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OPTIMAL REGULARITY AND ERROR ESTIMATES OF A
SPECTRAL GALERKIN METHOD FOR FRACTIONAL
ADVECTION-DIFFUSION-REACTION EQUATIONS\ast 

ZHAOPENG HAO\dagger AND ZHONGQIANG ZHANG\dagger 

Abstract. We investigate a spectral Galerkin method for the fractional advection-diffusion-
reaction equations in one dimension. We first prove sharp regularity estimates of solutions in non-
weighted and weighted Sobolev spaces. Then we obtain optimal convergence orders of the spectral
Galerkin methods for both fractional advection-diffusion and diffusion-reaction equations. We also
present an iterative solver with a quasi-optimal complexity. Numerical results are presented to verify
the theoretical analysis.
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1. Introduction. Nonlocal operators have been applied to model real world
phenomenon in many fields, e.g., fluid dynamics [19, 30], finance [14], phase transi-
tions [5, 6], material science [9], etc. However, the difficulty lies in how to efficiently
solve partial differential equations with nonlocal operators and how to justify the
convergence order of the algorithms when they are applied to these models.

In this work, we consider one of the nonlocal models, advection-diffusion-reaction
(ADR) equations with fractional Laplacian, which is a simplified model from the frac-
tional Navier--Stokes equation [19]. While our ultimate goal is efficient spectral and
spectral element methods for the fractional Navier--Stokes equation (nonlinear ADR),
our aim here is to investigate the convergence order of a spectral Galerkin method
for a one-dimensional fractional ADR equation. As a simplified model, the following
one-dimensional problem provides views on potential advantages and disadvantages of
numerical methods designed for advection-diffusion equations which are Navier-Stokes
in nature [13]. Specifically, we consider the following problem:

( - \Delta )\alpha /2u+ \mu 1Du+ \mu 2u = f(x), x \in \Omega = ( - 1, 1), \alpha \in (1, 2),(1.1)

u(x) = 0, x \in \Omega c,(1.2)

where D is the first-order derivative in x, \mu 1 \in \BbbR , \mu 2 \geq 0, and f(x) is a given function.
Here the fractional Laplacian1 is defined by

(1.3) ( - \Delta )\alpha /2u(x) = c1,\alpha 

\int 
\BbbR 

u(x) - u(y)

| x - y| 1+\alpha 
dy, c1,\alpha =

2\alpha \Gamma (\alpha +1
2 )

\pi 1/2 | \Gamma ( - \alpha /2)| 
.

In spectral methods, the evaluation of fractional Laplacian operator (1.3) can
be straightforward thanks to the pseudo-eigenrelation (see Lemma 4.1, which can be
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derived from similar conclusions in [17]). In contrast, the bottleneck for many meth-
ods in computing solutions to equations with the fractional Laplacian is the high
computational cost of discretizing the fractional Laplacian operator (1.3). For exam-
ple, the high complexity for computing this nonlocal operator has been reported in
classical numerical methods, e.g., finite element methods (see, e.g., [1, 15]) and finite
difference methods (see, e.g., [16, 26]). To reduce the complexity for the finite ele-
ment method, banded and hierarchical matrices have been used, where quasi-optimal
complexity can be achieved; see [4].

According to the pseudo-eigenrelation in Lemma 4.1, it is natural to represent

the solution to (1.2) by u = (1 - x2)\alpha /2
\sum \infty 

n=0 \^unP
\alpha /2
n (x), where P

\alpha /2
n is the nth-order

Jacobi polynomial (see (2.4)). When \mu 1 = \mu 2 = 0, the regularity of (1  - x) - \alpha /2u
can be high, as it can be analytic if f is analytic [2], and the regularity index for
(1  - x) - \alpha /2u is r + \alpha if the regularity index for f is r in the weighted Sobolev
spaces [34]. However, it is shown in [34] that when \mu 2 > 0, the regularity index
for (1  - x) - \alpha /2u is \alpha + min(\alpha + 1  - \epsilon , r) for \epsilon > 0, which implies limited regularity
and only an algebraic convergence of spectral methods. The algebraic convergence
order has been verified by numerical results in [34]. However, we observe an even
higher convergence order of the spectral Galerkin method (4.1); see Figure 1. The
convergence order of the spectral Galerkin method (4.1) in [34] is 2\alpha +1 in a weighted
L2-norm, while we observe the order of 5\alpha /2 + 1 in a similar weighted L2-norm.
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Fig. 1. For the diffusion-reaction equation ( - \Delta )\alpha /2u + u = sinx with u vanishing outside of
( - 1, 1), the convergence order of the spectral Galerkin method (4.1) is 2\alpha +1 - \epsilon in the H\alpha /2-norm
and 5\alpha /2 + 1 - \epsilon in the L2

\omega  - \alpha /2 -norm.

Unfortunately, we were not able to prove the regularity index 5\alpha /2 + 1 - \epsilon using
the analysis in [34] and thus failed to obtain the optimal convergence order 5\alpha /2+1 - \epsilon 
even when f is analytic. In this paper, we apply a different approach than that in [34]
and obtain the optimal regularity index of (1 - x) - \alpha /2u in a weighted Sobolev space;
see section 3. Moreover, we are able to prove the regularity index when \mu 1 \not = 0, where
the regularity index of (1 - x) - \alpha /2u is \alpha +min(3\alpha /2 - 1 - \epsilon , r). Though the regularity
is still limited in weighted Sobolev spaces, our results are better than the classical
analysis in nonweighted Sobolev spaces when r > 0; see Table 1 for conclusions
about the regularity index on the fractional ADR equations in one dimension in the
literature.
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Table 1
Regularity indices for u in the standard Sobolev space Hs and for \~u = (1  - x2) - \alpha /2u in the

weighted Sobolev space Bs
\omega \alpha /2 . Here r is the regularity index for f in standard or weighted Sobolev

spaces. The letter ``P"" is an abbreviation for Poisson (\mu 1 = \mu 2 = 0), the letters ``DR"" mean
diffusion-reaction (\mu 1 = 0 and \mu 2 > 0), and ``ADR"" represents advection-diffusion-reaction (\mu 1 \not = 0
and \mu 2 > 0).

s (u in the Sobolev space) s (\~u in the weighted Sobolev space)
P \alpha +min(1/2 - \alpha /2 - \epsilon , r) ([1, 23], Thm. 3.1) \alpha + r ([2, 34])
DR \alpha +min(1/2 - \alpha /2 - \epsilon , r) \alpha +min(\alpha + 1 - \epsilon , r) ([34])

-- \alpha +min(3\alpha /2 + 1 - \epsilon , r) (Thm 3.10)
ADR \alpha +min(1/2 - \alpha /2 - \epsilon , r) (Thm. 3.2) \alpha +min(3\alpha /2 - 1 - \epsilon , r) (Thm. 3.7)

With the established higher regularity estimates, we consider the spectral Galerkin

method (4.1) using the approximation (1 - x)\alpha /2\~uN = (1 - x2)\alpha /2
\sum N

n=0 \^unP
\alpha /2
n (x).

The approximation of u using (1  - x)\alpha /2\~uN provides a different view than those in
the classical numerical methods, such as [1, 15] for finite element methods and [16, 26]
for finite difference methods. In these classical methods, the convergence order is low,
as the solution is usually weakly singular along the boundary, and the computational
cost is high, mainly because of the dense matrix resulting from the discretization of
the fractional Laplacian.

The effectiveness of factorization of the solution as a weak singular function and
a regular function \~u was also pointed out in [32] in the regularity analysis of the
fractional Poisson equation. The high regularity for \~u is verified by high convergence
orders using the spectral methods (4.1). For example, for the DR equation (1.2) where
\mu 1 = 0, the convergence order for \~uN in the weighted L2

\omega  - \alpha /2 -norm (stronger than the
standard nonweighted L2-norm) can be 5\alpha /2+1 - \epsilon when f = sinx; see Theorem 4.4.
In contrast, the convergence order of the finite element or finite difference method is
expected to be no higher than (\alpha + 1)/2  - \epsilon unless some adaptive mesh or graded
mesh is applied; see e.g., [1, 4]. Thus, the spectral method presented in this work can
provide a reliable reference solution for other numerical methods.

The main findings and contributions of this work are as follows.
\bullet For the ADR equation (1.1), where \mu 1 \not = 0, we show that the regularity of \~u

in terms of the right-hand side function f in the weighted Sobolev spaces is higher
than the regularity of the solution u in nonweighted Sobolev spaces. Specifically, the
regularity index for \~u is 5\alpha /2  - 1  - \epsilon with \epsilon > 0 arbitrarily small when f is smooth
enough.

\bullet For the DR equation (1.1), where \mu 1 = 0 and \mu 2 > 0, we improve the regularity
estimate of \~u in the weighted Sobolev spaces (it is higher than in [34]). Specifically,
the regularity index for \~u is 5\alpha /2+ 1 - \epsilon instead of 2\alpha +1 when f is smooth enough.

\bullet We prove optimal error estimates of the spectral Galerkin method for (1.1)--(1.2)
both in the H\alpha /2-norm and the weighted L2

\omega  - \alpha /2-norm; see Theorem 4.4.

\bullet We present a fast iterative solver with the complexity \scrO (N log2 N); see section
5. The same complexity is reported in [4] on an adaptive finite element method,
where the convergence order in the L2-norm is 2 and the order in the H\alpha /2-norm is
2  - \alpha /2. For DR equations, our method has better convergence orders, as our order
in the L2

\omega  - \alpha /2 -norm is 5\alpha /2+1 - \epsilon and the order in the H\alpha /2-norm is 2\alpha +1 - \epsilon . Even
for ADR equations, our convergence orders are higher than the orders in [4] when
\alpha > 6/5 in both the L2- and H\alpha /2-norms.

It is surprising that the regularity index of \~u for the ADR case (\mu 1 \not = 0) is essen-
tially different from the DR case (\mu 1 = 0, \mu 2 > 0) in (1.1). However, the regularity
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estimates are sharp and have been verified numerically using the spectral Galerkin
method in section 5.

The rest of this paper is arranged as follows. In section 2, we introduce some
necessary notation and recall weighted Sobolev spaces and basic facts about the well-
posedness of (1.1)--(1.2). Some long but important auxiliary lemmas are presented
in Appendix A. In section 3, we present and prove the regularity of fractional ADR
equations in nonweighted and weighted Sobolev spaces. In section 4, we consider
a spectral Galerkin method for (1.1)--(1.2) and prove its optimal convergence. In
section 5, we present both direct and iterative solvers and verify the theoretical con-
vergence orders with several numerical examples before we make concluding remarks
and discuss possible extensions of this work.

2. Preliminary. In this section, we introduce weighted Sobolev spaces and basic
facts on the well-posedness of the problem (1.1)--(1.2). Throughout the paper, C and
c denote generic constants and are independent of any functions and of the truncation
parameter N .

