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WIENER CHAOS VERSUS STOCHASTIC COLLOCATION
METHODS FOR LINEAR ADVECTION-DIFFUSION-REACTION
EQUATIONS WITH MULTIPLICATIVE WHITE NOISE*

ZHONGQIANG ZHANGT, MICHAEL V. TRETYAKOV?, BORIS ROZOVSKII?,
AND GEORGE E. KARNIADAKISS

Abstract. We compare Wiener chaos and stochastic collocation methods for linear advection-
reaction-diffusion equations with multiplicative white noise. Both methods are constructed based
on a recursive multistage algorithm for long-time integration. We derive error estimates for both
methods and compare their numerical performance. Numerical results confirm that the recursive
multistage stochastic collocation method is of order A (time step size) in the second-order moments
while the recursive multistage Wiener chaos method is of order AN + A2 (N is the order of Wiener
chaos) for advection-diffusion-reaction equations with commutative noises, in agreement with the
theoretical error estimates. However, for noncommutative noises, both methods are of order one in
the second-order moments.
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NOTATION.

q: Number of Brownian motions (noises).

N: Highest order of Hermite polynomial chaos.

n: Number of basis modes in approximating the Brownian motion.

L: Level of Smolyak sparse grid collocation.

M: Number of Fourier collocation nodes in physical space.

A: Element size (in time) for multielement spectral approximation of

Brownian motion.

K: Number of elements in time, which is T'/A with T the final integration
time.
ot: Time step size for time discretization in the time interval (0, A].

7(L,ng): Number of sparse grid points at level L with dimension ng.

1. Introduction. Partial differential equations (PDEs) driven by white noise
have different interpretations of stochastic products and lead to different numerical
approximations, unlike the PDEs driven by colored noise. Specifically, stochastic
products for white noise are usually interpreted with two different products: the
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Ito product and the Stratonovich product; see e.g., [1]. Though a problem can be
equivalently formulated using these two products, the use of different products leads to
different performance of numerical solvers for PDEs driven by white noise, especially
when Wiener chaos expansion (WCE) and stochastic collocation methods (SCM)
in random space are used. In this paper, we will show theoretically and through
numerical examples that for white noise driven PDEs, WCE and SCM have quite
different performance when the noises are commutative. This is different from how
WCE and SCM behave for PDEs driven by colored noise. For elliptic equations with
colored noise, it is demonstrated in [3, 10] that there are only small differences in the
numerical performance of generalized polynomial chaos expansion and SCM.

To apply WCE and SCM, we first discretize the Brownian motion with its trun-
cated spectral expansion (see, e.g., 29, Chapter IX] and [21]), which results in PDEs
with finite dimensional random inputs. Hence, our methods are Wong-Zakai type
approximations [34, 35], where the Brownian motion is approximated by a smooth
stochastic process of bounded variation, e.g., the spectral approximation used here
and piecewise linear approximation of the Brownian motion [34, 35]. We note that
piecewise linear approximation can be used instead, but this is beyond the scope of
the paper.

The resulting PDEs can be solved numerically using a variety of space-time dis-
cretization methods and any sampling methods or functional expansion methods in
random space. In random space, we will employ functional expansion methods, WCE
[4, 21], and SCM [38], instead of the Monte Carlo method. These functional expansion
methods have no statistical errors as no random number generators are used; they have
only errors from truncations of Wiener processes and functional expansions and allow
efficient short-time integration of stochastic PDEs (SPDEs) [4, 5, 15, 21, 22, 37, 38].

In principle, we can employ any functional expansion; however, different expan-
sions are preferred for different stochastic products because of computational effi-
ciency. In practice, WCE is associated with the Ito-Wick product (see (2.9)), as
the product is defined with Wiener chaos modes yielding a weakly coupled system
(lower-triangular system) of PDEs for linear equations. On the other hand, SCM is
associated with the Stratonovich product (see (2.15)), yielding a decoupled system of
PDEs. These different formulations lead to different numerical performance, as we
demonstrate in section 4; in particular, WCE can be of second-order convergence in
time, while SCM is only of first-order in time in the second-order moments for com-
mutative noises. Further, when the noises serve as the advection coefficients, SCM
can be more accurate than WCE when both methods are of first-order convergence
as the SCM (Stratonovich formulation) can lead to smaller diffusion coefficients than
those for WCE (Ito formulation).

However, a fundamental limitation of these expansion methods is the exponential
growth of error with time and the increasing complexity as the number of random
variables is increasing, generated by the discretization of the Brownian motion. To
deal with this complexity, a recursive WCE method was proposed in [21] for the
Zakai equation of nonlinear filtering with uncorrelated observations. More recently,
a recursive multistage approach was developed to efficiently solve linear stochastic
advection-diffusion-reaction equations using WCE [37] or SCM [38].

To deal with the complexity in random space, some preprocessing procedures have
been proposed; see, e.g., [8, 31]. In these procedures, we are seeking the solution in
the form u(t, z;w) = Elu(t, ;)] + > Yi(t,w)u;(t, z). Then by imposing the spatial
orthogonality of u;(x,t) and dyu;(t,z) (i,j = 1,2,...), we can obtain an equivalent
system of SPDEs: a PDE for E[u(t,z;-)], a system of equations for Y;(t,w), and a
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system of equations for u; (¢, x). In many applications, this procedure is efficient, even
with few terms of Y;(¢,w) and w,(t,z), as it may take advantage of some intrinsic
sparsity structures of the underlying problems. However, this procedure requires
some numerical methods to obtain Y;(t,w), such as WCE (e.g., in [8]) and Monte
Carlo methods (e.g., in [31]). When WCE or SCM is used, the complexity in random
space is still high and thus the procedure is not efficient for problems driven by
Brownian motion, where many modes Y;(t,w) and w;(¢,x) are required. Though
these procedures can be applied here, we limit ourselves to the issue of using the
deterministic integration methods, without using these procedures.

Some numerical results of WCE for SPDEs have been presented in [37] for linear
advection-diffusion-reaction equations and in [15] for nonlinear SPDEs including the
stochastic Burgers equation and the Navier—Stokes equations. Numerical results for
SCM have also been provided in [38] for linear stochastic advection-diffusion-reaction
equations and the stochastic Burgers equation. Numerical results have demonstrated
that WCE [37] and SCM [38] in conjunction with the recursive multistage approach
are efficient for long-time integration of linear advection-diffusion-reaction equations.

The main aim of the current paper is the derivation of theoretical error estimates
for both WCE and SCM methods and subsequent comparison of the numerical perfor-
mance of the two methods for commutative and noncommutative noises. In addition,
we will develop a recursive multistage SCM, different than in [38], using a spectral
truncation of Brownian motion. Specifically, in this paper we will derive the error
estimate of WCE for linear advection-diffusion-reaction equations with white noise in
the advection velocity and that of SCM with white noise in the reaction rate. We
note that the convergence rate of WCE is known only for linear advection-diffusion-
reaction equations with white noise in the reaction rate, although the convergence of
WCE for linear advection-diffusion-reaction equations has been studied for some time
[20, 21, 22, 23].

The paper is organized as follows. In section 2, we review the WCE and SCM for
linear parabolic SPDEs and develop a new recursive SCM using a spectral truncation
of Brownian motion, following the same recursive procedure as WCE in [21, 37, 38].
In section 3 we present the error estimates for both methods for linear advection-
diffusion-reaction equations, with the proofs presented in section 5. In section 4, we
present numerical results of WCE and SCM for linear SPDEs with both commutative
and noncommutative noises and verify the error estimates of WCE and SCM for
commutative noises.

2. Review of Wiener chaos and stochastic collocation. In this section, we
briefly review WCE and SCM for the following linear SPDE in the Ito form:

q
du(t, ) = Lu(t,z)dt + Y  Myu(t, =) dw(t), (t,z) € (0,T] x D,
k=1

(2.1) u(0,2) = up(x), z €D,

where (w(t), F;) = ({wr(t),1 <k <gq},F) is a system of one-dimensional indepen-
dent standard Wiener processes defined on a complete probability space (92, F, P)
and

d

Z a;; () D;Dju(t, x) + Zbi(x)Diu(t, x) + c(x) u(t, x),

ij=1 i=1

(2.2) Myu(t,z) = Zcrlk VDiu(t, ) + vg (z) u(t, x),
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and D; is the spatial derivative in the z;-direction. We assume that the domain D in
R? is such that the periodic boundary conditions can be imposed or that D = R?. In
the former case, we will consider periodic boundary conditions and in the latter the
Cauchy problem.

We assume that there exist a constant é > 0 and a real number C, such that
for any v € H'(D),
23 (o) + 23 [Maa + 5elolfy < el

) 2 Hl — )

k=1

where (-,-) is the duality between the Sobolev spaces H~!(D) and H!(D) associated
with the inner product over L?(D) and ||-|| is the L*(D)-norm. Specifically, we require
that the coefficients of operators £ and M in (2.2) are uniformly bounded and that

d q
>, (2%4(%) =Y oir(@)on (@) viy; > 20c [y, @,y €D,
ij=1 k=1

in addition to the Lipschitz continuity of a, ;(x). If E[||u0H2 is bounded (E[] is the
expectation with respect to P), these assumptions are sufficient for a unique square-
integrable solution of (2.1)—(2.2); see e.g., [23, 25].

The problem (2.1)—(2.2) is said to have commutative noises if

(2.4) MeMj = MiMi, 1<k, j<gq,

and to have noncommutative noises otherwise. When ¢ = 1, (2.4) is satisfied and thus
this is a special case of commutative noises. When My, are zeroth-order operators,
(0ik =0), (2.4) is satisfied and the problem also has commutative noises. The defini-
tion is consistent with that of commutative and noncommutative noises for stochastic
ordinary differential equations; see, e.g., [26]. In section 4, we test our algorithms on
examples with both commutative and noncommutative noises.

