10−2 7.69×10−1

2.5×10−1 1.02×10−1 0.8 8.99×10−1 8.62×10−3 6.04×10−1

1.25×10−1 5.61×10−2 0.9 7.87×10−1 1.83×10−2 7.30×10−1

6.25×10−2 2.96×10−2 0.9 6.62×10−1 3.26×10−2 8.06×10−1

3.125×10−2 1.52×10−2 1.0 5.64×10−1 4.20×10−2 8.40×10−1

Table 2 presents the errors for the SGC algorithms based on the Euler scheme
(left) and on the second-order scheme (2.21) (right), when the noise magnitude is
small. For the parameters given in the table’s description, the exact values (up to
4 decimal places) of the first and second moments are 3.679 × 10−2 and 4.162 ×
10−2, respectively. We see that increase of the SGC level L above 2 in the Euler
scheme case and above 3 in the case of the second-order scheme does not improve
accuracy. When the SGC error is relatively small in comparison with the error due
to time discretization, we observe decrease of the overall error of the algorithms in h:
proportional to h for the Euler scheme and to h2 for the second-order scheme. We
underline that in this experiment the noise magnitude is small.

In Table 3 we give results of the numerical experiment when the noise magnitude
is not small. For the parameters given in the table’s description, the exact values
(up to 4 decimal places) of the first and second moments are 0.2718 and 272.3202,
respectively. Though for the Euler scheme there is a proportional to h decrease of the
error in computing the mean, there is almost no decrease of the error in the rest of this
experiment. The large value of the second moment apparently affects efficiency of the
SGC here. For the Euler scheme, increasing L and decreasing h can slightly improve
accuracy in computing the second moment, e.g., the smallest relative error for the
second moment is 56.88% when h = 0.03125 and L = 5 (this level requires 750337
sparse grid points) out of the considered cases of h = 0.5, 0.25, 0.125, 0.0625, and
0.03125 and L ≤ 5. For the mean, increase of the level L from 2 to 3, 4, or 5 does not
improve accuracy. For the second-order scheme (2.21), relative errors for the mean
can be decreased by increasing L for a fixed h: e.g., for h = 0.25, the relative errors
are 0.5121 0.1753, 0.0316, and 0.0086 when L = 2, 3, 4, and 5, respectively.
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We also see in Table 3 that the SGC algorithm based on the second-order scheme
may not admit higher accuracy than the one based on the Euler scheme, e.g., for
h = 0.5, 0, 25, 0.125 the second-order scheme yields higher accuracy while the Euler
scheme demonstrates higher accuracy for smaller h = 0.0625 and 0.03125. Further
decrease in h was not considered because this would lead to increase of the dimension
of the random space beyond 40 where the sparse grid of Smolyak (2.4) may fail and the
SGC algorithm may also lose its competitive edge with Monte Carlo-type techniques.

Via this example we have shown that the SGC algorithms based on first- and
second-order schemes can produce sufficiently accurate results when noise magnitude
is small and that the second-order scheme is preferable since for the same accuracy
it uses random spaces of lower dimension than the first-order Euler scheme; compare,
e.g., the error values highlighted by bold font in Table 2 and see also the discussion
at the end of section 2.2. When the noise magnitude is large (see Table 3), the SGC
algorithms do not work well as was predicted in section 2.3.

Example 4.2 (Burgers equation with additive noise). Consider the stochastic
Burgers equation [8, 19]:

(4.3) du+ u
∂u

∂x
dt = ν

∂2u

∂x2
dt+ σ cos(x)dw, 0 ≤ x ≤ �, ν > 0

with the initial condition u0(x) = 2ν 2π
�

sin( 2π
� x)

a+cos( 2π
� x)

, a > 1, and periodic boundary

conditions. In the numerical tests the used values of the parameters are � = 2π and
a = 2.

Apply the Fourier collocation method in physical space and the trapezoidal rule
in time to (4.3):

(4.4)
�uj+1 − �uj

h
− νD2 �uj+1 + �uj

2
= −1

2
D

(
�uj+1 + �uj

2

)2

+ σΓ
√
hξj ,

where �uj = (u(tj , x1), . . . , u(tj, xM ))ᵀ, tj = jh, D is the Fourier spectral differential
matrix, ξj are i.i.d. N (0, 1) random variables, and Γ = (cos(x1), . . . , cos(xM ))ᵀ. The
Fourier collocation points are xm = m �

M (m = 1, . . . ,M) in physical space and in
the experiment we used M = 100. We aim at computing moments of �uj, which
are integrals with respect to the Gaussian measure corresponding to the collection
of ξj , and we approximate these integrals using the SGC from section 2. The use of
the SGC amounts to substituting ξj in (4.4) by sparse grid nodes, which results in a
system of (deterministic) nonlinear equations of the form (4.4). To solve the nonlinear
equations, we used the fixed-point iteration method with tolerance h2/100.