2.1. Weighted Sobolev spaces. Denote by L2
\omega \beta (\Omega ) the space with the inner

product and the associated norm defined by

(2.1) (u, v)\omega \beta =

\int 
\Omega 

uv\omega \beta dx, \| u\| \omega \beta =
\bigl( 
(u, u)\omega \beta 

\bigr) 1/2
,

where \omega \beta = (1 - x2)\beta with a real number \beta . To simplify the notation we abbreviate
L2
\omega \beta (\Omega ) as L2

\omega \beta , and similar treatment is done for other spaces. To incorporate sin-
gularities at the endpoints, we introduce the following weighted Sobolev space (see,
e.g., [8, 24]):

(2.2) Bm
\omega \beta :=

\bigl\{ 
u | Dku \in L2

\omega \beta +k , k = 0, 1, . . . ,m
\bigr\} 
, m is a nonnegative integer,

which is equipped with the norm

(2.3) \| u\| Bm

\omega \beta 
=

\biggl( m\sum 
k=0

| u| 2Bk

\omega \beta 

\biggr) 1/2

, | u| Bk

\omega \beta 
= \| Dku\| \omega \beta +k, .

When m = s is not an integer, the space can be defined via the classical interpolation
method, e.g., the K-method; see [3].

These weighted Sobolev spaces are closely related to the Jacobi polynomials. The
Jacobi polynomials P \beta 

n (x) are mutually orthogonal as

(2.4)

\int 1

 - 1

(1 - x2)\beta P \beta 
m(x)P \beta 

n (x) dx = h\beta 
n\delta nm, \beta >  - 1.

Here \delta nm is equal to 1 if n = m and zero otherwise, and

(2.5) h\beta 
n =

\bigm\| \bigm\| P \beta 
n

\bigm\| \bigm\| 2
\omega \beta =

22\beta +1(\Gamma (n+ \beta + 1))2

(2n+ 2\beta + 1)\Gamma (n+ 2\beta + 1)\Gamma (n+ 1)
.

The following asymptotic formula for a ratio of two gamma functions holds:

(2.6) lim
n\rightarrow \infty 

\Gamma (n+ \delta )

n\delta  - \gamma \Gamma (n+ \gamma )
= lim

n\rightarrow \infty 

\biggl[ 
1 +

(\delta  - \gamma )(\delta + \gamma  - 1)

2n
+\scrO (n - 2)

\biggr] 
= 1.
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By (2.6), we know that h\beta 
n \approx 1

2n+2\beta +1 . The following relations hold for Jacobi poly-

nomials P \beta 
n (x) (see, e.g., Chapter 2 in [7]):

D
\Bigl( 
(1 - x2)\beta P \beta 

n - 1

\Bigr) 
=  - 2n(1 - x2)\beta  - 1P \beta  - 1

n , \beta > 0.(2.7)

We say that an is equivalent to bn if there exist c1 and c2 such that c1an \leq bn \leq 
c2an asymptotically, and we denote the equivalence by an \approx bn. For functions in Bs

\omega \beta 

with s \geq 0, we can introduce an equivalent fractional norm in discrete form (see [8]):

\| | u| \| 2Bs

\omega \beta 
=

\infty \sum 
n=0

(u\beta 
n)

2h\beta 
n(1 + n2)s, \beta >  - 1,(2.8)

where u\beta 
n are the coefficients of Jacobi--Fourier expansion for u in terms of P \beta 

n .

2.2. Well-posedness. The Hardy-type inequality states the relation between
the fractional Sobolev spaces and weighted L2 spaces.

Lemma 2.1 ([29]). Let \Lambda be a convex set, and let 1 < \alpha < 2. For any v \in C\infty 
0 ,

it holds that

(2.9)

\int \int 
\Lambda \otimes \Lambda 

| v(x) - v(y)| 2

| x - y| n+\alpha 
dxdy \geq kn,\alpha 

\int 
\Lambda 

| v(x)| 2

d\Lambda (x)\alpha 
dx,

where kn,\alpha is a positive constant which only depends on dimensions n and \alpha , and
d\Lambda (x) denotes the distance from the point x \in \Lambda to the boundary of the \Lambda .

Define

(2.10) \rho (x) = c1,\alpha 

\int 
\Omega c

1

| x - y| 1+\alpha dy,

where c1,\alpha is defined in (1.3). In the one-dimensional case x \in \Omega = ( - 1, 1) we have

1

d\Omega (x)\alpha 
\geq 1

2
((1 + x) - \alpha + (1 - x) - \alpha ) =

\alpha 

2

\int 
\Omega c

1

| x - y| 1+\alpha dy =
\alpha 

2c1,\alpha 
\rho (x).(2.11)

Thus, using Lemma 2.1 and by the standard density argument we have

(2.12)

\int \int 
\Omega \otimes \Omega 

| v(x) - v(y)| 2

| x - y| 1+\alpha 
dxdy \geq \alpha k1,\alpha 

2c1,\alpha 

\int 
\Omega 

| v(x)| 2\rho (x)dx \forall v \in H
\alpha /2
0 .

We recall the nonweighted Sobolev space Hs (e.g., in [3]) with the seminorm | \cdot | Hs :

| v| Hs =

\biggl( \int \int 
\Omega \otimes \Omega 

| v(x) - v(y)| 2

| x - y| 1+2s
dxdy

\biggr) 1/2

.

The weak formulation of the problem (1.1)--(1.2) is to find u \in H
\alpha /2
0 , such that

a(u, v) := (( - \Delta )\alpha /2u, v) + \mu 1(Du, v) + \mu 2(u, v) = (f, v) \forall v \in H
\alpha /2
0 .(2.13)

For u, v vanishing outside of \Omega , we have
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(( - \Delta )\alpha /2u, v)=c1,\alpha 

\int \int 
\BbbR \otimes \BbbR 

v(x)(u(x) - u(y))

| x - y| 1+\alpha 
dydx=c1,\alpha 

\int \int 
\BbbR \otimes \BbbR 

v(y)(u(y) - u(x))

| x - y| 1+\alpha 
dxdy

=
1

2

\biggl( 
c1,\alpha 

\int \int 
\BbbR \otimes \BbbR 

v(x)(u(x) - u(y))

| x - y| 1+\alpha 
dydx+ c1,\alpha 

\int \int 
\BbbR \otimes \BbbR 

v(y)(u(y) - u(x))

| x - y| 1+\alpha 
dxdy

\biggr) 
.

Rearranging this equality, we obtain the formula of integration by parts for the frac-
tional Laplacian.

Lemma 2.2 (integration by parts). Assume that u, v vanish outside of \Omega \subseteq \BbbR 
almost everywhere. Then it holds that\int 

\Omega 

v( - \Delta )\alpha /2u(x) dx(2.14)

=
c1,\alpha 
2

\int \int 
\Omega \otimes \Omega 

(u(x) - u(y))(v(x) - v(y))

| x - y| 1+\alpha dy dx+

\int 
\Omega 

u(x)v(x)\rho (x) dx

when all the integrals are well-defined. Here \rho (x) is defined in (2.10).

By (2.14) and (2.12), we have the equivalence of fractional norms in Lemma 2.3.

Lemma 2.3. For any v \in H
\alpha /2
0 with 1 < \alpha \leq 2, there exist constants depending

on the order \alpha such that

(2.15) C1
\alpha | v| 2H\alpha /2 \leq (( - \Delta )\alpha /2v, v) \leq C2

\alpha | v| 2H\alpha /2 .

By the Lax--Milgram theorem and Lemmas 2.2 and 2.3, the well-posedness of the
problem (1.1)--(1.2) can be established.

Lemma 2.4. For the problem (1.1)--(1.2) with \mu 1 \in \BbbR , \mu 2 \geq 0, and f \in H - \alpha /2,

there exists a unique solution u \in H
\alpha /2
0 such that \| u\| H\alpha /2 \leq \| f\| H - \alpha /2 , where H - \alpha /2

is the dual space of H
\alpha /2
0 with respect to the inner product in the L2 space.

3. Regularity. In this section, we present our regularity results in the weighted
and nonweighted Sobolev spaces, as well as their proofs.

3.1. Regularity in nonweighted Sobolev spaces. The following theorem
describes the Sobolev regularity properties of the fractional Poisson equation (1.1)
with \mu 1 = \mu 2 = 0.

Theorem 3.1 ([1, 22]). Suppose f \in Hr for r \geq  - \alpha /2, and let u \in H\alpha /2 be
the solution of the fractional Poisson equation, i.e., (1.1) with \mu 1 = \mu 2 = 0. Then
u \in H\alpha +min(1/2 - \alpha /2 - \epsilon ,r) with \epsilon > 0 arbitrarily small.

In this work, we use the bootstrapping technique (see, e.g., [20, Chapter 6]) to
obtain the optimal regularity for the problem (1.1)--(1.2) with the lower order terms
in nonweighted Sobolev spaces.

Theorem 3.2. For the problem (1.1)--(1.2) with \mu 1 \in \BbbR , \mu 2 \geq 0, if f \in Hr with
r \geq  - \alpha /2, then u \in H\alpha +min(1/2 - \alpha /2 - \epsilon ,r) with \epsilon > 0 arbitrarily small.

Proof. Denote min(a, b) by a \wedge b. By the Lax--Milgram theorem, we know u \in 
H

\alpha /2
0 from f \in H - \alpha /2. Thus Du \in H\alpha /2 - 1. Then it follows that ( - \Delta )\alpha /2u = f  - 

\mu 1Du - \mu 2u \in H(\alpha /2 - 1)\wedge r. By Theorem 3.1, we have u \in H\alpha +(\alpha /2 - 1)\wedge r\wedge (1/2 - \alpha /2 - \epsilon ).
If \alpha \geq 3/2, then \alpha /2 - 1 \geq 1/2 - \alpha /2 and u \in H\alpha +r\wedge (1/2 - \alpha /2 - \epsilon ). If \alpha < 3/2 and

r < \alpha /2 - 1, then we also have u \in H\alpha +r = H\alpha +r\wedge (1/2 - \alpha /2 - \epsilon ).
If \alpha < 3/2 and r \geq \alpha /2  - 1, then u \in H3\alpha /2 - 1. In this case we will lift the

regularity index of u from 3\alpha /2 - 1 to \alpha + r \wedge (1/2 - \alpha /2 - \epsilon ). In fact, from u \in 
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H3\alpha /2 - 1 we have Du \in H3\alpha /2 - 2. It follows that ( - \Delta )\alpha /2u = f  - \mu 1Du  - \mu 2u \in 
H(3\alpha /2 - 2)\wedge r. By Theorem 3.1, we have u \in H\alpha +(3\alpha /2 - 2)\wedge r\wedge (1/2 - \alpha /2 - \epsilon ).