Remark 2.1. The problem (2.1)-(2.2) can be regarded as an approximation of a
problem driven by a cylindrical Wiener process. Consider a cylindrical Wiener process
W(t,x) = > po; Aewg(t)eg(x), where 17 | A? < oo, {wy(t)} are independent Wiener
processes, and {eg(z)},- | is a complete orthonormal basis (CONS) in L?(D); see e.g.,
[9, 30]. Thus, we can view (2.1)—(2.2) as approximations of SPDEs driven by this
cylindrical Wiener process.

In both WCE and SCM, we discretize the Brownian motion using the following
spectral representations (see, e.g., [21, 37]):

(25 Jim Elw(®) - o™ 0P =0, w0 =Y & /O mi(s) ds, ¢ € [0,T],

n—o00

where &; are mutually independent standard Gaussian random variables and {m; };~,
is a CONS in L?([0,7]). The expansion (2.5) is an extension of Fourier expansion of
Brownian motion that is the Wiener construction [29, Chapter IX]; see also [17, 18].

2.1. WCE. The WCE solution to (2.1) is defined with the Cameron-Martin
basis [6] in Wiener chaos space, using Fourier—-Hermite series. The corresponding co-
efficients are obtained by solving the associated propagator, which is a lower-triangular
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linear system of deterministic parabolic equations determined by (2.1). Specifically,
the solution to (2.1) can be represented as

(2.6) u(t,z) = Z \/%gpa(t,a:;uo)ﬁa, t e (0,77,

acJdy ’

where J; is the set of multi-indices o = (1) k,1>1 of finite length, i.e.,
jq == (Osz, 1<k< q), [ >1, Qg € {0,1,2,...}, |O<| = Zak’l < 00,
k.l

The random variables &, are Cameron-Martin orthonormal basis, defined as

(27) & =11 (Lak_é Ef;”), aed,

[0}

where &, = fOT my(s) dwg(s), and H,, is the nth Hermite polynomial:

2, d" 2
2.8 H, — (—1)"e” /2 Y - /2.
(28) (1) = (-1 2 e
Under our assumptions, the SPDE (2.1) can be written in the following form using
the Ito-Wick product (see, e.g., [14, section 2.5] and [22]):

du(t,x) = Lu(t,z)dt + zq:./\/lku(t, x) o dwg(t), (t,x) € (0,T] x D,
k=1
(2.9) u(0,2) =wuo(x), €D,

where the Ito-Wick product “¢” is defined for the Cameron—Martin basis (2.7) such

that £, 083 = (O;T['f!)!ﬁmr@. By (2.6) and the Cameron-Martin theorem [6], we obtain
(n)

the coefficients ¢, (t, z;u0) = E[Valu(t, v)¢,]. Approximating wy, with w,” in (2.5),
we substitute the representation (2.6) into (2.9) and then we can readily check that the
coefficients ¢, (t,x;) from (2.6) satisfy the following propagator (see, e.g., [20, 22]):

Opa(t, x;u)

q n
o = Loa(t, xu0) + > Y apmu(s) Miga- (@ u0), s € (0,7,

k=11=1
©0a(0,2) = uo(z)1{jaj=01

where o~ (k, () is the multi-index with components

_ max(0,a;; —1) ifi=4kand j=I,
(2.10) (a (k’l))iJ - {am ! otherwise.

In practical computations, we have to truncate the propagator (2.10) and, conse-
quently, we are interested in the following truncated Wiener chaos solution:

(2.11) wialtx) = 30— palt o)

a€IN,n,q
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ot --- LA 2A A e T = KA
[INEY [ e e 1

Fic. 1. Illustration of the idea of recursive multi-stage approach for long-time integration in [37].

where the set Jnng = {a = () gxn| DoF g Dol kg < N}. Here N is the high-
est Hermite polynomial order and n is the maximum number of Gaussian random
variables for each Wiener process. In (2.7), we choose the basis {m;(s)},~, as

(2.12) ml(s):%, mﬂs)z@cos(@), [>2, 0<s<T.

As shown in [4, 21, 37], the error induced by the truncation of WCE grows ex-
ponentially with time and thus WCE is not efficient for long-time integration. To
control the error behavior, [37] proposes a recursive WCE (see Algorithm 2.1 below)
for computing the second moments, E[u?(t,z)], of the solution of the SPDE (2.1).
Specifically, we discretize the Brownian motion using the following spectral represen-
tation in a multielement version, i.e., using K multielements [21, 37]:

K ty At
(2.13) wBm (¢ Z / mik(s)dséx, t € 10,17,
t

k=11i=1"thk—1/l

where 0 =tg <t; <--- <tk =T, txp At is the minimum of ty = kA and ¢, {mlk}fil
is a CONS in L?([ty, tx+1]), and & x are mutually independent standard Gaussian
random variables. After the truncation of Brownian motion, we can have a similar
propagator as (2.10). Noticing the linear property and Markovian properties of the
solution to (2.1), we take the solution at ty_; as an initial condition to solve the
solution over (tgy_1,t;]. Thus, we can recursively compute the covariance matrix at
ty with the covariance matrix at the time instant tx_;. We then have the following
algorithm for the second moments of the approximate solution; see Figure 1 for an
illustration and [37] for the derivation.

ALGORITHM 2.1 (recursive multistage WCE [37, Algorithm 2]). Choose the al-
gorithm’s parameters: a CONS {en(x)}m>1 and its truncation {e,(x)IM_,; a time
step A; and N and n, which together with the number of noises q determine the size
of the multi-index set Inn,q-

Step 1. For each m =1,..., M, solve the propagator (2.10) for & € Jn,nq on the
time interval [0, A] with the initial condition ¢(x) = e,,(x) and denote the obtained
solution as @ (A, x;€m), m=1,...,M, and a € Jn n,q Also, choose a time step size
0t to solve numerically the equations in the propagator.

Step 2. Evaluate qq1m = (0a(A,5e1),em(:)), I,m = 1,...,M. Here (-,-) is the
inner product in L?(D).

Step 3. Recursively compute the covariance matrices Qpm (ti;N,n, M), I;m =

M, t; = iA, as follows:

Qim(0;N,n, M) = (ug, e;)(uo, em),

M
1 .
le(ti;NanaM) = Z ij(ti—l;NanaM) Z aqa,j,l‘kx,k,ma 1= 17"'7K7
J,k=1 a€IN,n,q
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where wup(x) is the initial condition for (2.1), and obtain MX)N)n(ti,x), the second
moments of the approximate solution to (2.1) by the following:

M
(2.14) MY na(ti @) = D Qun(ti N0, M)es(z)enm (), i=1,...,K.

I,m=1

Remark 2.2. The complexity of this algorithm is of order M* but can be reduced
to the order of M? by making full use of the sparsity of the data [37].

2.2. SCM. This method leads to a fully decoupled system instead of a weakly
coupled system from the WCE. First, we rewrite the SPDE (2.1) in the Stratonovich
form (see e.g., [13, 19]),

du(t, z) = Lu(t,z) dt + zq:./\/lku(t, x) o dwg(t), (t,x) € (0,T] x D,
k=1
(2.15)  w(0,2) = ug(x), = €D,

where Lu = Lu — %ZK k<qg MrMpu. Second, we approximate the Brownian mo-
tion with its multielement spectral expansion (2.13) and obtain the following partial
differential equation with smooth random inputs (see, e.g., [13]):

q
diian(t,r) = Lian(t, ) dt + > Mytian(t,z)dw>" (1), (t,z) € (0,T] x D,
k=1
(2.16) @(0,z) =up(z), x € D.

In (2.16), we have ngK standard Gaussian random variables & ., | < nk < g,
1 < K, according to (2.13). Now we can apply standard numerical techniques of ngK-
dimensional integration to numerically obtain pth moments of the solution to (2.16):

(2.17)

E[(ian(T,2))"] = L

yTy
W/R ) (F(uo(ac),T,;1c,y))pe*T dy, p=1,2,...,

where y = (Y1,5,), | < n,k < ¢, i <K, and the functional F' represents the solution
functional for (2.16). Here we use sparse grid collocation [12, 33] if the dimension ngK
is moderately large. As pointed out in [2, 36], we are led to a fully decoupled system
of equations as in the case of Monte Carlo methods.

In practice, we use the following sparse grid quadrature rule for a d-dimensional
function ¢ (see, e.g., [12, 33]):

(2.18) AL de= > (—1)”“i<d_1)Qu®-~-®Qid<ﬂ,

) li| — L
L<[i|<L4d—1

where we have one-dimensional Gauss—Hermite quadrature rules @, for univariate
functions ¥(y), y €ER: Qnib(y) = 22:1 ¢(yn,a)wn,aa Yl < Yn2 < - < Ypn are
the roots of the nth Hermite polynomial (2.8), and w,, o are the associated weights
Wi o = n!/n%[H,—1(yno)]?. The number of sparse grid points, denoted by 7(L, d), for
this sparse grid quadrature rule is of order d*~! when L < d, which can be checked
readily from the rule (2.18). For example, we have, for L = 2, 3,4,

4 14
n(2,d) =2d+ 1, 7(3,d) = 2d*> +2d + 1, n(4,d) = §d3 +2d? + Sd+ 1L
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Denote the set of n(L,d) sparse grid points x,, = (xL,...,x%) by H'?, where xJ. (1 <
J < d) belongs to the set of points used by the quadrature rule );;. According to
(2.18), we only need to know the function values at the sparse grid H,':

n(L,nq)

(2.19) AL dp = > oxe)We,  xe = (x5, x0) € 1

k=1

where W,; are determined by (2.18) and the choice of the quadrature rules Q;, and
they are called the sparse grid quadrature weights.

Here again, the direct application of SCM is efficient only for short-time inte-
gration. To achieve long-time integration, we apply the recursive multistage idea
used in Algorithm 2.1, i.e., we use SCM over small time interval (t;_1,t;] instead of
over the whole interval (0, 7] and compute the second-order moments of the solution
recursively in time. The derivation of such a recursive algorithm will make use of
properties of the problem (2.1) and orthogonality of the basis both in physical space
and in random space, as will be shown shortly.