The errors in computing the first and second moments are measured as follows:

ρr,21 (T ) =
‖Euref(T, ·)− Eunum(T, ·)‖

‖Euref(T, ·)‖ ,(4.5)

ρr,22 (T ) =

∥∥Eu2ref(T, ·)− Eu2num(T, ·)
∥∥

‖Eu2ref(T, ·)‖
,

ρr,∞1 (T ) =
‖Euref(T, ·)− Eunum(T, ·)‖∞

‖Euref(T, ·)‖∞
,

ρr,∞2 (T ) =

∥∥Eu2ref(T, ·)− Eu2num(T, ·)
∥∥
∞

‖Eu2ref(T, ·)‖∞
,

where ‖v(·)‖ = (2πM
∑M

m=1 v
2(xm))1/2, ‖v(·)‖∞ = max1≤m≤M |v(xm)|, xm are the

Fourier collocation points, and unum and uref are the numerical solutions obtained
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Table 4

Errors of the SGC algorithm applied to the stochastic Burgers equation (4.3) with parameters
T = 0.5, ν = 0.1, and σ = 1.

h ρr,21 (0.5), L = 2 ρr,21 (0.5), L = 3 ρr,22 (0.5), L = 2 ρr,22 (0.5), L = 3 ρr,22 (0.5), L = 4

2.5×10−1 1.28×10−1 1.3661×10−1 4.01×10−2 1.05×10−2 1.25×10−2

1.00×10−1 4.70×10−2 5.3874×10−2 4.48×10−2 4.82×10−3 4.69×10−3

5.00×10−2 2.75×10−2 2.7273×10−2 4.73×10−2 5.89×10−3 2.82×10−3

2.50×10−2 2.51×10−2 1.4751×10−2 4.87×10−2 6.92×10−3 2.34×10−3

1.25×10−2 2.67×10−2 9.4528×10−3 4.95×10−2 7.51×10−3 2.29×10−3

Table 5

Errors of the SGC algorithm applied to the stochastic Burgers equation (4.3) with parameters
ν = 1, σ = 0.5, and T = 0.5.

h ρr,21 (0.5), L = 2 ρr,22 (0.5), L = 2 ρr,22 (0.5), L = 3

2.5×10−1 4.94×10−3 8.75×10−3 8.48×10−3

1×10−1 8.20×10−4 1.65×10−3 1.13×10−3

5×10−2 4.88×10−4 1.18×10−3 6.47×10−4

2.5×10−2 3.83×10−4 1.08×10−3 5.01×10−4

1.25×10−2 3.45×10−4 1.07×10−3 4.26×10−4

by the SGC algorithm and the reference solution, respectively. The first and second
moments of the reference solution uref were computed by the same solver in space
and time (4.4) but accompanied by the Monte Carlo method with a large number of
realizations ensuring that the statistical errors were negligible.

First, we choose ν = 0.1 and σ = 1. We obtain the reference solution with
h = 10−4 and 1.92×106 Monte Carlo realizations. The corresponding statistical error
is 1.004× 10−3 for the mean (maximum of the statistical error for Euref(0.5, xj)) and
9.49×10−4 for the second moment (maximum of the statistical error for Eu2ref(0.5, xj))
with 95% confidence interval, and the corresponding estimates of L2-norm of the
moments are ‖Euref(0.5, ·)‖ .

= 0.18653 and
∥∥Eu2ref(0.5, ·)∥∥ .

= 0.72817. We see from the
results of the experiment presented in Table 4 that for L = 2 the error in computing
the mean decreases when h decreases up to h = 0.05 but the accuracy does not improve
with further decrease of h. For the second moment, we observe no improvement in
accuracy with decrease of h. For L = 4, the error in computing the second moment
decreases with h. When h = 0.0125, increasing the sparse grid level improves the
accuracy for the mean: L = 3 yields ρr,21 (0.5)

.
= 9.45 × 10−3 and L = 4 yields

ρr,21 (0.5)
.
= 8.34 × 10−3. As seen in Table 4, increase of the level L also improves

accuracy for the second moment when h = 0.05, 0.25, or 0.125.
Second, we choose ν = 1 and σ = 0.5. We obtain the first two moments of the

reference uref using h = 10−4 and the Monte Carlo method with 3.84×106 realizations.
The corresponding statistical error is 3.2578×10−4 for the mean and 2.2871×10−4 for
the second moment with 95% confidence interval, and the corresponding estimates of
L2-norm of the moments are ‖Euref(0.5, ·)‖ .

= 1.11198 and ‖Eu2ref(0.5, ·)‖ .
= 0.66199.