If either \alpha \geq 5/4 or \alpha < 5/4 and r < 3\alpha /2 - 2, then (3\alpha /2 - 2)\wedge r\wedge (1/2 - \alpha /2 - \epsilon ) =
r \wedge (1/2  - \alpha /2  - \epsilon ), that is, u \in H\alpha +r\wedge (1/2 - \alpha /2 - \epsilon ). Otherwise if \alpha < 5/4 and
r \geq 3\alpha /2 - 2, u \in H5\alpha /2 - 2, and thus Du \in H5\alpha /2 - 3. Following the similar argument
above, we have u \in H\alpha +(5\alpha /2 - 3)\wedge r\wedge (1/2 - \alpha /2 - \epsilon ).

Repeating the above procedures k times, we have u\in H\alpha +(k(\alpha  - 1) - \alpha /2)\wedge r\wedge (1/2 - \alpha /2 - \epsilon ).
When k is the smallest integer number such that k \geq 1

2(\alpha  - 1) , we have

u \in H\alpha +(k(\alpha  - 1) - \alpha /2)\wedge r\wedge (1/2 - \alpha /2 - \epsilon ) = H\alpha +r\wedge (1/2 - \alpha /2 - \epsilon ).

This completes the proof.

Remark 3.3. Here is the key step of the proof. Suppose we obtain u \in H\beta , \beta <
\alpha +r\wedge (1/2 - \alpha /2 - \epsilon ). Then by the fact that ( - \Delta )\alpha /2u = f - \mu 1Du - \mu 2u \in H(\beta  - 1)\wedge r

and Theorem 3.1, we have u \in H\beta \prime 
, where \beta \prime = \alpha + (\beta  - 1) \wedge r \wedge (1/2  - \alpha /2  - \epsilon ).

Then \beta \prime = \alpha + (\beta  - 1) > \beta . If \beta \prime < \alpha + r \wedge (1/2 - \alpha /2 - \epsilon ), then we can repeat the
above processes many times to conclude that u \in H\alpha +r\wedge (1/2 - \alpha /2 - \epsilon ).

3.2. Regularity in weighted Sobolev spaces. For the fractional Poisson
equation (1.1), where \mu 1 = \mu 2 = 0, we consider the regularity of \~u = \omega  - \alpha /2u.

Theorem 3.4 ([34]). For the problem (1.1)--(1.2) with \mu 1 = \mu 2 = 0, if f \in Br
\omega \alpha /2

with r \geq 0, then \omega  - \alpha /2u \in B\alpha +r
\omega \alpha /2 .

However, the nice property of full regularity in the above theorem does not hold
anymore for the fractional Laplace equations with lower order terms, as we will see
shortly. Before presenting our regularity results for fractional ADR equations, we
need two technical lemmas, which play an essential role in the analysis of the regularity
of the fractional ADR equations. For proofs, please see Appendix B.

Lemma 3.5. If v \in Bs
\omega \alpha /2 - 1 with s \geq 0, then v\omega \alpha /2 - 1 \in B

min(s,3\alpha /2 - 1 - \epsilon )

\omega \alpha /2 with
arbitrarily small \epsilon > 0.

Lemma 3.6. If v \in Bs
\omega \alpha /2 with s \geq 0, then v\omega \alpha /2 \in B

min(s,3\alpha /2+1 - \epsilon )

\omega \alpha /2 with arbi-
trarily small \epsilon > 0.

We are now in the position to present the regularity of the fractional ADR (1.1).

Theorem 3.7 (regularity in weighted Sobolev spaces). For the problem (1.1)--
(1.2) with \mu 1 \not = 0 and \mu 2 > 0, if f \in H1/2 - \alpha /2 \cap Br

\omega \alpha /2 with r \geq 0, then we have

\omega  - \alpha /2u \in B
\alpha +min(3\alpha /2 - 1 - \epsilon ,r)

\omega \alpha /2 with \epsilon > 0 arbitrarily small.

Proof. Denote a \wedge b as min(a, b), and recall \~u = \omega  - \alpha /2u. Since f \in H1/2 - \alpha /2, by

Theorem 3.2 we have u \in H
\alpha /2+1/2 - \epsilon 
0 and Du \in H

\alpha /2 - 1/2 - \epsilon 
0 .

Now we use the bootstrapping technique to lift the regularity of solution \~u. Note

that H
\alpha /2 - 1/2 - \epsilon 
0 \subset B

\alpha /2 - 1/2 - \epsilon 

\omega \alpha /2 , and thus Du \in B
\alpha /2 - 1/2 - \epsilon 

\omega \alpha /2 . Then it follows that

( - \Delta )\alpha /2u = f  - \mu 1Du - \mu 2u \in B
(\alpha /2 - 1/2 - \epsilon )\wedge r

\omega \alpha /2 .

By Theorem 3.4, we have \~u \in B
\alpha +(\alpha /2 - 1/2 - \epsilon )\wedge r

\omega \alpha /2 .

If r \geq \alpha /2  - 1/2, then \~u \in B
3\alpha /2 - 1/2 - \epsilon 

\omega \alpha /2 . In this case we proceed to lift the

regularity. Let \~u =
\sum \infty 

n=0 \^unP
\alpha /2
n . Then by the formula (2.7), we have

Du = D(\omega \alpha /2\~u) =  - 2

\infty \sum 
n=0

\^un(n+ 1)P
\alpha /2 - 1
n+1 \omega \alpha /2 - 1.
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Denote v =  - 2
\sum \infty 

n=0 \^un(n + 1)P
\alpha /2 - 1
n+1 . Then Du = v\omega \alpha /2 - 1, and by the equivalent

definition (2.8), we have v \in B
3\alpha /2 - 3/2 - \epsilon 

\omega \alpha /2 - 1 . It follows from Lemma 3.5 that we have

Du \in B
3\alpha /2 - 3/2 - \epsilon 

\omega \alpha /2 . Recall u = \omega \alpha /2\~u with \~u \in B
3\alpha /2 - 1/2 - \epsilon 

\omega \alpha /2 . Then by Lemma 3.6,

we have u \in B
3\alpha /2 - 1/2 - \epsilon 

\omega \alpha /2 . Thus it follows that ( - \Delta )\alpha /2u = f  - \mu 1Du  - \mu 2u \in 
B

(3\alpha /2 - 3/2 - \epsilon )\wedge r

\omega \alpha /2 . By Theorem 3.4 we have \~u \in B
\alpha +(3\alpha /2 - 3/2 - \epsilon )\wedge r

\omega \alpha /2 .
If r > 3/2(\alpha  - 1), we can follow a similar argument to lift the regularity. Suppose

that k is the smallest integer number such that (k + 1/2)(\alpha  - 1) > 3\alpha /2  - 1. After
repeating the lifting procedure k times as above, we have

\~u \in B
\alpha +(k+1/2)(\alpha  - 1)\wedge (3\alpha /2 - 1 - \epsilon )\wedge r

\omega \alpha /2 = B
\alpha +(3\alpha /2 - 1 - \epsilon )\wedge r

\omega \alpha /2 .

This completes the proof.

Remark 3.8. For r \geq \alpha /2, the assumption f \in Br
\omega \alpha /2 implies that f \in H1/2 - \alpha /2

by Lemma A.4. The condition f \in H1/2 - \alpha /2 \cap Br
\omega \alpha /2 becomes f \in Br

\omega \alpha /2 when
r \geq \alpha /2.

Remark 3.9. The key step in the proof is to show that if \~u \in B\beta 
\omega \alpha /2 , then \~u \in 

B\beta \prime 

\omega \alpha /2 , where \beta \prime = \alpha + (\beta  - 1) \wedge r \wedge (3/2\alpha  - 1  - \epsilon ). In fact, we have ( - \Delta )\alpha /2u =

f  - \mu 1Du  - \mu 2u \in B
r\wedge [(\beta  - 1)\wedge (3/2\alpha  - 1 - \epsilon )]

\omega \alpha /2 as Du \in B
(\beta  - 1)\wedge (3/2\alpha  - 1 - \epsilon )

\omega \alpha /2 according to
Lemma 3.5, and thus by Theorem 3.1 we reach the desired conclusion. Observe that
\beta \prime = \beta if \beta \geq \alpha + r \wedge (3/2\alpha  - 1  - \epsilon ), and \beta \prime > \beta if \beta < \alpha + r \wedge (3/2\alpha  - 1  - \epsilon ), in
both cases we can repeat the key step many times until the new regularity index \beta \prime 

is equal to \alpha + r \wedge (3/2\alpha  - 1 - \epsilon ).

Theorem 3.10 (regularity in weighted Sobolev spaces with reaction-only term).
For the problem (1.1)--(1.2) with \mu 1 = 0 and \mu 2 > 0, if f \in Br

\omega \alpha /2 with r \geq 0, then

we have \omega  - \alpha /2u \in B
\alpha +min(3\alpha /2+1 - \epsilon ,r)

\omega \alpha /2 with \epsilon > 0 arbitrarily small.

Proof. By Theorem 3.4 we have \omega  - \alpha /2u \in B
\alpha +min(r,\alpha )

\omega \alpha /2 . If r \geq \alpha , then \omega  - \alpha /2u \in 
B2\alpha 

\omega \alpha /2 . By Lemma 3.6 we know that u \in B2\alpha  - \epsilon 
\omega \alpha /2 . Then it follows that ( - \Delta )\alpha /2u =

f  - \mu 2u \in B
(2\alpha  - \epsilon )\wedge r

\omega \alpha /2 . Using Theorem 3.4 we have \omega  - \alpha /2u \in B
\alpha +(2\alpha  - \epsilon )\wedge r

\omega \alpha /2 . If r \geq 2\alpha ,

then \omega  - \alpha /2u \in B3\alpha 
\omega \alpha /2 . By Lemma 3.6 we know that u \in B

3\alpha /2+1 - \epsilon 

\omega \alpha /2 . Then it follows

that ( - \Delta )\alpha /2u = f  - \mu 2u \in B
(3\alpha /2+1 - \epsilon )\wedge r

\omega \alpha /2 . Using Theorem 3.4 again, we get the
desired result.

4. Error estimate of spectral Galerkin method. In this section, we consider
a spectral Galerkin method and carry out its error analysis based on the regularity
obtained in section 3.