We solve (2.16) with spectral methods in physical space, i.e., using a truncation
of a CONS in physical space {em}i\flzl to represent the numerical solution. The corre-
sponding approximation of @a n(t, z) is denoted by ﬁxm(t, x). Further, let v(t, z; s, v0)
be the approximation ﬂxm(t, x) of U n(t,z) with the initial data v prescribed at s:
Uan(s,z) = vo(x). Note that

(220) ax)n(ti, $) = U(ti, Triti—1, ﬂXm(ti—lv )), t; = iA.
Denote ®,,(t;; A,n,M) = (ﬁxm(ti, -), €m). Then the second moments are computed by

M
(2.21) E[(a} ,(ti,2))*] = > Hpm(tii A, n,M)er(z)em (),

I,m=1

where Hjp, (ti; A, n, M) = E[®;(t;; A, n, M)®,,(t;; A, n, M)]. Now we show how the ma-
trix Hypy, (ti; A, n, M) can be computed recursively. By the linearity of (2.16), we have

M
N o (ti, @ Z (ti13 A, n, M)o(ts, zitio1, e).
Denote hym,i—1 = (v(t;, ;ti—1,€1), em). Then by the orthonormality of e,,, we have

M
m(ti3 A0, M) = @y(ti 15 A0, M)hy i1
=1

The matrix Hj,,(t;; A, n, M) can be computed recursively as

M M
Hip (ti; 8,0, M) = > >~ Hyp(ti1; A0, M)E[ i1 i1
Jj=1k=1

We note that the expectation E[h;;i—1hk m,i—1] does not depend on i — 1 because
according to (2.16) and (2.2), v(t;, z;t;—1, €;) depends on the length of the time in-
terval A and the random variables & (I < n, k < g) but is independent of time
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ti—1. Denote v(t;, ;t;—1, ) with & 1 ; anchored at the sparse grid point x,. € H['? by
ve(A,ser). Let hipm = (Ve(A,-;€1),em). Then, using the sparse grid quadrature
rule (2.19), we obtain the recursive approximation of Hy, (t;; A, n, M):

M n(L.ng)
(2.22)  Hpm(ti; A0, M) & Hipn (6 A, 1,0, M) := > " Hyg(tio i3 A, L, M) > by the g W
j=1 k=1 k=1

Substituting (2.22) in (2.21), we obtain an approximation for the second moments of
u(t, z), denoted by MX,L,n(tia x). When M = oo (i.e., when the CONS {e,, } is not cut
off), we denote this approximation by Ma  n(t;, ).

Remark 2.3. For nonhomogeneous equations, i.e., with forcing terms, we can
have similar algorithms. Indeed, the same procedure applies once we can split the
nonhomogeneous equations into two equations: a nonhomogeneous equation with zero
initial value and a homogeneous equation with initial value. See [38] for a derivation
of similar algorithms where only increments of Brownian motion are used, which is
different from the spectral approximation of Brownian motion used here.

Now we have the following algorithm for the second moments of the approximate
solution.

ALGORITHM 2.2 (recursive multistage SCM). Choose a CONS {ep(z)}m>1 and
its truncation {e,,(z)}M_,; a time step A; and the sparse grid level L and n, which
together with the number of noises q determine the sparse grid H'? which contains
n(L, ng) sparse grid points.

Step 1. For each m = 1,..., M, solve the system of equations (2.16) on the sparse
grid H;? in the time interval [0, A] with the initial condition ¢(z) = e,,(x) and denote
the obtained solution as vg(A,z;e,,), m = 1,...,M, and k = 1,...,n(L,ng). Also,
choose a time step size dt to solve (2.16) numerically.

Step 2. Evaluate hy 1 = (Ve(A, 5€1),€m), L,m=1,...,M.

Step 3. Recursively compute the covariance matrices Hy,(t;;L,n, M), I,m =
1,...,M, as

Hlm(oa Aa La n, M) = (uﬂv el)(uﬂv em)a

M n(L,nq)
Hypm (t; A, Lin, M) = > Hjp(tiois A Lin, M) > by b gemWae, i =1, K,
j,k=1 k=1

where wug(z) is the initial condition for (2.1), and obtain the approximate second
moments MY | | (t;, x) of the solution u(t,z) to (2.1) as

M
(2.23) Mx(tbnw) = Z Him (ti; ALy n, Mej(z)en (2), i=1,...,K.

I,m=1

Remark 2.4. Similar to Algorithm 2.1, the cost of this algorithm is %n(L, ng)M*
and the storage is n(L,ng)M?. The total cost can be reduced to the order of M? by
adopting reduced-order methods in physical space; see e.g., [32]. The discussion on
computational efficiency of the recursive WCE methods (see [37, Remark 4.1]) is also
valid for Algorithm 2.2.

3. Error estimates. Though WCE and SCM use the same spectral truncation
of Brownian motion, the former is associated with the Ito—~Wick product, while the
latter is related to the Stratonovich product. Note that WCE employs orthogonal
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polynomials as a basis and SCM does not have such orthogonality. This difference
allows WCE to have a better convergence rate than SCM in the second-order moments;
see Corollary 3.2 and Theorem 3.3.

Assume that the operator £ generates a semigroup {7;},~,, which has the follow-

ing properties: for v € H*(D),
(3.) [Tl < 0 L) o

where C'(0,£) =1 and

t
(32) [ O T o < 55 £ o

S

Also, we assume that there exists a constant C (r, M) such that

(3.3) ||Mw||2k < C’(k,M)HvHiIHl forve H* ' 1=1,...,q,
and that there exists a constant C(k, £) such that

(3.4) ||/3v||i[k < C~'(k,£)||v||§{,c+2 for v € HFF2,

The conditions (3.1) and (3.3) are satisfied with & < r and (3.4) is satisfied with
k <7 —1 when the coefficients from (2.2) belong to the Holder space C; ' (D), which
is equipped with the norm

B |Dsf(x) — Dsf(y)|
I#lle; = oups, 1Pafllp - sup - =
|Bl=Lr],r>1r]

and |r] is the integer part of the positive number r; cf. [11, section 5.1]. Define also

(3.5) Cr = max {C(.O0G ~1L.M)}.

For the WCE for the SPDE (2.1) with single noise (¢ = 1), we have the conver-
gence results stated below. In the general case, we have not succeeded in proving such
theorems but we numerically check convergence orders using examples with commu-
tative noises and noncommutative noises in section 4.

THEOREM 3.1. Let ¢ =1 in (2.1). Assume that 0;1,a;;,b;,c,v1 in (2.2) belong
to C; (D) and ug € H"(D), where r > N+ 2 and N is the order of Wiener chaos.
Also assume that (2.3) holds. Then for Cy < ér, the error of the truncated Wiener
chaos solution un n(t;, ) from (2.11) is estimated as

(Ef||unn(ti, -) — ulti, ')||2])1/2

1/2
CL,,‘JT (O A)U’J—N—l 5
< AWN/2,CcT e 7] L
< O A e N T ]! so—cr| ol
~ A
Cnyo2THCLT
(3.6) + \/20N+20(N+27/3)O(Na/3)6 vl Ce WH”OHHNH’

where t; = iA, the constants 6o and Cg are from (2.3), C|,| is defined in (3.5),

C(N, L) is from (3.4), and C(N+2, L) is from (3.1).
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From Theorem 3.1, we have that the mean-square error of the recursive multi-
stage WCE is O(AN/2) + O(A). The same result is proved for ¢ = 1 and o;, = 0 in
[21], where the condition Cy < 0. is not required. Also, for the case of o;, # 0, the
mean-square convergence without order but not requiring the condition C; < §; was
proved in [20, 22].

COROLLARY 3.2. Under the assumptions of Theorem 3.1, we have

[t )] = Elf s, )| = Bl s, ) =t )|

CnT  (CpA)lrI-N=1 5 2
< AWNg2C:T | € Lr] £
< (Cnyd)e (N+1)! ]! sz —cy | Il
: A?
(3.7) + 20120 (N 42, £)C(N, L)W THCT = [lug [,

This corollary states that the convergence rate of the error in second-order mo-
ments (3.7) is twice that of the mean-square error (3.6), i.e., O(AN) + O(A?). This
corollary can be proved by the orthogonality of WCE. In fact, it holds that

(3'8) E[uz(tiv CC)] - E[uﬁ,n(tiv CC)] = E[(u(tiﬂ :E) - uNm(tiv CC))2],

as the different terms in the Cameron-Martin basis are mutually orthogonal [6]. Then
by integration over the physical domain and by the Fubini theorem, we reach the
conclusion in theorem 3.1.

For SCM for the SPDE (2.1), we have the following estimates: the first one is
weak convergence of the Wong-Zakai type approximation @a a(t,z) from (2.16) to
u(t,z) from (2.1) (see Theorem 3.3); the second one is the convergence of SCM, i.e.,
the convergence of Ma | n(ti,z) to E[ﬁi,n(ti, x)] (see Theorem 3.4). Here we prove
the convergence rate when o; , = 0, which belongs to the case of commutative noises
(2.4). Our proof for Theorem 3.3 is based on the mean-square of convergence of
the Wong—Zakai type approximation (2.16) to (2.1). When o;, # 0, we have not
succeeded in proving this mean-square convergence and, as far as we know, only a
rate of almost sure convergence of the Wong—Zakai type approximations to (2.1) has
been proved so far [13].

THEOREM 3.3. Assume that 0;,» = 0 and that the initial condition uy and the
coefficients in (2.2) are in CZ(D). Let u(t,z) be the solution to (2.1) and ta n(t, )
be the solution to (2.16). Then for any e > 0, there exists a constant C > 0 such that
the one-step error is estimated by

(3.9)  [E[3(A,2)] — E[i (A, )] < Cexp(CA)A® + A1+,
and the global error is estimated by
(3.10) |E[u?(t;, 2)] — E[GA ,(ti, 2)]] < Cexp(CT)An"'*e, 1 <i<K.

The following theorem is on the convergence of the second moments by SCM to
those of the solution to (2.16).