The results of the experiment are presented in Table 5. We see that accuracy
is sufficiently high and there is some decrease of errors with decrease of time step h.
However, as expected, no convergence in h is observed and further numerical tests
(not presented here) showed that taking h smaller than 1.25× 10−2 and level L = 2
or 3 does not improve accuracy. In additional experiments we also noticed that there
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was no improvement of accuracy for the mean when we increased the level L up to 5.
For the second moment, we observe some improvement in accuracy when L increases
from 2 to 3 (see Table 5) but additional experiments (not presented here) showed that
further increase of L (up to 5) does not reduce the errors.

For the errors measured in L∞-norm (4.5) we had similar observations (not pre-
sented here) as in the case of L2-norm.

In summary, this example has illustrated that SGC algorithms can produce accu-
rate results in finding moments of solutions of nonlinear SPDE when the integration
time is relatively small. Comparing Tables 4 and 5, we observe better accuracy for
the first two moments when the magnitude of the noise is smaller. In some situa-
tions higher sparse grid levels L improve accuracy but dependence of errors on L is
not monotone. No convergence in time step h and in level L was observed which is
consistent with our theoretical prediction in section 2.

Example 4.3 (stochastic advection-diffusion equation). Consider the stochastic
advection-diffusion equation in the Ito sense:

du =

(
ε2 + σ2

2

∂2u

∂x2
+ β sin(x)

∂u

∂x

)
dt+ σ

∂u

∂x
dw(s), (t, x) ∈ (0, T ]× (0, 2π),(4.6)

u(0, x) = φ(x), x ∈ (0, 2π),

where w(s) is a standard scalar Wiener process and ε ≥ 0, β, and σ are constants. In
the tests we took φ(x) = cos(x), β = 0.1, σ = 0.5, and ε = 0.2.

We apply Algorithm 3.1 to (4.6) to compute the first two moments at a relatively
large time T = 5. The Fourier basis was taken as CONS. Since (4.6) has a single noise
only, we used one-dimensional Gauss–Hermite quadratures of order n. The implicit-
ness due to the use of the trapezoidal rule was resolved by the fixed-point iteration
with stopping criterion h2/100.

As we have no exact solution of (4.6), we chose to find the reference solution
by Algorithm 4.2 from [50] (a recursive Wiener chaos method accompanied by the
trapezoidal rule in time and Fourier collocation method in physical space) with the
parameters: the number of Fourier collocation points M = 30, the length of time
subintervals for the recursion procedure h = 10−4, the highest order of Hermite poly-
nomials P = 4, the number of modes approximating the Wiener process n = 4, and
the time step in the trapezoidal rule h = 10−5. It gives the second moment in the
L2-norm ‖Eu2ref(1, ·)‖ .

= 1.065195. The errors are computed as follows:

(4.7) �22(T ) =
∣∣∥∥Eu2ref(T, ·)∥∥− ∥∥Eu2numer(T, ·)

∥∥∣∣ , �r,22 (T ) =
�22(T )

‖Eu2ref(T, ·)‖
,

where the norm is defined as in (4.5).
The results of the numerical experiment are given in Table 6. We observe first-

order convergence in h for the second moments. We notice that increasing the quadra-
ture order n from 2 to 3 does not improve accuracy which is expected. Indeed, the
used trapezoidal rule is of weak order one in h in the case of multiplicative noise
and a more accurate quadrature rule cannot improve the order of convergence. This
observation confirms in some sense that the total error should be expected to be
O(h)+O(hL−1), as discussed in section 3. We note in passing that in the additive
noise case we expect to see the second order convergence in h when n = 3 due to the
properties of the trapezoidal rule.

In conclusion, we showed that recursive Algorithm 3.1 can work effectively for
accurate computing of second moments of solutions to linear stochastic advection-
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Table 6

Errors in computing the second moment of the solution to the stochastic advection-diffusion
equation (4.6) with σ = 0.5, β = 0.1, ε = 0.2 at T = 5 by Algorithm 3.1 with l∗ = 20 and the
one-dimensional Gauss–Hermite quadrature of order n = 2 (left) and n = 3 (right).

h �r,22 (5) order CPU time (sec.) �r,22 (5) order CPU time (sec.)

5×10−2 1.01×10−3 – 7.41 1.06×10−3 – 1.10×10

2×10−2 4.07×10−4 1.0 1.65×10 4.25×10−4 1.0 2.43×10

1×10−2 2.04×10−4 1.0 3.43×10 2.12×10−4 1.0 5.10×10

5×10−3 1.02×10−4 1.0 6.81×10 1.06×10−4 1.0 1.00×102

2×10−3 4.08×10−5 1.0 1.70×102 4.25×10−5 1.0 2.56×102

1×10−3 2.04×10−5 1.0 3.37×102 2.12×10−5 1.0 5.12×102

diffusion equations at relatively large time. We observed convergence of order one
in h.
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RI) for its hospitality.
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