We first present the spectral Galerkin method. Define

UN := \omega \alpha /2\BbbP N = Span\{ \phi 0, \phi 1, . . . , \phi N\} ,

where \phi k(x) := \omega \alpha /2P
\alpha /2
k (x) for 0 \leq k \leq N , and \BbbP N is the set of all algebraic

polynomials of degree at most N. The spectral Galerkin method is to find uN \in UN

such that

a(uN , vN ) = (f, vN ) \forall vN \in UN ,(4.1)

with a(uN , vN ) = (( - \Delta )\alpha /2uN , vN ) + \mu 1(DuN , vN ) + \mu 2(uN , vN ).
The following pseudo-eigenfunctions for the fractional diffusion operator are es-

sential to analyze and implement the spectral Galerkin method.
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Lemma 4.1 ([2, 34]). For the nth-order Jacobi polynomial P
\alpha /2
n (x), it holds that

( - \Delta )\alpha /2[\omega \alpha /2P\alpha /2
n (x)] = \lambda \alpha 

nP
\alpha /2
n (x), \lambda \alpha 

n =
\Gamma (\alpha + n+ 1)

n!
.(4.2)

The well-posedness of discrete problem (4.1) can be readily shown by the Lax--
Milgram theorem. We omit the statement.

Next, we introduce two necessary lemmas which play the key role in the error
estimate. The first is a version of Cea's lemma.

Lemma 4.2. Let u and uN solve (2.13) and (4.1), respectively. Then it holds
that

(4.3) \| u - uN\| H\alpha /2 \leq C inf
vN\in UN

\| u - vN\| H\alpha /2 .

For u \in H
\alpha /2
0 we have \omega  - \alpha /2u \in L2

\omega \alpha /2 by the inequality (2.12). Thus it is

legitimate to write u = \omega \alpha /2
\sum \infty 

n=0 \^unP
\alpha /2
n (x). We introduce the projection \Pi 

\alpha /2
N :

H
\alpha /2
0 \rightarrow UN such that \Pi 

\alpha /2
N u = \omega \alpha /2

\sum N
n=0 \^unP

\alpha /2
n (x).

The following lemma is about the approximation property of the projection \Pi 
\alpha /2
N u.

Lemma 4.3. Let u \in H
\alpha /2
0 and \omega  - \alpha /2u \in Bs

\omega \alpha /2 . Then for s \geq \alpha /2 we have

\| u - \Pi 
\alpha /2
N u\| H\alpha /2 \leq cN\alpha /2 - s| \omega  - \alpha /2u| Bs

\omega \alpha /2
.(4.4)

Proof. Let u = \omega \alpha /2
\sum \infty 

n=0 \^unP
\alpha /2
n (x). Then u - \Pi 

\alpha /2
N u = \omega \alpha /2

\sum \infty 
n=N+1 \^unP

\alpha /2
n (x).

From Lemma 2.3, we have the following norm equivalence:

(4.5) \| v\| 2H\alpha /2 \approx (( - \Delta )\alpha /2v, v) \forall v \in H
\alpha /2
0 .

Using the pseudo-eigenrelation in Lemma 4.1 gives

(4.6)

\| u - \Pi 
\alpha /2
N u\| 2H\alpha /2 \approx (( - \Delta )\alpha /2(u - \Pi 

\alpha /2
N u), (u - \Pi 

\alpha /2
N u)) =

\infty \sum 
n=N+1

\lambda \alpha 
n| \^un| 2h\alpha /2

n .

Note that by (2.6), \lambda \alpha 
n \approx n\alpha . It follows that

\| u - \Pi 
\alpha /2
N u\| 2H\alpha /2 \approx 

\infty \sum 
n=N+1

n\alpha | \^un| 2h\alpha /2
n =

\infty \sum 
n=N+1

n\alpha  - 2sn2s| \^un| 2h\alpha /2
n

\leq N\alpha  - 2s
\infty \sum 

n=N+1

n2s| \^un| 2h\alpha /2
n .(4.7)

Using the norm definition (2.8) leads to the desired result.

We are ready to state the convergence order of the spectral Galerkin method
(4.1).

Theorem 4.4 (optimal convergence order). Suppose that u and uN satisfy the
problems (2.13) and (4.1), respectively. Suppose that f satisfies the assumptions in
Theorems 3.7 and 3.10. We have the following error estimates:

\| u - uN\| L2

\omega  - \alpha /2
+N - \alpha /2\| u - uN\| H\alpha /2 \leq CN - s

\bigm| \bigm| \bigm| \omega  - \alpha /2u
\bigm| \bigm| \bigm| 
Bs

\omega \alpha /2

,
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where s is the regularity index of the solution defined in Theorem 3.7 (ADR, s =
\alpha +min(3\alpha /2 - 1 - \epsilon , r)) and Theorem 3.10 (DR, s = \alpha +min(3\alpha /2 + 1 - \epsilon , r)).

Proof. Denote e = u - uN . By Cea's Lemma 4.2, we have

\| e\| H\alpha /2 \leq C\| u - \Pi 
\alpha /2
N u\| H\alpha /2 .

Applying the approximation property in Lemma 4.3 yields

(4.8) \| e\| H\alpha /2 \leq C\| u - \Pi 
\alpha /2
N u\| H\alpha /2 \leq CN\alpha /2 - s| \omega  - \alpha /2u| Bs

\omega \alpha /2
.

Next we apply the duality argument to obtain the convergence order for \| e\| L2

\omega  - \alpha /2
.

We introduce the following auxiliary problem:

( - \Delta )\alpha /2w  - \mu 1Dw + \mu 2w = \omega  - \alpha /2e, x \in \Omega ,

w(x) = 0, x \in \Omega c.

Then the weak formulation is to find w \in H
\alpha /2
0 such that

a\ast (w, v) := (( - \Delta )\alpha /2w, v) - \mu 1(Dw, v) + \mu 2(w, v) = (\omega  - \alpha /2e, v) \forall v \in H
\alpha /2
0 .

The corresponding discrete problem is to find wN \in UN such that

a\ast (wN , vN ) = (\omega  - \alpha /2e, vN ) \forall vN \in UN .

By Theorems 3.7 and 3.10, we have the following regularity estimate:

(4.9) \| \omega  - \alpha /2w\| B\alpha 

\omega \alpha /2
\leq C\| \omega  - \alpha /2e\| L2

\omega \alpha /2
= C\| e\| L2

\omega  - \alpha /2
.

Then applying Galerkin orthogonality a\ast (vN , e) = a(e, vN ) = 0 \forall vN \in UN , we have

\| e\| 2L2

\omega  - \alpha /2
= a\ast (w, e) = a\ast (w  - \Pi 

\alpha /2
N w, e) \leq c\| w  - \Pi 

\alpha /2
N w\| H\alpha /2\| e\| H\alpha /2 .(4.10)

Using the approximation property in Lemma 4.3, (4.10), and (4.8), we have

\| e\| 2L2

\omega  - \alpha /2
\leq CN - \alpha /2\| \omega  - \alpha /2w\| B\alpha 

\omega \alpha /2
\| e\| H\alpha /2

\leq CN - s\| \omega  - \alpha /2w\| B\alpha 

\omega \alpha /2
\| \omega  - \alpha /2u\| Bs

\omega \alpha /2
.

Then by (4.9), we have

(4.11) \| e\| L2

\omega  - \alpha /2
\leq CN - s\| \omega  - \alpha /2u\| Bs

\omega \alpha /2
.

The conclusion follows by combining (4.11) and (4.8).

5. Numerical experiments. In this section, we present three examples with
different source terms f : smooth (Example 5.1), weakly singular at an interior point
(Example 5.2), and weakly singular at boundary (Example 5.3). Since exact solutions
are unavailable, we use reference solutions uref , which are computed with a very fine
resolution using the same methods for computing uN . In the computation, we take
\mu 1 = \mu 2 = 1 and measure the error as follows:

E(N) = \| uref  - uN\| L2

\omega  - \alpha /2
, E\ast (N) = (( - \Delta )\alpha /2(uref  - uN ), (uref  - uN ))1/2.

Here uN =
\sum N

n=0 \^un\omega 
\alpha /2P

\alpha /2
n and uref =: u256 unless otherwise stated. Recall from

Lemma 2.3 that E\ast (N) \approx \| uref  - uN\| H\alpha /2 . We also test the case for u512 and find
that the convergence errors and orders behave almost the same.
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5.1. Numerical implementation. We first describe the numerical implemen-
tation of the spectral Galerkin method.

Plugging uN =
\sum N

n=0 \^un\phi n(x) into (4.1) and taking vN = \phi k(x) for k = 0, 1, . . . , N ,
we obtain the following linear equation from the orthogonality of Jacobi polynomials
and Lemma 4.1:

(5.1) A\^u = \^f,

where \^u = (\^u0, \^u1, . . . , \^uN )T , \^f = ( \^f0, \^f1, . . . , \^fN )T with \^fk = (f, \phi k). Here the matrix
A = S + \mu 1M

a + \mu 2M
r, where S is a diagonal matrix with

S = diag(\lambda \alpha 
0h

\alpha /2
0 , \lambda \alpha 

1h
\alpha /2
1 , . . . , \lambda \alpha 

Nh
\alpha /2
N ),

and the entries of matrices Ma and Mr are

Ma
k,n =  - 2(n+ 1)

\int 1

 - 1

\omega \alpha  - 1(x)P
\alpha /2 - 1
n+1 (x)P

\alpha /2
k (x) dx,(5.2)

Mr
k,n =

\int 1

 - 1

\omega \alpha (x)P\alpha /2
n (x)P

\alpha /2
k (x) dx.(5.3)

Here we have applied (2.7) to obtain Ma
k,n.

If a direct solver is applied to (5.1), we then need to find Ma
k,n and Mr

k,n. Here
we apply Gauss--Jacobi quadrature rules as follows. For Mr

k,n, we obtain

Mr
k,n =

\int 1

 - 1

\omega \alpha (x)P\alpha /2
n (x)P

\alpha /2
k (x) dx =

N\sum 
j=0

P\alpha /2
n (xj)P

\alpha /2
k (xj)wj ,

where the xj 's are the zeros of Jacobi polynomial P\alpha 
N+1(x), and the wj 's are the

corresponding quadrature weights. The quadrature rule here is exact since n+k \leq 2N,
while the quadrature rule is exact for all (2N + 1)th order polynomials. The integral

in Ma
k,n can be calculated similarly. To find \^fk = (f, \phi k), we use a different Gauss--

Jacobi quadrature rule: \^fk \approx 
\sum \sansN 

j=0 f(\sansx j)P
\alpha /2
k (\sansx j)\sansw j . Here the \sansx j 's are the roots of

Jacobi polynomial P
\alpha /2
\sansN +1(x), and the \sansw j 's are the corresponding quadrature weights.

We then can solve (5.1) using any efficient direct solver.

5.1.1. A fast iterative solver with a quasi-linear complexity. As the re-
sulting system (5.1) is dense, a direct solver will require \scrO (N2) storage, while the
complexity is \scrO (N3). In the following, we present a matrix-free iterative solver with
\scrO (N) storage and \scrO (N log2(N)) computational complexity. This iterative solver con-
sists of a fixed-point iteration and fast polynomial transforms.