THEOREM 3.4. Let Uan(t,x) be the solution to (2.16) and Ma L n(ti,z)be the
limit of MX)L)n(ti,x) from (2.23) when M — oco. Under the assumptions of Theorem
3.3, for any € > 0, the one-step error is estimated by

}MA,L,n(Aa 3:) - ]E[aZA,n(Aa 33)”
< Cexp(CA) (A% + A% (1 + (3¢/2)H ) g~ (LAm/ 2L ~1pte
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and the global error is estimated by, for 1 <i <K,
IMa,Ln(ti, @) — E[@4 o (ti, 2)]| < Cexp(CT)AT (1 + (3¢/2)"") 3~ (A0 2e =t ~nte,

Here the positive constants C, ¢, 8 < 1 are independent of A, L, and n. The expres-
sion L A n means the minimum of L and n.

According to Theorems 3.3 and 3.4, the error of the SCM is O(AZL=1) + O(A)
in the second-order moments. Compared to Corollary 3.2, the SCM is of one order
lower than WCE when N = 2 as the error of WCE is O(AN) + O(A?).

4. Numerical results. In this section, we compare Algorithms 2.1 and 2.2 for
linear stochastic advection-diffusion-reaction equations with commutative and non-
commutative noises. We will test the computational performance of these two methods
in terms of accuracy and computational cost. All the tests were run using MATLAB
R2012b, on a Macintosh desktop computer with Intel Xeon CPU E5462 (quad-core,
2.80 GHz). Every effort was made to program and execute the different algorithms
as much as possible in an identical way.

We note that we do not have exact solutions for all examples and hence eval-
uate the errors of the second-order moments using reference solutions, denoted by
E[u?;(T,z)], which are obtained by either Algorithm 2.1 or Algorithm 2.2 with fine
resolution. We do not use solutions obtained from Monte Carlo methods as reference
solutions since Monte Carlo methods are of low accuracy and are less accurate than
the recursive multistage WCE; see [37] for a comparison between WCE and Monte
Carlo methods, and also see below.

The following error measures are used in the numerical examples below:

. T
(41) 92 _|||]E rcf ||[2 HMX(T3)||l2|a 92)2(T) ||E QQ( ) ||
rcf 12
7,00 T
(42) (1) = |[Bike(T M ~ MR D], 50 = s QZ“H
ref [0

where MY (T, z) is either MA N (T @) from Algorithm 2.1 or MX)L’n(T, x) from Al-

gorithm 2.2, ||v le = Vﬂzmzl 02 (2m))?, Hszoo = maxi<m<m [v(zp)|, and x,, are
the Fourier collocation points.

The computational complexity for Algorithm 2.1 is (N+"q) M* (see [37]) and that
for Algorithm 2.2 is n(L,ng) X M*. The ratio of the computational cost of SCM over
that of WCE is n(L, nq)/(N+"q). For example, when N = 1 and L = 2, the ratio is
(1+2nq)/(14ngq), which will be used in the three numerical examples. The complexity
increases exponentially with ng and L (see, e.g., [12]) or N but increases linearly with
%. Hence, we only consider low values of L and N.

Ezample 4.1 (single noise). We consider a single noise in the Ito SPDE (2.1) over
the domain (0,77 x (0, 27),

(4.3) du = |:<e + %U2> O2u + Bsin(x)dpu| dt + cdpudw(t),

or equivalently in the Stratonovich form,
(4.4) du = [€0?u + Bsin(x)0,u] dt + cOyu o dw(t),

with periodic boundary conditions and nonrandom initial condition «(0, z) = cos(x),
where w(t) is a standard scalar Wiener process, and € > 0, 3, o are constants.
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TABLE 1
Algorithm 2.1: recursive multistage Wiener chaos method for (4.3) at T =5: 0 = 0.5, = 0.1,
e =0.02, and M =20, n=1.

A ot N g;’z (T) Order | 0y°°(T) Order CPU time (sec.)
1.0e-1  1.0e-2 1  1.5249¢-2 - 8.8177e-3 3.57
1.0e-2  1.0e-3 1  1.5865e-3 A998 | 89310e-4 A0 33.22
1.0e-3  1.0e-4 1 1.5934e-4 A0 | 89429e-5 AL-00 348.03
1.0e-1  1.0e-2 2  1.9070e-4 - 4.1855e-5 - 5.14
1.0e-2  1.0e-3 2 2.0088e-6 A9 | 42889e-7 AL 51.75
1.0e-3  1.0e-4 2 2.0386e-8 A9 | 48703e-9 Al 490.04

In this example, we compare Algorithms 2.1 and 2.2 for (4.3) with the parameters
B8 =0.1,0 =0.5 and € = 0.02. We will show that the recursive multistage WCE is at
most of order A2 in the second-order moments and the recursive multistage SCM is
of order A.

In Step 1, Algorithm 2.1, we employ the Crank—Nicolson scheme in time and
Fourier collocation in physical space. We obtain the reference solution by Algorithm
2.1 with the same solver but finer resolution as a reference solution® since we have
no exact solution to (4.3). The reference solution is obtained by M = 30, A =

1074, N = 4, n = 4, 6t = 107°. It gives the second-order moments in [?>-norm
|E[uZ]]|,,=1.065194550063 and in the [°*-norm ||E[uZ]||,..=0.5174746141105.

From Table 1, we observe that the recursive WCE is O(AN) 4+ O(A?) for the
second-order moments. When N = 2, the method is of second-order convergence in
A and of first-order convergence when N = 1. When N = 3, the method is still
second-order in A (not presented here). This verifies the estimate in Corollary 3.2.

In Step 1, Algorithm 2.2, we use the Crank—Nicolson scheme in time and Fourier
collocation method in physical space. The errors are also measured as in (4.1) and
(4.2). The reference solution is obtained by Algorithm 2.1 as in the case of WCE. We
observe in Table 2 that the convergence order for second-order moments is one in A
even when the sparse grid level L is 2, 3, and 4 (the last is not presented here). The
errors for L = 3 are more than half in magnitude smaller than those for L = 2, while
the time cost for L = 3 is about 1.5 times of that for L = 2.

In summary, from Tables 1 and 2, we observe that the recursive multistage WCE
is O(AN) + O(A?) and the recursive multistage SCM is O(A), as predicted by the
error estimates in section 3. While the SCM and the WCE are of the same order
when N = 1 and L > 2, the former can be more accurate than the latter. In fact,
when N = 1 and L = 2, the recursive multistage SCM error is almost two orders of
magnitude smaller than the recursive multistage WCE, while the computational cost
for both is almost the same, as predicted ((NT\I"‘Z) = n(L,ng) = 2). The recursive
multistage WCE with N = 2 is of order A? and its errors are almost two orders of
magnitude smaller than those by the recursive multistage SCM (with level 2 or 3) for
the second-order moments.

LFor single noise, it is proved in Theorem 3.1 that the recursive multistage WCE is of second-order
convergence in second-order moments. The second-order convergence is numerically verified in [37].
For this specific example, a Monte Carlo method with 106 sampling paths (which costs 27.6 hours)
gives ||E[u?;o]|| = 1.06517£6.1 x 10~* and HIE[ulzwc}Hoo = 0.51746 £ 6.1 x 10~%, where the numbers
after + are the statistical errors with the 95% confidence interval. We use Fourier collocation in
space with M = 20 and Crank-Nicolson in time with 6t = 103 for the Monte Carlo method.
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TABLE 2
Algorithm 2.2: recursive multistage SCM for (4.3) at T =5: 0 = 0.5, § = 0.1, e = 0.02, and
M =20, n=1.

A ot L g;’Q(T) Order | 05> (T) Order CPU time (sec.)
Te-01 1e-02 2  3.4808e-04 - 3.0383e-03 - 3.71
1e-02  1e-03 2 3.4839¢-05 AN00 | 3.0130e-04 Al00 33.88
1e-03  1le-04 2 3.4844e-06 A190 | 3.0106e-05 A1.00 325.06
Te-01 1e-02 3  1.6815e-04 - 3.4829¢-04 - 5.16
1le-02  1e-03 3 1.6230e-05 AN02 | 3.2283e-05 Al03 50.59
1e-03  1le-04 3 1.6170e-06 A0 | 3.2026e-06 A0 486.08

In this example, the recursive multistage SCM outperforms the recursive multi-
stage WCE with N = 1. The reason can be as follows. In SCM, we solve an advection-
dominated equation rather than a diffusion-dominated equation in WCE, as SCM is
associated with the Stratonovich product which leads to the removal of the term
$029%u in the resulting equation; see (4.4). The larger o is, the more dominant the
diffusion is. In fact, results for ¢ = 1 and o = 0.1 (not presented here) show that
when o = 1, the relative error of SCM with L = 2 is almost three orders of magnitude
smaller than WCE with N = 1; when o = 0.1, the relative error of SCM with L = 2
is only less than one order of magnitude smaller than WCE with N = 1. With the
Crank—Nicolson scheme in time and Fourier collocation in physical space, we cannot
achieve better accuracy for WCE with N = 1 and A no less than 0.0005 when M < 40.

Ezample 4.2 (commutative noises). We consider two commutative noises in the
Ito SPDE (2.1) over the domain (0,7 x (0, 27),

du = Ke + %a% cosz(x)> Do+ (ﬁ sin(z) — %U% Sin(%)) 31“} dt

(4.5) + 01 cos(z)0pu dwy (t) + oau dws(t),
or equivalently in the Stratonovich form,
(4.6)  du = [ed2u + Bsin(2)dpu] dt + o1 cos(2)dpu o dw (t) + oauo dws(t),

with periodic boundary conditions and nonrandom initial condition w(0,x) = cos(x),
where (w1 (t),w2(t)) is a standard two-dimensional Wiener process, and € > 0, S,
o1, 09 are constants. The problem has commutative noises; see (2.4).

In this example, we take o1 = 0.5, 09 = 0.2, 8 = 0.1, e = 0.02. We again observe
first-order convergence for SCM and WCE with N = 1 and second-order convergence
for WCE with N = 2 as in the last example with single noise.