The fixed-point iteration we use2 is

(5.4) \^u(m+1) = \^u(m) + P - 1( \^f  - A\^u(m)),

where P = S + \mu 2I is a diagonal matrix. In each iteration, we compute the matrix-
vector product A\^u without forming a matrix. To illustrate the idea, we present how to

compute Mr\^u. Recall that in (5.2), (Mr\^u)k = (uN , (1 - x2)\alpha /2P
\alpha /2
k ). This quantity

2Iterative methods based on Krylov subspaces can also be developed, but proper preconditioners
are needed.
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is used to compute Jacobi--Fourier expansions of uN up to its Nth mode, which is
obtained by applying fast polynomial transforms.

Given the modes \^uN for \~uN , we can evaluate \~uN at the Chebyshev collocation
points \ttx j (1 \leq j \leq M , M \geq N) as well as evaluate uN = (1  - x2)\alpha /2\~uN by a
fast transformation from Jacobi--Fourier expansion coefficients to Chebyshev--Fourier
expansion coefficients (FJCT3 (see, e.g., [33]), with a cost of \scrO (N log2(N))), and by
the fast Chebyshev transform (FCT (see, e.g., [13]), with a cost of \scrO (N log(N))).

In fact, by FJCT, \~uN =
\sum N

n=0 \^unP
\alpha /2
n =

\sum N
n=0 \^u

 - 1/2
n P

 - 1/2
n , and \~uN (\ttx j) can be

computed with FCT. Then uN (\ttx j) = (1 - \ttx 2j )
\alpha /2\~uN (\ttx j), and thus by the inverse FCT

we can obtain uN \approx 
\sum M

n=0 \^\sansu 
 - 1/2
n P

 - 1/2
n ; further, by a fast transform from Chebyshev--

Fourier expansion coefficients to Jacobi--Fourier expansion coefficients (FCJT; see,

e.g., [33]), we obtain uN \approx 
\sum M

n=0 \^\sansu 
 - 1/2
n P

 - 1/2
n =

\sum M
n=0 \^\sansu 

\alpha /2
n P

\alpha /2
n . Finally, we obtain

from the orthogonality (2.4) that for 0 \leq k \leq N ,

(Mr\^u)k = (uN , (1 - x2)\alpha /2P
\alpha /2
k ) \approx 

\biggl( M\sum 
n=0

\^\sansu \alpha /2n P\alpha /2
n , (1 - x2)\alpha /2P

\alpha /2
k

\biggr) 
= \^\sansu 

\alpha /2
k h

\alpha /2
k .

The total computational cost in this process is \scrO (N log2(N)) and the storage is \scrO (N),
where we take M = 2N so that the approximation errors in the calculations can be
ignored. The above process of obtaining (Mr\^u)k is summarized in the following
flowchart:

\{ \^un\} 
FJCT - \rightarrow \{ \^u - 1/2

n \} FCT - \rightarrow \{ \~uN (\ttx j)\}  - \rightarrow \{ uN (\ttx j)\} 
FCT - \rightarrow \{ \^\sansu  - 1/2

n \} FCJT - \rightarrow \{ \^\sansu \alpha /2n \} .

To compute Ma\^u, we apply the procedure as above after performing integration
by parts. In fact, by integration by parts and (2.7),

(Ma\^u)k = (DuN , (1 - x2)\alpha /2P
\alpha /2
k ) =  - (uN , D(1 - x2)\alpha /2P

\alpha /2
k )

= 2(k + 1)(uN , (1 - x2)\alpha /2 - 1P
\alpha /2 - 1
k+1 ), 0 \leq k \leq N.

Here we present the flowchart to compute the (Ma\^u)k \approx 2(k + 1)\^\sansu 
\alpha /2 - 1
k+1 h

\alpha /2 - 1
k+1 :

\{ \^un\} 
FJCT - \rightarrow \{ \^u - 1/2

n \} FCT - \rightarrow \{ \~uN (\ttx j)\}  - \rightarrow \{ uN (\ttx j)\} 
FCT - \rightarrow \{ \^\sansu  - 1/2

n \} FCJT - \rightarrow \{ \^\sansu \alpha /2 - 1
n \} .

The right-hand side \^fk = (f, (1 - x2)\alpha /2P
\alpha /2
k ) can be computed as (Mr\^u)k, and

the calculation is done only once.
The initial guess of the iterative method can be chosen as the numerical solution

obtained by solving (5.1) with a direct method and N = 8. The iterations stop
when it either reaches the maximum iteration number 100 or meets the condition
\| \^u(m+1)  - \^u(m)\| l2/\| \^u(m+1)\| l2 < \epsilon , where we take \epsilon = 10 - 7. We will numerically
check the performance of the proposed iterative solver in Table 4 for Example 5.1.

5.2. Numerical results. Throughout the following tables, ``Order"" is short for
the estimated convergence order for the numerical method (4.1).

Example 5.1. Consider f = sinx. Here f belongs to B\infty 
\omega \alpha /2 .

3These fast transforms may not be exact, but they are highly accurate, and the errors from these
fast transforms can be ignored in many applications, as in all the computations in this section.
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By Theorem 3.7, \omega  - \alpha /2u \in B
5\alpha /2 - 1 - \epsilon 

\omega \alpha /2 for the problem (1.1)--(1.2) with \mu 1 \not = 0.
According to Theorem 4.4, the convergence orders are expected to be 2\alpha  - 1 - \epsilon in the
H\alpha /2-norm and 5\alpha /2 - 1 - \epsilon in the L2

\omega  - \alpha /2-norm. The convergence orders are observed

and verified in Table 2 with the H\alpha /2-norm and in Table 3 with the L2
\omega  - \alpha /2-norm.

When \mu 1 = 0, the problem (1.1)--(1.2) becomes the reaction-diffusion equation,

and by Theorem 3.10, \omega  - \alpha /2u \in B
5\alpha /2+1 - \epsilon 

\omega \alpha /2 . Theorem 4.4 suggests that the con-

vergence order in the H\alpha /2-norm is 2\alpha + 1  - \epsilon and the order in the L2
\omega  - \alpha /2 -norm is

5\alpha /2 + 1 - \epsilon . The orders are observed in Figure 1.
The numerical results verify the regularity indexes 5\alpha /2 - 1 - \epsilon and 5\alpha /2+ 1 - \epsilon 

for the solution with advection and reaction-only term, respectively, as suggested in
Theorems 3.7 and 3.10.

Table 2
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u + Du + u = sinx (Example 5.1). The estimated convergence order is 2\alpha  - 1  - \epsilon in
the H\alpha /2-norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E\ast (N) rate E\ast (N) rate E\ast (N) rate E\ast (N) rate
16 6.04e-03 1.10e-03 2.07e-04 3.19e-05
32 2.64e-03 1.19 3.42e-04 1.69 5.01e-05 2.05 6.12e-06 2.38
64 1.10e-03 1.27 1.02e-04 1.74 1.16e-05 2.11 1.10e-06 2.48
128 4.18e-04 1.39 2.88e-05 1.82 2.55e-06 2.19 1.87e-07 2.55

Order 1.40 1.80 2.20 2.60

Table 3
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u + Du + u = sinx (Example 5.1). The estimated convergence order is 5\alpha /2  - 1  - \epsilon 
in the L2

\omega  - \alpha /2 -norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E(N) rate E(N) rate E(N) rate E(N) rate
16 8.96e-04 1.24e-04 1.74e-05 2.00e-06
32 2.68e-04 1.74 2.46e-05 2.34 2.54e-06 2.77 2.18e-07 3.19
64 7.49e-05 1.84 4.63e-06 2.41 3.47e-07 2.87 2.17e-08 3.33
128 1.97e-05 1.93 8.32e-07 2.47 4.52e-08 2.94 2.03e-09 3.42

Order 2.00 2.50 3.00 3.50

In Tables 2 and 3, we have tested convergence orders using a direct solver for
(5.1). We now check the performance of the proposed iterative solver. Here we take
the reference solution as uref =: u214 . In Table 4, we observe the order of 5\alpha /2  - 1
in the L2

\omega  - \alpha /2-norm as in Theorem 3.7. The number of iterations is less than 20 for
various \alpha 's listed in the table. However, the iteration numbers decrease with \alpha : when
\alpha = 1.2, the iteration number is 19, while the number is 5 for \alpha = 1.8. These iteration
numbers suggest the need for better iterative methods for small \alpha 's (or independent
of \alpha ). Intuitively, the matrix P - 1 = (S + \mu 2I)

 - 1 contains no information from the
advection term, while it becomes more pronounced when \alpha is closer to 1. The choice
of P is then a subtle issue and deserves further exploration in future work. From Table
4 we conclude that the CPU time increases roughly as \scrO (N log2 N). Here the CPU
time is obtained by averaging three runs of the code in MATLAB R2019a, performed
on a laptop with the configuration of AMD A10-8700p Radeon R6, 10 Compute Cores
4C+6G 1.80GHz, and 12 GB memory.
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Table 4
Tests of the proposed fast iterative solver with the complexity \scrO (N log2 N) in convergence and

computational time of the spectral Galerkin method (4.1) for the equation ( - \Delta )\alpha /2u+Du+u = sinx.
The estimated convergence order is 5\alpha /2  - 1 in the L2

\omega  - \alpha /2 -norm. Here ``iter \#"" represents the

iteration number and ``CPU(s)"" stands for the computational time measured in seconds.

\alpha = 1.2 \alpha = 1.4
N E(N) rate iter \# CPU(s) E(N) rate iter \# CPU(s)
512 1.50e-06 19 0.82 3.09e-08 12 0.55
1024 3.84e-07 1.97 19 1.56 5.48e-09 2.49 12 1.02
2048 9.76e-08 1.98 19 3.18 9.71e-10 2.50 12 2.21
4096 2.48e-08 1.98 19 8.53 1.72e-10 2.50 12 5.56

\alpha = 1.6 \alpha = 1.8
N E(N) rate iter \# CPU(s) E(N) rate iter \# CPU(s)
512 8.91e-10 8 0.40 2.17e-11 5 0.27
1024 1.12e-10 2.99 8 0.73 1.94e-12 3.49 5 0.53
2048 1.41e-11 3.00 8 1.71 1.72e-13 3.49 5 1.20
4096 1.76e-12 3.00 8 4.81 1.53e-14 3.49 5 4.09

Example 5.2. Consider f = | sinx| . The function f has a weak singularity at
x = 0, and f \in B1.5 - \epsilon 

\omega \alpha /2 with \epsilon > 0 arbitrarily small.

By Theorem 3.7, \omega  - \alpha /2u \in B
\alpha +min(3\alpha /2 - 1,1.5) - \epsilon 

\omega \alpha /2 for (1.1) with \mu 1 = \mu 2 = 1.
According to Theorem 4.4, the convergence order for the spectral Galerkin method
(4.1) is expected to be \alpha +min(3\alpha /2 - 1, 1.5 - \epsilon ) in the L2

\omega  - \alpha /2 -norm.
From Table 5, we can observe that the convergence order for the spectral Galerkin

method (4.1) is \alpha +min(3\alpha /2 - 1, 1.5 - \epsilon ), which is in agreement with the theoretical
prediction and verifies the regularity result in Theorem 3.7.

Next, we test the reaction-only case \mu 1 = 0 in (1.1). From Table 6, we can observe
that the convergence order is \alpha +1.5 - \epsilon for the spectral Galerkin method (4.1), which
is in agreement with the estimated order \alpha +min(3\alpha /2+ 1, 1.5 - \epsilon ). This verifies the
regularity result in Theorem 3.10.

The performance of the proposed iterative solver (5.4) in this example is similar
to that in Example 5.1, and thus is not presented.

Example 5.3 (boundary singularity for the function f). Consider f=(1 - x2)\beta sinx.

We test the different \beta 's in Tables 7 and 8 (\beta = 0.5) and Tables 9 and 10 (\beta =
 - 0.4).

It can be readily verified that f \in Br
\omega \alpha /2 with r = \alpha /2 + 2\beta + 1  - \epsilon ; see, e.g., in

the appendix of [25] for a proof. By Theorems 3.7 and 4.4, the theoretical order for
the spectral Galerkin method is \alpha +min(3\alpha /2 - 1 - \epsilon , r). If \mu 1 = 0, by Theorems 3.10
and 4.4 the theoretical order for the Galerkin method is \alpha +min(3\alpha /2 + 1 - \epsilon , r).

We first test the case \beta = 0.5, where the derivative of f has a weak singularity and
f vanishes at both endpoints \pm 1. When \mu 1 \not = 0, we observe that the convergence order
is about 5\alpha /2 - 1 in Table 7, which matches the expected one, \alpha +min(3\alpha /2 - 1 - \epsilon , r).
We further test the reaction-only case, \mu 1 = 0. We observe that the convergence orders
displayed in Table 8 are 3\alpha /2 + 2, which is exactly \alpha +min(3\alpha /2 + 1 - \epsilon , r).

We then consider the singular f = (1 - x2)\beta sinx with \beta =  - 0.4. For (1.1) with
\mu 1 \not = 0, we can see that the convergence orders are about 3\alpha /2 + 0.2  - \epsilon in Table 9.
For the case \mu 1 = 0, the observed orders are 3\alpha /2 + 0.2, which can be seen in Table
10.

In this example, the observed convergence orders for the Galerkin method follow
the theoretical ones when f has both weak boundary singularity (\beta = 0.5) or stronger
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Table 5
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u +Du + u = | sinx| (Example 5.2). The estimated convergence order is \alpha +min(3\alpha /2  - 
1, 1.5 - \epsilon ) in the L2

\omega  - \alpha /2 -norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E(N) rate E(N) rate E(N) rate E(N) rate
16 2.74e-03 4.47e-04 1.25e-04 5.94e-05
32 8.00e-04 1.78 8.27e-05 2.43 1.78e-05 2.82 7.51e-06 2.98
64 2.21e-04 1.86 1.47e-05 2.49 2.31e-06 2.95 8.56e-07 3.13
128 5.79e-05 1.93 2.55e-06 2.53 2.84e-07 3.02 9.16e-08 3.22

Order 2.00 2.50 3.00 3.30

Table 6
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u + u = | sinx| (Example 5.2). The estimated convergence order is \alpha + 1.5  - \epsilon in the
L2
\omega  - \alpha /2 -norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E(N) rate E(N) rate E(N) rate E(N) rate
16 3.85e-04 2.06e-04 1.10e-04 5.89e-05
32 7.00e-05 2.46 3.32e-05 2.63 1.57e-05 2.81 7.46e-06 2.98
64 1.18e-05 2.57 4.90e-06 2.76 2.04e-06 2.95 8.52e-07 3.13
128 1.87e-06 2.65 6.84e-07 2.84 2.50e-07 3.03 9.14e-08 3.22

Order 2.70 2.90 3.10 3.30

Table 7
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u+Du+u = (1 - x2)0.5 sinx (Example 5.3). The estimated convergence order is 5\alpha /2 - 1 - \epsilon 
in the L2

\omega  - \alpha /2 -norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E(N) rate E(N) rate E(N) rate E(N) rate
16 4.38e-04 5.88e-05 8.29e-06 1.64e-06
32 1.35e-04 1.70 1.23e-05 2.25 1.29e-06 2.68 1.29e-07 3.67
64 3.80e-05 1.83 2.36e-06 2.39 1.81e-07 2.83 1.20e-08 3.43
128 1.00e-05 1.92 4.26e-07 2.47 2.38e-08 2.93 1.12e-09 3.42

Order 2.00 2.50 3.00 3.50

boundary singularity (\beta =  - 0.4). The numerical results verify the regularity estimates
and also show that the error estimates for the Galerkin method are optimal.

The performance of the proposed iterative solver (5.4) in this example is similar
to that in Example 5.1 and thus is not presented. The only difference here is that
\^f cannot be computed with the fast transforms because of the singularity at both
endpoints. We apply a proper Gauss--Jacobi quadrature rule as in the direct solver.
Though the use of a quadrature rule leads to an increase in computational cost, \^f can
be computed offline.

In summary, we observe in Examples 5.1--5.3 that the convergence order of spec-
tral Galerkin method (4.1) in L2

\omega  - \alpha /2 -norm is \alpha +min(3\alpha /2 - 1 - \epsilon , r) for ADR and
\alpha +min(3\alpha /2+ 1 - \epsilon , r) for DR, respectively, which verify the regularity estimates in
Theorems 3.7 and 3.10.

6. Conclusion and discussion. In this paper, we study regularity and a spec-
tral Galerkin method for a fractional advection-diffusion-reaction (ADR) equation
with the fractional Laplacian. By factorizing the solution as u = (1  - x2)\alpha /2\~u, we
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Table 8
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u + u = (1  - x2)0.5 sinx (Example 5.3). The estimated convergence order is 3\alpha /2 + 2  - \epsilon 
in the L2

\omega  - \alpha /2 -norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E(N) rate E(N) rate E(N) rate E(N) rate
16 1.44e-05 6.85e-06 3.21e-06 1.49e-06
32 1.18e-06 3.61 4.66e-07 3.88 1.81e-07 4.15 6.97e-08 4.42
64 9.11e-08 3.69 2.96e-08 3.98 9.39e-09 4.27 2.97e-09 4.55
128 6.81e-09 3.74 1.80e-09 4.04 4.66e-10 4.33 1.20e-10 4.63

Order 3.80 4.10 4.40 4.70

Table 9
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u + Du + u = (1  - x2) - 0.4 sinx (Example 5.3). The estimated convergence order is
3\alpha /2 + 0.2 - \epsilon in the L2

\omega  - \alpha /2 -norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E(N) rate E(N) rate E(N) rate E(N) rate
16 3.23e-03 7.79e-04 2.65e-04 1.07e-04
32 9.54e-04 1.76 1.65e-04 2.24 4.74e-05 2.48 1.62e-05 2.73
64 2.65e-04 1.85 3.38e-05 2.29 8.15e-06 2.54 2.30e-06 2.81
128 6.97e-05 1.93 6.69e-06 2.34 1.35e-06 2.59 3.15e-07 2.87

Order 2.00 2.30 2.60 2.90

Table 10
Convergence orders and errors of the spectral Galerkin method (4.1) for the equation

( - \Delta )\alpha /2u + u = (1  - x2) - 0.4 sinx (Example 5.3). The estimated convergence order is 3\alpha /2 + 0.2
in the L2

\omega  - \alpha /2 -norm.

\alpha = 1.2 \alpha = 1.4 \alpha = 1.6 \alpha = 1.8
N E(N) rate E(N) rate E(N) rate E(N) rate
16 1.47e-03 6.03e-04 2.51e-04 1.06e-04
32 3.92e-04 1.91 1.33e-04 2.18 4.59e-05 2.45 1.61e-05 2.72
64 1.01e-04 1.96 2.81e-05 2.24 7.97e-06 2.53 2.30e-06 2.81
128 2.49e-05 2.02 5.71e-06 2.30 1.33e-06 2.58 3.15e-07 2.87

Order 2.00 2.30 2.60 2.90

show that the regularity of solution \~u in weighted Sobolev spaces can be greatly
improved compared to u in nonweighted Sobolev spaces. For the fractional reaction-
diffusion equations with or without an advection term, the regularity can be essentially
different in weighted Sobolev spaces, with the regularity indices being 5/2\alpha + 1  - \epsilon 
and 5/2\alpha  - 1 - \epsilon , respectively. Here \alpha \in (1, 2) is the order of the equation and \epsilon > 0
is arbitrarily small. These regularity results are sharp in the weighted Sobolev spa-
ces. Based on the obtained regularity, we prove optimal error estimates for a spectral
Galerkin method in the H\alpha /2-norm and the weighted L2-norm. Numerical results
verify our theoretical regularity estimates and convergence orders.

Our regularity analysis can be directly applied to equations with Riesz-type de-
rivatives [25], which coincides with the fractional Laplacian in 1D. The analysis can
be further extended to time-dependent nonlinear ADR equations with the fractional
Laplacian in 1D. In higher dimensions, the solutions to equations with fractional
Laplacian can still be represented by the product of a weakly singular function and
a regular function [32]. On a disk, a pseudo-eigendecomposition similar to that in
Lemma 4.1 also holds; see [18]. We are currently working on the analysis of similar
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spectral methods and applying fictitious domain methods for general smooth domains
other than disks. Numerical results show that extension of our current work is promis-
ing in 2D.

Appendix A. Interpolation of weighted Sobolev spaces. Let us recall the

K-interpolation for weighted Sobolev spaces. Let \scrB s,\alpha /2
2,q with s > 0 be interpolation

spaces defined by

(A.1) [Bl
\omega \alpha /2 , B

k
\omega \alpha /2 ]\theta ,q,

where 0 < \theta < 1, 1 \leq q \leq \infty , s = (1 - \theta )l+ \theta k, l and k are nonnegative integers (here
k, l can be nonnegative real numbers, which can be verified by the reiteration theorem;
see, e.g., Chapter 3 in [10]), and l < k. When q = \infty , \| u\| \scrB s,\alpha /2

2,\infty 
= supt>0 t

 - \theta K(t, u);

also,

\| u\| \scrB s,\alpha /2
2,q

=

\biggl( \int \infty 

0

t - q\theta | K(t, u)| q dt
t

\biggr) 1/q

, 1 \leq q < \infty , where

(A.2) K(t, u) = inf
u=v+w

(\| v\| Bl

\omega \alpha /2
+ t\| w\| Bk

\omega \alpha /2
).