We choose the same space-time solver for the recursive multistage WCE and
SCM as in the last example. We compute the errors as in (4.1) and (4.2). In Table 3,
the reference second moments are ||MX:10_47N7n(T, ))Hl2 and ||MX:10_47N7n(T, )Hloc
obtained by Algorithm 2.1 with §¢ = 107° and all the other truncation parameters
are the same as stated in the table. In Table 4, the reference second moments are
[MYX_ 1 g-s o (D] and [[MX_ s ()], obtained by Algorithm 2.2 with 6t =
1072, while all the other truncation parameters are the same as in the table.

Here we do not compare the performance of Monte Carlo simulations with our
algorithms as the main cost of Monte Carlo methods is to reduce the statistical errors.
For the same parameters described above, when we used 10° Monte Carlo sampling
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TABLE 3
Algorithm 2.1: recursive multistage WCE for commutative noises (4.5) at T = 1: o1 = 0.5,
09 =02, B=0.1, e = 0.02, and M = 30, n = 1.

A ot N QS’Q(T) Order | 05> (T) Order CPU time (sec.)
Te-01 1e-02 1 1.6994e-03 - 1.6548¢-03 - 3.19
1e-02  1e-03 1  1.7838e-04 A998 | 1.7172e-04 A0-98 32.74
1e-03  1le-04 1  1.6323e-05 A0 | 1.5694e-05 Al04 329.15
le-01 1e-02 2  4.0658e-05 — 2.9568e-05 — 6.53
1le-02  1e-03 2 4.4805e-07 A'96 | 3.3106e-07 Al-9 65.89
1e-03  1le-04 2 4.4682e-09 A200 | 33484e-09 A200 657.55

TABLE 4

Algorithm 2.2: recursive multistage SCM for commutative noises (4.5) at T = 1: o1 = 0.5,
09 =02, B=0.1, e = 0.02, and M = 30, n = 1.

A ot L @;’Q(T) Order | 05> (T) Order CPU time (sec.)
Te-01 1e-02 2 1.3624e-04 - 1.2453e-03 - 5.18
1e-02  1e-03 2 1.3064e-05 A102 | 1.2009e-04 A1.02 54.70
1e-03  1le-04 2 1.1837e-06 AN0% | 1.0889e-05 Al-04 545.20
Te-01 1e-02 3  2.5946e-04 - 2.0482e-04 - 13.26
1le-02  1e-03 3 2.5437e-05 A0l | 1.7897e-05 Al-06 142.23
1e-03  1le-04 3 2.3102e-06 AN0% | 1.6062e-06 Al05 1420.24

paths, we could only reach the statistical error of 8.3 x 1074, in 3.9 hours. To obtain
an error of 1 x 1075, 7000 times more Monte Carlo sampling paths should be used,
requiring 3 years of computational time and thus not considered here. In the next
example, we have similar situations and hence we will not consider Monte Carlo
simulations. This also demonstrates the computational efficiency of Algorithms 2.1
and 2.2 in comparison with Monte Carlo methods.

For WCE, we observe in Table 3 convergence of order AN (N < 2) in the second-
order moments: first-order convergence when N = 1, and second-order convergence
when N = 2. Numerical results for N = 3 (not presented here) show that the conver-
gence order is still two even though the accuracy is further improved when N increases
from 2 to 3. This is consistent with our estimate O(AN) + O(A?2) in Corollary 3.2.

We also tested the case n = 2, which gives similar results and the same convergence
order.

For SCM, we observe first-order convergence in A from Table 4 when L = 2, 3.
We note that further refinements in truncation parameters in random space, i.e.,
increasing L and/or n, do not change the convergence order or improve the accuracy.
The case L = 3 actually leads to somewhat worse accuracy, compared with the case
L = 2. We tested the case L = 4, which leads to the same magnitudes of errors as
L = 3. We also tested n = 2 and observed no improved accuracy for L = 2,3,4. These
numerical results are not presented here.

For the two commutative noises, we conclude from this example that the recursive
multistage WCE is of order AN + A? in the second-order moments and that the
recursive multistage SCM is of order A in the second-order moments no matter what
sparse grid level is used. The errors of recursive multistage SCM are one order of
magnitude smaller than those of recursive multistage WCE with N = 1, while the
time cost of SCM is about 1.6 times of that cost of WCE. For large magnitude of
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TABLE 5
Algorithm 2.1 (recursive multistage WCE, left) and Algorithm 2.2 (recursive multistage SCM,
right) for (4.7) at T =1: 01 = 0.5, 02 = 0.2, 8=0.1, ¢ = 0.02, and M = 20, n = 1. The time step
size 0t is A/10. The reported CPU time is in seconds.

A N @;’2(T) Order  Time (sec.) ‘ L @;’2(T) Order  Time (sec.)
1.0e-1 1  3.7516e-03 — 1.04 2 6.4343e-04 - 1.65
5.0e-2 1 1.8938e-03  A0-99 2.11 2 3.1738¢-04  AL02 3.31
2.0e-2 1  7.5292e-04  Al01 5.12 2 1.2440e-04  A1.02 8.64
1.0e-2 1 3.6796e-04  AL03 10.19 2 6.0502e-05 Al04 17.12
5.0e-3 1 1.7457e-04  A1-08 20.01 2 2.8635e-05 ~ ALO8 33.82
2.0e-3 1 5.8246e-05 A1:20 50.39 2 9.5401e-06  Al-12 86.44
1.0e-1 2 9.4415¢-05 - 2.16 3 1.5803e-04 - 4.03
5.0e-2 2 3.7303e-05 Al81 4.11 3  7.6548e-05 Al05 8.68
2.0e-2 2 1.2282e-05  Al:34 9.97 3 2.9673e-05  ALO3 22.08
1.0e-2 2 5.5807e-06  Al-21 20.03 3 1.4378-05  Al05 43.85
5.0e-3 2 2.5471e-06 ~ Al-14 40.25 3 6.7925e-06  AL08 88.35
2.0e-3 2 8.2965e-07 A2 101.34 3 2.2605e-06  Al-20 223.15

noises (01 = 02 = 1; numerical results are not presented), we observed that the SCM
with L = 2 and WCE with N = 1 have the same order-of-magnitude accuracy. In this
example, the use of SCM with L = 2 for small magnitude of noises is competitive with
the use of WCE with N = 1.

Ezample 4.3 (noncommutative noises). We consider two noncommutative noises
in the Ito SPDE (2.1) over the domain (0,77 x (0, 27),

du = [(e + %a%) O2u + Bsin(x)0yu + %ag cos?(z)u| dt
(4.7) + 010zu dwy () + o2 cos(x)u dws(t),
or equivalently in the Stratonovich form,
(4.8)  du = [ed2u + Bsin(2)dpu] dt + 010,u 0 dwy (t) + oz cos(z)u o dws(t),

with periodic boundary conditions and nonrandom initial condition «(0, z) = cos(x),
where (w1 (t), w2(t)) is a standard Wiener process, and € > 0, 8, 01, 02 are constants.
The problem has noncommutative noises as the coefficients do not satisfy (2.4).

We take the same constants € > 0, 3, o1, 02 as in the last example. We also take
the same space-time solver as in the last example. In the current example, we observe
only first-order convergence for SCM (level L = 2,3,4) and WCE (N = 1,2,3) when
n = 1,2; see Table 5 for parts of the numerical results.

The errors are computed as in the last example. The reference solutions are ob-
tained by Algorithm 2.1 for the recursive multistage WCE solutions and by Algorithm
2.2 for the recursive multistage SCM solutions, with A =5 x 10~% and 6t = 5 x 107°
and all the other truncation parameters the same as stated in Tables 5 and 6.

In this example, our error estimate for recursive multistage WCE is not valid any
more and the numerical results suggest that the errors behave as AN + CA/n. For
N = 1 and n = 10 (not presented), the error is almost the same as n = 1. While
N = 2 and n = 10, the error first decreases as O(A?) for large time step size and
then as O(A) for small time step size; see Table 6. When N = 2 and n = 10, the
errors with A = 0.005,0.002,0.001 are 10% (1/n) of those with the same parameters
but n = 1 in Table 5. Here the constant in front of A, C/n, plays an important
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TABLE 6
Algorithm 2.1: recursive multistage WCE for (4.7) at T = 1: o1 = 0.5, o2 = 0.2, § = 0.1,
e = 0.02. The parameters are M =20, N = 2, and n = 10. The time step size 6t is A/10.

A oy2(T) Order | 05 (T Order CPU time (sec.)
1.0e-1  4.9310e-05 - 2.6723e-05 - 84.00
5.0e-2  1.4031e-05 A'81 | 7.3571e-06 A1-86 160.50
2.0e-2  2.9085e-06 ATl | 1.4171e-06 ~ A!-80 391.40
1.0e-2  9.8015e-07 AT | 4.4324e-07 AL68 749.40
5.0e-3  3.5978e-07 Al45 | 1.5082e-07 Al 1557.60
2.0e-3  9.8910e-08 A4l | 3.8369e-08 A9 3887.50

role: when A is large and this constant is small, then the order of two can be ob-
served; when A is small, CA/n is dominant so that only first-order convergence can be
observed.

The recursive multistage SCM is of first-order convergence when L = 2, 3,4 and
n = 1,2,10 (only parts of the results presented). In contrast to Example 4.2, the
errors from L = 3 are one order of magnitude smaller those from L = 2. Recalling
that the number of sparse grid points is 1(2,2) = 5 and 7(3,2) = 13, we have the
cost for L = 3 is about 2.6 times of that for L = 2. However, it is expected that in
practice, a low-level sparse grid is more efficient than a high-level one when nq is large
as the number of sparse grid points 7(L, ng) is increasing exponentially with ng and
L. In other words, L = 2 is preferred when SPDEs with many noises (large ¢) are
considered.

As discussed in the beginning of this section, the ratio of time cost for SCM
and WCE is n(L, nq)/(NE"q). The cost of recursive multistage SCM with L = 2 is
at most 1.8 times (1.6 predicted by the ratio above, ¢ = 2 and n = 1) of that of
recursive multistage WCE with N = 1. However, in this example, the accuracy of the
recursive multistage SCM is one order of magnitude smaller than that of the recursive
multistage WCE when N = 1 and L = 2. In Table 5, we present in bold the errors
between 3.5 x 107° and 8.0 x 10~°. Among the four cases listed in the table, the most
efficient, for the given accuracy above, is WCE with N = 2, which outperforms SCM
with L = 3 and L = 2. WCE with N = 1 is less efficient than the other three cases.
We also observed that when o1 = 09 = 1, SCM with L = 2 is one order of magnitude
smaller than WCE with N =1 (results not presented here).

For noncommutative noises in this example, we show that the error for WCE is
A? + CA/n and the error for SCM is A. The numerical results suggest that SCM
with L = 2 is competitive with WCE with N = 1 for both small and large magnitude
of noises if n = 1.

With these three examples, we observe that the convergence order of the recursive
multistage SCM in the second-order moments is one for commutative and noncom-
mutative noises. We verified that our error estimate for WCE, AN 4+ A2, is valid for
commutative noises (see Examples 4.1 and 4.2); the numerical results for noncommu-
tative noises (see Example 4.3) suggest the errors are of order AN + CA/n, where C
is a constant depending on the coefficients of the noises.

For stochastic advection-diffusion-reaction equations, different formulations of
stochastic products (Ito—Wick product for WCE, Stratonovich product for SCM) lead
to different numerical performances. When the white noise is in the velocity, the Ito
formulation will have stronger diffusion than that in the Stratonovich formulation in
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the resulting PDE. As stronger diffusion requires more resolution, the recursive multi-
stage WCE with N = 1 may produce less accurate results than those by the recursive
multistage SCM with L = 2 with the same PDE solver under the same resolution, as
shown in the first and third examples.

To achieve convergence of approximations of second moments with first order in
time step A, we can use the recursive multistage SCM Algorithm 2.2 withL =2, n =1,
and also the recursive multistage WCE Algorithm 2.1 with N = 1, n = 1, as both can
outperform each other in certain cases. For commutative noises, Algorithm 2.1 with
N = 2 is preferable when the number of noises, ¢, is small and hence the number of
WCE modes is small so that the computational cost would grow slowly.

We also note that the errors of Algorithms 2.1 and 2.2 depend on the SPDE co-
efficients and integration time (cf. theoretical results of section 3). For some SPDEs,
the constants at powers of A in the errors can be very large and, to reach desired
levels of accuracy, we need to use very small step size A or develop numerical al-
gorithms further (e.g., higher-order or structure-preserving approximations; see such
ideas for stochastic ordinary differential equations, e.g., in [26]). Further, in practice,
we need to aim at balancing the three parts (truncation of Wiener processes, func-
tional truncation of WCE/SCM, and space-time discretizations of the deterministic
PDEs appearing in the algorithms) of the errors of Algorithms 2.1 and 2.2 for higher
computational efficiency.

5. Proofs.

5.1. Proof of Theorem 3.1. The idea of the proof is to first establish an
estimate for the one-step (A = T') error where the global error can readily derived
from. We need the following two lemmas for the one-step errors. Introduce (cf. (2.6))

(5.1) un(t, x) = Z \/_goa(t , )0

la|<N, ae T,

LEMMA 5.1. Let ¢ =1 in (2.1). Assume that 01,04 ;,b;,c,v1 belong to C;H(D)
and uy € H™ (D), where r > N+ 1. Let u in (2.6) be the solution to (2.1) and un is
from (5.1). For Cy < ., the following estimate holds:

Ef||u(A,-) — un(A, )] < (CpA)N+e20en
eCL"‘JA (OLTJ A) J N—1 5£ )
(N+1)! 5o | el

where the constants oz and Cr are from (2.3) and C|,| is from (3.5).
LEMMA 5.2. Under the assumptions of Lemma 5.1 and r > N + 2, we have

Bl unn (8, — (A )] < 25 CN + 2, LGN, £)Cn 2620524202 g [,

where Cr is from (2.3), C(N 42, L) is from (3.1), C(N, L) is from (3.4), and Cnyo
is from (3.5).

Using Lemmas 5.1 and 5.2, we can establish the estimate of the global error
stated in Theorem 3.1. Specifically, the one-step error is bounded by the sum of
E[(u(A) — un(A))?] and E[(un(A) — un.a(A))?], which are estimated in Lemmas 5.1
and 5.2. Then, the global error is estimated based on the recursion nature of Algorithm
2.1 as in the proof in [21, Theorem 2.4], which completes the proof of Theorem 3.1.
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Now we proceed to proving Lemmas 5.1 and 5.2. Let us denote by s* the ordered
set (s1,...,5%), and for k > 1, denote ds* := ds; ... dsi, and

/(k)(...)dsk:/OA/OSk.../Osz(...)dslmdsk,
/(k)(...)dsk:/OA/:_._/S:(...)dskmd82d817

and F(A;s*;2) = Ta_ s M - Toy— s, MTo, up (), where M := M.

Proof of Lemma 5.1. It follows from (2.3) and the assumptions on the coefficients
that (3.1) and (3.2) hold; cf. [11, section 7.1.3]. Also, by the assumption that o; 1,11
belong to C; (D), it can be readily checked that (3.3) holds.

By (2.6), (5.1) and orthogonality of &, (see (2.7)), we have

2 [pa(a,I[
Bflu(a, ) — (@)= 30 >0 F—
k>N |a|=k ’
Similar to the proof of Proposition A.1 in [21], we have
2(A (k)
Z ACE)) |,x) :/ |F(A;sk;x)‘2 ds®.
al
|| =k
Then by the Fubini theorem,

oA (k)
(5.2) 3 w :/ [F(A;8%;)||” ds”.

|| =k

Assume that r > 0 is an integer. When r > 0 is not an integer, we use |r| instead.

Denote Xy, = Ty, —5, M+ Toyes, MTs, w0, Yo = MXp, k> 1, and also X =
TAfskYk. Then Xk = 'Tskfsk_lykfl and kal = Mkal.
By the definition of F, (3.1), (3.3), and (3.5), we have for r > k

Rl L PR PR
< G0, M=

< Ce2CeBmsen||y, |7, < < CFROEA fug |,

where C(r — 1, M) is from (3.3) and Cy, is defined in (3.5). We then have

(k) ) e [
(5.3) / |F(A;s7; )" dsh < Cfe*©- ||u0HHk/ ds”.
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If r < k, by changing the integration order and applying (3.1), (3.3), and (3.2), we
get

(k) ) ® )
[ Ir@iskolast = [P ast = [P ast
(k)

/ eQCL(A—sk)HYkHQdSk:/ eZCc(A—Sk)HMikaHZdSk
(*) "

COM) [ e x, 3, ds*
(k)

IN

IN

A
co.m) [ [T Ay, sy st
(k—1) Jsp—1
§52101/ EQCL(A_S’“’l)‘|Yk—1‘|2 dsk—17
(k—1)

where ' is from (3.5). Repeating this procedure and using (5.3), we obtain

(k)
/ HF(t; sk )H2 dsk < 52—k0{<—r/ o2Cc(A=s,) |Yr||2dsr
(r)
(r)
(5.4) < 52_kcf_TC;€2CLtHUOHZT/ ds”.

By (5.1), (5.2), (5.3), and (5.4), and f(k) ds® = Ak—f, we conclude that, for r > N+1
and C < 5/;,

(k) (k)

E[HU(AW)—UN(AM)HQ] = Z / HF(A;Sk;-)Hstk—I—Z/ HF(A;Sk;-)HQdSk

N<k<r k>r
Ak 2 AT r 2 r— —r
< D S COreE A fuoly + - Cre* e uo |y, D 0p CT
N<k<r k>r
CrA CTA r—N-—1 §
€ ( ) L :| ||1,L0‘

NTDl T T oG H

N e

Remark 5.1. Lemma 5.1 holds for r = oo if Css < 00. Based on (5.3), we can
prove that

2 AF 2
Ef||u(A,-) —un(A,9)]|7] < Z ﬁcfoew‘AHuoHHk
k>N

eCooA
(N+1)!

If r < oo, we need to require that C7 < dg, ie, C(0, M)C(1,L) < 6z. For
example, L = A\, My = %Dl, for which C'(0, M)C(1, L) = % <o, =1.

Proof of Lemma 5.2. Tt can be proved as in [21, p. 447] that

< (OOOA)N+162C‘:A

ol

N N - A(A,)
(5.5) Effun(A,) —una(A,)F = D0 Y > :

al
I1>n+1 k=1 |a|=k,i¢ =1
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where ilo‘a‘ is the index of the last nonzero element of o and the last summation in the
right-hand side can be bounded by (see [21, (3.7)])

2

k Sj+1
/ Fj(A;sF; )M (s;) ds; ds?7
j—1

2 (k—1)
Z SDOL(A'7:'C) < / Z
la|=k,ig=l o j=1

where ds? = dsy---dsj_1ds;jq1 - dsg, S0 =0, spr1 1= A, M;(t) = fot my(s) ds, and

OF(A;s*; )

Fj(A; sk x) = 7s;

= TA*S]CM e 7;j+178]‘M£7;j78]‘71 e 7.’91”0(‘%)

—Ta—seM--MLT,, s, - Tsup(x) =: Fjl + Fj2.

Then by the Fubini theorem and the Cauchy—Schwarz inequality, we have

H‘pa ) (k=1) 2 Sj+1 ) .
Z < k/ Z/ HF a)” ds; / M (s;) ds; dsj.

|| =k, i =l
We claim (see its proof below) that
I35l < 2 o, 2P < 20K, a0 £+ 017 ol

Thus, by (5.6) we have

(5.7) eI _ peact, cth +2, 000, £ fuolns [ a12yas [ ast
7 IR coract ot 2 000 02l [ a0 [T ask

|| =k,ig =1

Then by (5.5), (5.7), and M;(t) = l@ sin(“17¢) (by (2.12)), we obtain that

Z l e2CcA
—1)2

I A

EllJun(A, ) — unn(A, )]
2kAF

I>n+1
N

X Z Crr2Ck +2,L)C(k, E)H”OH?LIH? (k—1)!
k=1 .

kAk_l

2A3
nr? (k—1)!

nm?