In this paper, we are interested in the case q = 2.

Theorem A.1 ([8]). When q = 2, it holds that \scrB s,\alpha /2
2,2 = Bs

\omega \alpha /2 , s \geq 0.

In [21], it is shown that the norm in Bs
\omega \beta (s = m + \sigma , where the integer m \geq 0,

and 0 < \sigma < 1 and s \not = 1 + \beta if  - 1 < \beta < 0) is equivalent to

\| u\| Bs

\omega \beta 
= (\| u\| 2Bm

\omega \beta 
+ | Dmu| 2B\sigma 

\omega \beta +m
)1/2,(A.3)

| Dmu| 2B\sigma 

\omega \beta +m
=

\int \int 
\Omega a

\omega \beta +s(x)
| Dmu(x) - Dmu(y)| 2

| x - y| 1+2\sigma 
dxdy,

where \omega \beta +s(x) = (1 - x2)\beta +s, and the set \Omega a (a > 1) is defined by

(A.4) \Omega a = \{ (x, y) \in \Omega \otimes \Omega | a - 1(1 - | x| ) < 1 - sgn(x)y < a(1 - | x| )\} .

Here a can be any number larger than 1, and we take a = 2.
In the analysis of regularity, we need the following weighted Sobolev spaces:

(A.5) Wm,p
\omega \beta :=

\biggl\{ 
u | 

\int 
\Omega 

| Dku| p\omega \beta dx < \infty , k = 0, 1, . . . ,m

\biggr\} 
,

with 1 \leq p < \infty and m a nonnegative integer, which is equipped with the following
norm:

(A.6) \| u\| Wm,p

\omega \beta 
=

\biggl( m\sum 
k=0

| u| p
Wk,p

\omega \beta 

\biggr) 1/p

, | u| Wk,p

\omega \beta 
=

\biggl( \int 
\Omega 

| Dku| p\omega \beta dx

\biggr) 1/p

.

When m = s is not an integer, the space can be defined via the classical interpolation
method, e.g., K-method; see [10, 11].

The next lemma connects the weighted Sobolev spaces (A.5) and the weighted
Sobolev spaces (2.3) used in the current work.

Lemma A.2 (Theorem 3.3 in [31]). For a nonnegative integer l, the spaces W l,2
\omega \beta +l

and Bl
\omega \beta are equivalent, which is denoted as W l,2

\omega \beta +l \approx Bl
\omega \beta .
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In the proof of the regularity of problem (1.1)--(1.2), we have used the following
lemmas.

Lemma A.3 (Theorem 7.2 in [11]). Let \beta , \gamma be two real numbers which are
greater than  - 1, 1 < p, q < \infty , and let s, t be two real numbers such that 0 \leq t \leq s.
If the next two conditions are satisfied, (i) t - 1

q < s - 1
p or t - 1

q = s - 1
p with p \leq q,

and (ii) t - \beta 
q  - 1

q < s - \gamma 
p  - 1

p or t - \beta 
q  - 1

q = s - \gamma 
p  - 1

p with p \leq q and s - \gamma 
p  - 1

p /\in \BbbN ,
the following embedding holds:

(A.7) W s,p
\omega \gamma \subset W t,q

\omega \beta .

With the above lemmas we can prove Lemma A.4.

Lemma A.4 (connection with the nonweighted Sobolev space). For all s =

l+\sigma \geq 0 with l an integer, 0 \leq \sigma < 1, and  - 1 < \gamma \leq l \leq s, we have that Bs
\omega \gamma \subset H

s - \gamma 
2 .

Proof. We know from Lemma A.2 that

(A.8) Bs
\omega \gamma = [Bl

\omega \gamma , Bl+1
\omega \gamma ]\sigma ,2 \approx [W l,2

\omega \gamma +l ,W
l+1,2
\omega \gamma +l+1 ]\sigma ,2

with \sigma = s - l. Take p = q = 2 and \beta = 0, and then applying Lemma A.3 leads to

[W l,2
\omega \gamma +l ,W

l+1,2
\omega \gamma +l+1 ]\sigma ,2 \subset [H

l - \gamma 
2 , H

l+1 - \gamma 
2 ]\sigma ,2 = H

s - \gamma 
2 .(A.9)

By (A.8) and (A.9), we get the desired conclusion.

To prove Lemmas 3.5 and 3.6 we need the following two lemmas.

Lemma A.5 ([34]). Let v \in L2
\omega \gamma +1 - \beta +2s , where \beta < 3 and \gamma , s \in \BbbR . Then\int \int 

\Omega a

\omega \gamma (x)v2(x)
| \omega s(x) - \omega s(y)| 2

| x - y| \beta 
dx dy \leq C \| v\| 2\omega \gamma +1 - \beta +2s .

Lemma A.6. Let v \in Bs
\omega 2\gamma +\beta \cap L2

\omega 2\gamma +\beta  - s , where 0 < s < 1 and \beta , \gamma \in \BbbR . Then

| v\omega \gamma | 2Bs

\omega \beta 
\leq C(| v| 2Bs

\omega 2\gamma +\beta 
+ | v| 2L2

\omega 2\gamma +\beta  - s
).

Proof. By definition of the fractional norm (A.3), we have

| v\omega \gamma | 2Bs

\omega \beta 
=

\int \int 
\Omega a

\omega \beta +s(x)
| \omega \gamma (x)v(x) - \omega \gamma (y)v(y)| 2

| x - y| 1+2s
dxdy

\leq 2

\int \int 
\Omega a

\omega \beta +s(x)\omega 2\gamma (y)
| v(x) - v(y)| 2

| x - y| 1+2s
dxdy

+2

\int \int 
\Omega a

\omega \beta +s(x)v2(x)
| \omega \gamma (x) - \omega \gamma (y)| 2

| x - y| 1+2s
dxdy

\leq C| v| 2Bs

\omega 2\gamma +\beta 
+ 2

\int \int 
\Omega a

\omega \beta +s(x)v2(x)
| \omega \gamma (x) - \omega \gamma (y)| 2

| x - y| 1+2s
dxdy,

where we have used the fact that \omega \rho (y) \leq C\omega \rho (x) for any \rho on \Omega a in the last inequality.
By Lemma A.5, we have\int \int 

\Omega a

\omega \beta +s(x)v2(x)
| \omega \gamma (x) - \omega \gamma (y)| 2

| x - y| 1+2s
dxdy \leq C\| v\| 2L2

\omega 2\gamma +\beta  - s
.(A.10)

Combining the above leads to the desired results.
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Appendix B. Proofs of Lemmas 3.5 and 3.6.

B.1. The proof of Lemma 3.5. In the following proof, we first prove that
Lemma 3.5 holds for s = 0. Then we prove that Lemma 3.5 still holds for s =
3\alpha /2 - 1 - \epsilon with arbitrarily small \epsilon > 0. Lastly, we use the interpolation technique
to show that Lemma 3.5 holds for s \in [0, 3\alpha /2 - 1).

Proof. Step 1. When s = 0, we have

(B.1) \| v\omega \alpha /2 - 1\| 2L2

\omega \alpha /2
=

\int 1

 - 1

v2\omega \alpha  - 2(x)\omega \alpha /2dx \leq 
\int 1

 - 1

v2\omega \alpha /2 - 1(x)dx = \| v\| 2L2

\omega \alpha /2 - 1
.

The desired conclusion holds for s = 0.
Step 2. Next we prove that Lemma 3.5 holds for s = 3\alpha /2 - 1 - \epsilon with arbitrarily

small \epsilon > 0. We discuss two cases depending on the range of \alpha : 1 < \alpha \leq 4/3 and
4/3 < \alpha < 2.

Case 1. If 1 < \alpha \leq 4/3, then s = 3\alpha /2  - 1  - \epsilon < 1 for arbitrarily small \epsilon > 0.
Applying Lemma A.6 gives

| v\omega \alpha /2 - 1| 2Bs

\omega \alpha /2
\leq C(| v| 2Bs

\omega 3\alpha /2 - 2
+ \| v\| 2L2

\omega 3\alpha /2 - 2 - s
).(B.2)

First, it holds by definition (A.1) that Bs
\omega \alpha /2 - 1 = [B0

\omega \alpha /2 - 1 , B
1
\omega \alpha /2 - 1 ]s,2 and Bs

\omega 3\alpha /2 - 2 =
[B0

\omega 3\alpha /2 - 2 , B
1
\omega 3\alpha /2 - 2 ]s,2. By the definition of the weighted Sobolev space (2.3), we have

Bk
\omega \alpha /2 - 1 \subset Bk

\omega 3\alpha /2 - 2 for k = 0, 1. Then it follows that Bs
\omega \alpha /2 - 1 \subset Bs

\omega 3\alpha /2 - 2 , i.e.,

| v| Bs

\omega 3\alpha /2 - 2
\leq C| v| Bs

\omega \alpha /2 - 1
.(B.3)

Second, we have

\| v\| 2L2

\omega 3\alpha /2 - 2 - s
\leq c\epsilon \| v\| 2L\infty , where c\epsilon =

\int 1

 - 1

(1 - x2)\epsilon  - 1dx.(B.4)

Applying Lemma A.4, we have that the space Bs
\omega \alpha /2 - 1 \subset H\alpha /2 - \epsilon for \epsilon > 0. Thus it

gives Bs
\omega \alpha /2 - 1 \subset L\infty , i.e.,

\| v\| 2L\infty \leq C| v| 2Bs

\omega \alpha /2 - 1
.(B.5)

By (B.2)--(B.5), we have

| v\omega \alpha /2 - 1| 2Bs

\omega \alpha /2
\leq C(| v| 2Bs

\omega 3\alpha /2 - 2
+ \| v\| 2L2

\omega 3\alpha /2 - 2 - s
)

\leq C(| v| 2Bs

\omega \alpha /2 - 1
+ \| v\| 2L\infty ) \leq C\| v\| 2Bs

\omega \alpha /2 - 1
.(B.6)

By (B.1), (B.6), and the definition of the norm (A.3) in the weighted Sobolev space,
we have the desired conclusion for 1 < \alpha \leq 4/3.
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Case 2. If 4/3 < \alpha < 2, then s = 3\alpha /2  - 1  - \epsilon \in (1, 2) for sufficiently small
\epsilon > 0. By the norm of weighted Sobolev space (A.3), we need to bound three terms:\bigm\| \bigm\| v\omega \alpha /2 - 1

\bigm\| \bigm\| 
L2

\omega \alpha /2

, \| D(v\omega \alpha /2 - 1)\| L2

\omega \alpha /2+1
, and | D(v\omega \alpha /2 - 1)| Bs - 1

\omega \alpha /2+1
.