20° : 20N12A+42C A 2
—ON+QC(N +2,L)C(N, L)+ 2 o [Fgns-

N
20Nk Ok, £)C(k + 2, L) [uo [
k=1

IN

IN

It remains to prove (5.6). Note that it is sufficient to estimate HF}H due to
the same structure of the two terms in F;(A;s*;z). By the assumption that a;; b;
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and ¢ belongs to C) 73(D), it can be readily checked that (3.4) holds with I < N + 1.
Repeatedly using (3.1) and (3.3) gives
1112 2
HFj H = HTA—SkM o Toyyn—s, MLy -5y ~7;1u0H
s 2
< P0el® k)HM w Tsia—s; METs 55 1 '7;1UOH
~ s 2
< O(O,M)ch‘(A k)H’];k_Sk71 o Togin—s, ML, s, "'7;1UOHH1
< Gre?CelBrey) HM Ty s, MET ;50 - 'TgluOHiIl
—j s 2
e < O}’:i;eQCa(A J)HME'];J__Sj_l "'7;1u0Hkaj
i . s, 2
CJI:—JJ'C(/“ - JaM)em‘:(A J)HﬁTsrsj-ﬂ T 7§1U0||Hk—j+1
A . ~ , iy 2
<CEIC(k — . M)C(k — j+ 1, L) Ty o Toyuo| e
k—j+1 5 ) s 2
< Ck—j—tilc(k — i+ 1’£)e2C£(A ])||,7;j73j—1M . "7-S1U’OHH1¢—J'+37

IN

IN

where we have used (3.4) in the next-to-last line and the fact that C'(k—j+1,£) > 1.
Similarly, we have

H7;j—5j—1M T 7;1u0||ilk—j+3 < O(k —J+3 L)ClzJ_r;EQCLSj ||u0HiIk+2'

Thus, we arrive at (5.6). This ends the proof of Lemma 5.2. O

5.2. Proof of Theorem 3.3. To prove Theorem 3.3, we need a probabilistic
representation of the solution to (2.1). Let ({Bx(s)},1 < k < d,FP) be a sys-
tem of one-dimensional standard Wiener processes on a complete probability space
(QY, F1,Q) and independent of w(s) on the space (Q® Q! F® F!, P® Q). Consider
the following backward stochastic differential equation on (Q*, F!,Q) for 0 < s < ¢:

d
(5.8) dX12(s) = b(Xi2(s) ds + > an(Xio(5)) dBy(s), Xia(t) =2

r=1

The symbol “d” means backward integral; see, e.g., [19, 30] for treatment of backward
stochastic integrals. The d x d matrix «(z) is defined by a(z)aT(z) = 2a(z). Here
a(x) and b(z) are from (2.2). Consider the following backward stochastic differential
equation on (@ QL FR FLP® Q) for 0 <s<t:

(5.9) dVi1.(s) = (Xt (5) Vi a(s)ds + S0 vr(Xe 2(8) Vi o(s)] dwy,  Yina(t) =1.

Here c¢(z) and v, (z) are from (2.2). When ug(z) € CZ(D) and a(x), b(x), c(x), vr(z) €
CY(D) and 0;,, = 0, the solution to (2.1)-(2.2) can be represented by (see e.g., [19])

(5.10)

u(t,z) =Eq

uo(X+.2(0)) exp (Z /0 (Xt (s)) dw,(s) + /O c(Xm(s))dsﬂ,

where ¢(z) = c(z) — £ >0, V2 ().

Here we first establish the one-step error (3.9) and then the global error (3.10)
We follow the recipe of the proofs in [16, Theorem 3.1] and [5, Theorem 4.4], where
n=1and K> 1.

We need the following mean-square convergence rate for the one-step error.
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PROPOSITION 5.3 (mean-square convergence). Assume that o;, = 0 and that
the initial condition ug and the coefficients in (2.2) are in CZ(D). Let u(t,z) be the
solution to (2.1) and tUa n(t,x) the solution to (2.16). Then for any e >0,

(5.11) E[Ju(A, z) — iian(A, z)|°] < Cexp(CA)(A? + A?)n~1He,
where the constant C' > 0 is independent of n.

Proof. The solution to (2.16) using the spectral truncation of Brownian motion
wﬁA’") from (2.13) can be represented by (see, e.g., [5, 16])

(5.12)
Uan(A, ) :EQ[U()(XA@(O))GXP > 1f0 v ( XAI(S))dw(A ") (s) —l—f XAL ))ds)].

Using e* — e¥ = e?*+(1=9y(z —y), 0 < # < 1, boundedness of &(x) and ug(z), and the
Cauchy—Schwarz inequality (twice), we have for some C' > 0

(5.13)
Ellian(A, z) - u(A, )|

A A A~
= E[ <EQ[UO(XA,r(O)) eXp (/0 E(XA,z(S)) dS)

a A . A
X exp <Z/0 v (XA ()]0 dwﬁA’")(s) +(1-90) dwr(s)]>

(Z / (X a0 () dw®™ (s) ciwr<s>1>D2]

q A R .
(EQ exp (Z / vp (X2 (3)[0 duw®) (5) + (1 - 0) dwr<s>1>
r=1

vr(Xa () [dw®™(s) — dw,(s)] D ]
1/2
< Cexp(CA) < EQlexp (Z/ A (X a2 ()]0 dw>™ (s) + (1 — ) Jw,&s)])”)

Recall that E[-] = Ep[-] is the expectation with respect to P only. Hence, we need to
estimate I = (E[Eo[(Z1o, fy v (Xa.o()[dwf>"(s) — dw.(s)])*]))/* and

¢ LA 1/2
I, = (El <EQ exp <Z/o 4VT(XA7w(S))[9 dw£A7")(s) +(1-90) ciwﬂs)])})]) )

< Cexp(CAE

A X R 4
(Z / V(X 0(5)) [ duw ) (5) - dwr(8)1>
r=1
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We first estimate I;. Due to the independence of By and w,., and according to [28]
and (2.5), we have

A . . A .
| rRasto) dun() = [ v (Xauls)) o duy (s
0 0

A
= {}71‘/ Ur(Xa z(s))myi(s)ds.
i=0 0
Thus by the Fubini theorem, (2.5), and (2.13), we can represent I; as
1/2

q A A
L= |EQfE||) [/0 VT(XA@(S))dwﬁA’")(S)—/O vr(Xau(s)) 0 dwr(S)l

]

L Lir=1
[ [| ¢ oo A R 4 1z
= | EqE Z Z fm'/ Vr( XA (8))myi(s)ds H
L Llr=14=n+1 0
1/2

IN

r=114i=n+1

q A R 2\ ?
3EQ[ Sy < /O VT(XA,I(S))mT,i(s)ds> ] ,

where we have used twice the fact that X A,z are independent of w, and ng’"). Then
by standard estimates of L?-projection error (cf. [7, (5.1.10)]), we have for 0 < & < 1,

2
[e'e} A R R 2
(5.14) Z (/0 Vr (XA z(8))mei(s) ds) < OAY“En e | (XaL () e oAl
i=n+1 2 b

where the Slobodeckij seminorm ||, , o ) is defined by ([, [y LE=LWE da: dy) /v

0 Jz—yP?T!

and the constant A'=¢ appears due to the length of domain; see, e.g., [7, Chapter

5.4]. Thus, we obtain
, 1/2
(Xa(- .0 1.
vr(Xaz(4)) 12;572’[()“]) <e<

q
(5.15) I, < CA'~en~1te (ZEQ
r=1

By (5.8) and the Ito formula, we have

Raa(s) = Kan(st) = / T B(Xan(s5)) dsa

S1

+ > ar(Xa2(s1))[Br(s) — Bi(s1)] + R(s1,9),
k=1

where Eq[|R(s1,s)|*] < Cls1 — s[> (I > 1) when b(z) and ax(z) belong to C2(D).
By the Lipschitz continuity of 1, the definition of the Slobodeckij seminorm, it is not
difficult to show that

4

(5.16) Eq||vr(Xaw())

< C(A4+25 4 A2+26).
5€.2,0,A]|
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Thus, by (5.15) and (5.16), we have
(5.17) I, <C(A% + A*)n—1Te,

Now we estimate I. Using the facts (see, e.g., [16, Lemma 2.5])

[exp (Z / Avp (XA )dwrﬂ = exp (Z / ds>,

E|exp <Zl/0 4VT(XA7w(S)) dwr(,A’")( )] < 4exp <Z / XAw( ) ds) ,

we have Iy < 4exp(CA). From here, (5.17), and (5.13), we reach (5.11). a

Now we are ready to prove Theorem 3.3, i.e., the convergence in the second
moments. For simplicity of notation, we consider ¢ = 1, while the case ¢ > 1 can be
proved similarly. Denote

Uanmo(t,z,y) =: UO(Xt,m(O))

X exp Zullyz—i—ﬁ Z V1,5Y5 + / &(Xix(s))ds |, m>n.

j=n+1

where v1 (¢, x) fo v1(Xt.2(8))mi(s) ds fori < m (X . (s) is the solution to (5.8)) and
y = (yl, e YnsYntly- - Ym). Let us write da nmo(t, 2, Z2) = Eg[Ua nmo(t,z, E)],
where 2 = (£1,..., &, 6nt1, - - -, &m). With this notation, we have

ﬂA,m(t; 3:) = aA,n,m,l(ta €, E)v ﬁA,n(t; 3:) = aA,n,m,O(tv €, E)
For m > n, by the first-order Taylor expansion, we have

(5.18)
|]E[’a2A m(A’ 3:) - ﬂQA n(Av $)]|

/9
- n+1 5”4-1

X E[uA n,m g(A 2, 2)EQ[Ua nm,o(A, z, Z)v1 (L, x)v ;(t, 2)]&E;] dO

+2 Z 7]_’_1 / 01_0) []EQ[UAan(A ﬂf,u)l/ll(t x)]

7,J=n+1
X EQ[Ua nmo(t, z,E)v;(t, )]&:€;] do

m 2
Unnmo(A,2,Z) ( > uLi(A,x)si) H do

i=n+1

2
é-i) ]de )

where 0; ; = 1 if ¢ = j and 0 otherwise and we have used the facts that &;, ¢ > n, are
independent of (¢, z) and E[§;] = 0.

1
<2 / (1- G)HE[QA)n)m79(A,$,E)EQ
0

1 m
+2/(1-9)9E[<Z Eq
0 .

i=n+1

UA7n7m,9(Aa xz, E)V17i(A7 :E)
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By the Cauchy—Schwarz inequality (twice), we have for the first term in (5.18),
(5.19)

1
/ (1 0)0E
0
m 8 1/4
S C (E EQ{( Z 1/171‘(A,$)§i> ‘|‘|) .
i=n+1

Here we also used that E[a3 , , (A, 2, E)],E[(EQ[UX , mo(A, z,E)])?]
can be readily checked in the same way as in the proof of Proposition 5.
By the Taylor expansion for Ua nm,o(A,z,y), we have

UA,n,m70(A7$7y) = UA n,m O(A &€ y)

+ Z (A / (1 —601)010UA nm,00, (A, x,y) dO1y;.

1=n+1

2 ﬂA)n)m79(A,$,E)EQ

m 2
UA,n,m,O(A,ZE,E) < Z Vl)i(A,Ji)fi) ‘|‘| do

i=n-+1

< C, which
3.

Then by the Cauchy—Schwarz inequality (several times) and the fact that &, ¢ > n,
are independent of Ua n m,o(t, x, E), we have for the second term in (5.18),

/1(1 — 9)6‘E[< i EQ &) ‘| do
0 i=n+1

/1(1_@9 ;- EKEQ T
0 .

1
/o (1- 1—91 )01UA n,m,06, (A, 2, =) dby

i=n+1
X < Z %0 z A 33 )
1=n+1

E[EQ[Ui,n,m,O(Aﬂxﬂ‘—‘ Z EQ Vl,i(Avx)]
i=n+1

1 1 1/2
/(1—9)93 <E[EQ / (1—01)01Uin’m7991(A,x,E)d01H) de
0 0
" g 1/2
X (IE [EQ {( > uLi((A,x)gi)> ”)
i=n+1
" 3 1/2
(£ ene)])
i=n-+1

(5.20)

2 UA,n,m70(A7$75)V1,i(Aﬂx)

< 4 UA,n,m7O(A7x75)V1,i(A7x)

+4

+C

<O ol (A )] +C (E

i=n+1
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Here we used that E[EQ[UR , . o((A,2,2))]], E[EQ[UA ,mee, (A,2,5)]] < C, which
can be readily checked in the same way as in the proof of Proposition 5.3.

By (5.18), (5.19), and (5.20), we have
(521) |]E[a2A,m(Av$) _ﬂQAm(Aam)H

<C Y Eqi(Ax)]+C|E

i=n-+1
m 8
i=n-+1
< Z V127i(Av$)> ‘|
1=n+1

Similar to the proof of (5.15), we have
8
< OAA—9)pa-a ’ Ka(- .
< n ol|r1(Xa () N

Eq

1/2

< CEq

m 8
< Z Vl)i(A, 33)61)

i=n-+1

E[EQ

Similar to the proof of (5.16), we can estimate Eg {||V1 (XAw())|\L 2,0 A]] as follows:
32,00,

8
E X e < A8+4€ A4+45
Q[ (Kan |, oy | < O+ 0O,
and thus
- m 8
(5.22) EEQK > VLZ-(A,:,;)@) < C(AY? + CAP).
L 1=n+1
Similarly, we have
m 2 m
(5.23) E |Eq ( > ul,i(A,x)gi> = Y Eq[vi (A x)] < C(A% +CA%).
1=n+1 1=n+1
By (5.21), (5.22), and (5.23), we have
(5.24) |E[GA m(A, 2) — G4 (A, 2)]| < Cexp(CA)(A® + A*)n~ 1=,

By the triangle inequality and the Cauchy—Schwarz inequality, we obtain
[E[u?(A,2) = G4 o(A, 2)]| < [E[u®(A,2) — G4 o (A, 2)]]
+[E[a m(A,2) — T3 o (A, 2)]],
< C(E[Ju(A,2) — iiam(A,)])"/?
+ |E[aR (A, 2) — @A (A, 2)]].
The one-step error (3.9) then follows from (5.24), Proposition 5.3, and taking m to

+oo. The global error (3.10) is estimated from the recursion nature of Algorithm 2.2
as in the proof in [21, Theorem 2.4]. 0O
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5.3. Proof of Theorem 3.4. For any n-dimensional function ¢(y1,...,yn), we
denote

1 1
Ihp=—— TR —— 2 dy.
v = G /Rnsﬁ(yl y)eXp< 2211) y

Introduce the integrals
(525) I(k)sp \/—/ yla"'7yk7"'7yn)exp(__) dyk7 kzla"'7n7

and their approximations Qn ») by the corresponding one-dimensional Gauss—Hermite
quadratures with n nodes. Also, let U (k) — Q(k) Q(.k) . By the definition of Smolyak

Zkfl
sparse grid and using the recipe from “the proof of Lemma 3.4 in [27], we obtain

(5.26)  I,p— A(L,n) Zs Ln) @ 1Mo+ (1M — @My en_, 1M,
=2
where
k l l
(5.27) S(L,1) = 3 DU o (1 - Q).

i1t o+ =L+1-1

Denote by D® the multivariate derivatives with respect to y. According to the
proof of Proposition 3.1 in [38], we have

(5.28) ’S(L, 1) ©p=i1 If”)w‘

(36/2)#Gz—1+1
< Z (2m)(N—#Fi-1)/2 /}Rn,#pl_1

i i =Ll—1

®m€Fz—1ng)D2al (P(y)

2 2 n 2
xexp|— > ﬁ%—ﬁ%— > y—; [T dyn x dyi---dya,

neG;_1 k=I+1 neG_1

where the multi-index oy = (i1 —1,...,4,-1—1,4;,0,...,0) with the mth element «]",
the sets Fi_1 = Fil_1(ay) ={m: o =0, m=1,...,1 —1} and Gj—1 = Gi_1(ey) =
{m: o >0, m=1,...,1—1}, and the symbols #F;_; and #G;_; stand for the
number of elements in the corresponding sets. Here ¢ > 0, 0 < g < 1, are only
related to the Gauss—Hermite quadrature, () and are independent of the number of
nodes in the Gauss—Hermite quadrature; see, e.g., 24, Theorem 2].

Proof of of Theorem 3.4. Setting ¢(y1,...,yn) = 4% ,(t,%,y1,...,Yn), we then
have that A(L,n)y is an approximation of the second moment of the solution ob-
tained by the sparse grid collocation methods. Recall from (5.12) that 4 n(t,2,y) =
Eq[Uan(t,z,y)], where Ua n(t,z,y) = Ua nmo(t, z,y).

Now we estimate D2 [ﬁi)n(A,x,yl, ..., Yn)]. To this end, we need to first esti-
mate D2 i n(A, 2,91, ..., yn)], where B; < 2qy. By (5.14), we have for 0 < & < 1,

1/127k(A,a:) < C(Amax(k —1,1))°! ‘Vl(XA@(')) ’

_ 9
152.,2,0,A]
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and we have, by the Cauchy—Schwarz inequality,

l
(5.29) ‘DﬁluAn(Axy|—EQUAnAxyHulkAx ]

1/2
(o] (e

l
< (CATE)BIP T (k- 1) VA2 (EQ[UR o(A, 2,)])

k=2
. 12611 1z
Q =< 2,0,A] '

By the chain rule for multivariate functions, we have

. 1/2
H Vlk (A z Qﬁlk]>

1/2

(Xas()],

D'BZUA (A zy) D"“uAn(A z,y)
Bi! 7!

D*M[aA oAz, y)] = Y (2w)!

Bitvi=2a;

and thus by (5.29) and the fact that > -5 . o, % = 22lal=1 we have

l
| D2 (A, 2, y)]| < 22 (CAT ) B [UR (A, @, y)] [ (k= 1)t
k=2

214 1z
) 155.2,[0,4]

1(Xas)

Bitvi=2a;

X max <EQ

1/2
Eo| [ (% ()]
X Q ‘1/1 Az .
15£.2,0,A]
Similar to (5.22), we have Eg [|V1()A(A7z(~))|21‘£|2 o AJ < C(AIBIE+e) 4 AlBI(+e))
5 14 (Ys
and

l
(5:30) [ D**[a4 o(A,z,y)]| < C(AM 4 A%y TT (k= 1) DU EQ[UR o(A, 2, y)].
k=2

Then by (5.28) and (5.30), we obtain

S0 @i 17|
SC(A3L+A2L)(1+(3C/2)LM) —(LAL)/2

BEQURAey)] Y [[0-neet

i1+-+i=L4+1—1 k=2
(5.31) < C(A% + A (14 (3¢/2)" Mg~ (A0l — 1)te?

with the constant C' > 0 which does not depend on n, ¢, L, ¢, 8, and [. In the last line
we used the fact that E[Eq[UZ ,(A,z,y)]] is bounded and that
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! I
S [IkE-pE v =q-nt ST Ttk - e

1 L-1

< (l _ 1)5—1 Z(k _ 1)5—1 < (l _ 1)5—1(5—1(1 _ 1)5)L—1 _ 61_L(l o 1)Ls—1.

k=2

Then by (5.26) and (5.31), we have
[T — A(Ln)p| < C(A™ + AP)(L + (3e/2)M s~ M2l L Y (1 — 1)Fer!
1=2

+|@Y Q) @l I
< C(ABL —I—A2L)(1—|— (36/2)L/\n)67(L/\n)/267LLflnLa,

where the term in the second line is estimated by the classical error estimate for the
Gauss—Hermite quadrature @ (see, e.g., [24]) and the estimation of derivatives (5.30).

The global error is estimated from the recursion nature of Algorithm 2.2 as in the

proof in [21, Theorem 2.4]. O
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