First, we have D(v\omega \alpha /2 - 1) = \omega \alpha /2 - 1Dv + (2 - \alpha )x\omega \alpha /2 - 2v, and thus

\| D(v\omega \alpha /2 - 1)\| L2

\omega \alpha /2+1
\leq \| \omega \alpha /2 - 1Dv\| L2

\omega \alpha /2+1
+ \| (2 - \alpha )x\omega \alpha /2 - 2v\| L2

\omega \alpha /2+1

\leq C\| Dv\| L2

\omega \alpha /2
+ C\| v\| \infty .

Here, by Lemma A.4 and the Sobolev embedding inequality, we have

(B.7) \| v\| L\infty \leq C\| v\| Bs

\omega \alpha /2 - 1
.

Thus, it holds that

(B.8) \| D(v\omega \alpha /2 - 1)\| L2

\omega \alpha /2+1
\leq C\| Dv\| L2

\omega \alpha /2
+ C\| v\| \infty \leq C\| v\| Bs

\omega \alpha /2 - 1

Second, we have

| D(v\omega \alpha /2 - 1)| Bs - 1

\omega \alpha /2+1
\leq | \omega \alpha /2 - 1Dv| Bs - 1

\omega \alpha /2+1
(B.9)

+| (2 - \alpha )x\omega \alpha /2 - 2v| Bs - 1

\omega \alpha /2+1
=: I + II.

Applying Lemma A.6 gives

I = | \omega \alpha /2 - 1Dv| 2
Bs - 1

\omega \alpha /2+1

\leq C(| Dv| 2
Bs - 1

\omega 3\alpha /2 - 1

+ \| Dv\| 2L2

\omega 3\alpha /2 - s
)

\leq C(| Dv| 2
Bs - 1

\omega \alpha /2

+ \| Dv\| 2L2

\omega \alpha /2
) \leq C\| v\| 2Bs

\omega \alpha /2 - 1
.(B.10)

For the term II, we have

(B.11) II = | (2 - \alpha )x\omega \alpha /2 - 2v| Bs - 1

\omega \alpha /2+1
\leq | \omega \alpha /2 - 2v| 2

Bs - 1

\omega \alpha /2+1

.

The term in the last inequality can be bounded by applying Lemma A.6 and

| \omega \alpha /2 - 2v| 2
Bs - 1

\omega \alpha /2+1

\leq C(| v| 2
Bs - 1

\omega 3\alpha /2 - 3

+ \| v\| 2L2

\omega 3\alpha /2 - 2 - s
) \leq C(| v| 2

Bs - 1

\omega 3\alpha /2 - 3

+ \| v\| 2L\infty ).

Then by \| v\| L\infty \leq C\| v\| Bs

\omega \alpha /2 - 1
in (B.7), we have

| \omega \alpha /2 - 2v| 2
Bs - 1

\omega \alpha /2+1

\leq C(| v| 2
Bs - 1

\omega 3\alpha /2 - 3

+ \| v\| 2Bs

\omega \alpha /2 - 1
).(B.12)

We claim and prove shortly that

(B.13) | v| Bs - 1

\omega 3\alpha /2 - 3
\leq C\| v\| Bs

\omega \alpha /2 - 1
,

and thus by (B.11) and (B.12), we have

(B.14) II \leq | \omega \alpha /2 - 2v| 2
Bs - 1

\omega \alpha /2+1

\leq C\| v\| 2Bs

\omega \alpha /2 - 1
.

Further, we have from (B.9), (B.10), and (B.14) that

| D(v\omega \alpha /2 - 1)| Bs - 1

\omega \alpha /2+1
= I + II \leq C\| v\| Bs

\omega \alpha /2 - 1
.(B.15)
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By the norm of weighted Sobolev space (A.3), (B.8), and (B.15),\bigm\| \bigm\| \bigm\| v\omega \alpha /2 - 1
\bigm\| \bigm\| \bigm\| 
Bs

\omega \alpha /2

\leq 
\bigm\| \bigm\| \bigm\| v\omega \alpha /2 - 1

\bigm\| \bigm\| \bigm\| 
L2

\omega \alpha /2

+ \| D(v\omega \alpha /2 - 1)\| L2

\omega \alpha /2+1
+ | D(v\omega \alpha /2 - 1)| Bs - 1

\omega \alpha /2+1

\leq \| v\| L2

\omega \alpha /2 - 1
+ C\| v\| Bs

\omega \alpha /2 - 1
\leq C\| v\| Bs

\omega \alpha /2 - 1
.

This is the desired conclusion for 4/3 < \alpha < 2.
It remains to check the claim (B.13). In fact, we have by Lemma A.2 that

Bs
\omega \alpha /2 - 1 = [B1

\omega \alpha /2 - 1 , B
2
\omega \alpha /2 - 1 ]\sigma ,2 \approx [W 1,2

\omega \alpha /2 ,W
2,2
\omega \alpha /2+1 ]\sigma ,2,(B.16)

Bs - 1
\omega 3\alpha /2 - 3 = [B0

\omega 3\alpha /2 - 3 , B
1
\omega 3\alpha /2 - 3 ]\sigma ,2 \approx [W 0,2

\omega 3\alpha /2 - 3 ,W
1,2
\omega 3\alpha /2 - 2 ]\sigma ,2,(B.17)

where \sigma = s - 1. By Lemma A.3, we have

[W 1,2
\omega \alpha /2 ,W

2,2
\omega \alpha /2+1 ]\sigma ,2 \subset [W 0,2

\omega 3\alpha /2 - 3 ,W
1,2
\omega 3\alpha /2 - 2 ]\sigma ,2.(B.18)

Then by (B.16)--(B.18), we have Bs
\omega \alpha /2 - 1 \subset Bs - 1

\omega 3\alpha /2 - 3 , and thus (B.13) is proved. This
completes the proof in Case 2 of Step 2.

Step 3. For s \in [0, 3\alpha /2 - 1 - \epsilon ], we use the interpolation technique to show that
\omega \alpha /2 - 1v \in Bs

\omega \alpha /2 - 1 if v \in Bs
\omega \alpha /2 - 1 .

By the definition (A.2), Bs
\omega \alpha /2 - 1 = [B0

\omega \alpha /2 - 1 , B
3\alpha /2 - 1 - \epsilon 

\omega \alpha /2 - 1 ]\sigma ,2 with \sigma = 3\alpha /2 - 1 - \epsilon .

Thus for any v \in Bs
\omega \alpha /2 - 1 , there exists a decomposition v = v1+v2 with v1 \in B0

\omega \alpha /2 - 1

and v2 \in B
3\alpha /2 - 1 - \epsilon 

\omega \alpha /2 - 1 such that

(B.19)

\int \infty 

0

t - 2\theta 

\biggl( 
\| v1\| B0

\omega \alpha /2 - 1
+ t\| v2\| B3\alpha /2 - 1 - \epsilon 

\omega \alpha /2 - 1

\biggr) 2
dt

t
< 2\| v\| 2Bs

\omega \alpha /2 - 1
.

As we have proved the conclusion of Lemma 3.5 for s = 0 and s = 3\alpha /2  - 1  - \epsilon , it
holds that

\| \omega \alpha /2 - 1v1\| B0

\omega \alpha /2
\leq C\| v1\| B0

\omega \alpha /2 - 1
,(B.20)

\| \omega \alpha /2 - 1v2\| B3\alpha /2 - 1 - \epsilon 

\omega \alpha /2

\leq C\| v2\| B3\alpha /2 - 1 - \epsilon 

\omega \alpha /2 - 1

.(B.21)

Together with (B.19), we have\int \infty 

0

t - 2\theta 

\biggl( 
\| \omega \alpha /2 - 1v1\| B0

\omega \alpha /2
+ t\| \omega \alpha /2 - 1v2\| B3\alpha /2 - 1 - \epsilon 

\omega \alpha /2

\biggr) 2
dt

t

\leq C

\int \infty 

0

t - 2\theta 

\biggl( 
\| v1\| B0

\omega \alpha /2 - 1
+ t\| v2\| B3\alpha /2 - 1 - \epsilon 

\omega \alpha /2 - 1

\biggr) 2
dt

t
< 2\| v\| 2Bs

\omega \alpha /2 - 1
.(B.22)

This inequality suggests the decomposition \omega \alpha /2 - 1v = \omega \alpha /2 - 1v1 + \omega \alpha /2 - 1v2 with

\omega \alpha /2 - 1v1 \in B0
\omega \alpha /2 - 1 and \omega \alpha /2 - 1v2 \in B

3\alpha /2 - 1 - \epsilon 

\omega \alpha /2 - 1 . By the equivalent definition (A.2),

we have \omega \alpha /2 - 1v \in Bs
\omega \alpha /2 - 1 . This completes the proof.

B.2. The sketched proof of Lemma 3.6. Since Lemma 3.6 can be proved
similarly to Lemma 3.5, we provide a sketch.

Proof. Step 1. It is clear that v\omega \alpha /2 \in Bs
\omega \alpha /2 for s = 0 if v \in Bs

\omega \alpha /2 .
Step 2. For s = 3\alpha /2 + 1 - \epsilon and v \in Bs

\omega \alpha /2 , using Lemma A.4 we have v \in L\infty .
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Case 1. 1 < \alpha < 4/3 and 3\alpha /2 + 1  - \epsilon \in (2, 3). Note that D(v\omega \alpha /2) =
Dv\omega \alpha /2 + vD\omega \alpha /2 and D2(v\omega \alpha /2) = D2v\omega \alpha /2 + 2DvD\omega \alpha /2 + vD2\omega \alpha /2. By direct
calculation and the L\infty bound of v, we know that v\omega \alpha /2 \in Bk

\omega \alpha /2 for v \in Bk
\omega \alpha /2 and

k = 0, 1, 2. For k = s \in (2, 3), by the definition (A.3), it suffices to show the seminorm

| v\omega \alpha /2| 2Bs

\omega \alpha /2
= | D2(v\omega \alpha /2)| 2

Bs - 2

\omega \alpha /2+2

\leq | \omega \alpha /2D2v| 2
Bs - 2

\omega \alpha /2+2

+ C| \omega \alpha /2 - 1Dv| 2
Bs - 2

\omega \alpha /2+2

+ C| \omega \alpha /2 - 2v| 2
Bs - 2

\omega \alpha /2+2

< \infty ,(B.23)

where each term can be bounded, by Lemma A.6.
Case 2. When 4/3 \leq \alpha < 2 and s = 3\alpha /2 + 1  - \epsilon \in [3, 4), the proof follows

arguments similar to those in Case 1.
Step 3. For 0 < s < 3\alpha /2 + 1, we use the interpolation technique to derive the

desired result.
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