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1. Introduction

Anomalous diffusion has been widely used to investigate transport dynamics in complex systems, such as underground
environmental problem [16], fluid flow in porous materials [4], anomalous transport in biology [17], etc. Many mathematical
models are developed to study anomalous diffusion. Some of these models are based on a linear equation for diffusion on
fractals [31], a linear differential Fisher's information theory [37] and Levy description of anomalous diffusion in dynamical
systems [20]. In particular, fractional differential equations (FDEs) can serve as an accurate model of the anomalous diffusion,
e.g. super-diffusion process in [30].

Due to the extraordinary capabilities in modeling, numerical simulation and analysis of the fractional differential equa-
tions have attracted much attentions and growing interest. Extensive numerical methods have been investigated in recent
decades e.g. finite difference methods [11,12,24,29,36,39], finite element methods [8,9,13,19,40-42,49,50], spectral methods
[5,9,18,23,27,43-45,48], discontinuous Galerkin methods [38], finite volume methods [34], etc.

Despite the significant number of numerical methods for FDEs, regularity of solutions to FDEs is not thoroughly inves-
tigated, especially the regularity well suited for error analysis. In literature, it is assumed that solutions are sufficiently
smooth. However, it has been pointed out in [5,9,19,21,22,35,40] that the regularity of solutions to FDEs can be very low.
Recently there have been works on discussing the low regularity of solutions; see e.g. [9,15,46].

In this paper, we consider the following two-sided fractional diffusion equation with a reaction term

Lou+pu=fx), xeQ=(ab), (1.1)
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with homogeneous boundary conditions

u(a) =u(b) =0, (1.2)
and a nonnegative reaction coefficient u, a given function f{x), £§ := —[0 «D§ + (1 —60)xDf] with 6 < [0, 1] and & € (1, 2).
Here (Df and xDf are left- and right-sided Riemann-Liouville operators, defined as follows (see e.g. [32,33])
1 u(é)
o
D¥u(x) = IO o) e / w_E)- ——a5d5, x>a, (1.3)
and
1 u(é)
D¢ . 1.4
Dpu() = 55— a)dx2/ E_xo 1% Xx<b (14)

The model equations can be obtained by incorporating a fractional Fick’s law into a conventional local mass balance law
[6,47]. Here 0 is a skewness parameter; see [4,7]. When 6 = 1/2 it becomes the symmetrical diffusion equation which is
closely related to the fractional Laplacian. When 6 =1 or 0 it reduces to the extreme of asymmetrical case which has been
mostly studied among the existing literature.

Ervin and Roop [8] established uniqueness and existence of the solution to (1.1). Jin et al [19] showed the regularity of
the solution in extremely asymmetrical case & =1 or 0 in (1.1). The starting point of their approach is to seek the closed
form of strong solution in one-sided case by acting on the fractional integral operator on the both side of the equation.
The similar idea occurs in the paper [21,22] to find the dominant singularity of leading term in the solution. However the
approach in above paper does not work for the general two-sided case since there is no explicit inverse operator for two-
sided fractional derivatives. The first attempt to discuss the regularity of the equation in two-sided case is from the work
by Ervin et al in [9], where they conjectured the regularity of solution in standard Sobolev space by seeking a closed form
expression for the kernel of fractional diffusion operator for @ =0 and assuming the data f sufficiently smooth in (1.1).
A solution is numerically shown to be in the standard Sobolev space H” with regularity index y = min{o,0*} +1/2 — ¢,
where € > 0 is an arbitrary small number, o and o* are constants (see Lemma 2.1) depending on the order « and parameter
6 in (1.1). In particular the regularity index is o¢/2 + 1/2 — € for the symmetrical case 6 = 1/2 and @ — 1/2 + € for the one-
sided asymmetrical case 8 =1 or 0.

This work is devoted to the study of regularity and verification of this analysis using the spectral method for (1.1) when
i # 0. From the weakly singular kernel of fractional derivatives, solutions of fractional differential equations naturally inherit
weak singularity. According to [9], the solution to (1.1) when u =0 can be written as the product, ie., u= (b—x)% (x —
a)°"ii, where i is a smooth function depending on the smoothness of the right hand side f and can be much smoother
than u. Based on the relation in Lemma 2.1, we expand the function @ using Jacobi polynomials and apply a Fourier-type
analysis of ii. For i, we show that the solution has a regularity index 2« + 1 — € in non-uniformly weighted Sobolev spaces
and is higher than that in the usual Sobolev spaces. This work is a continuation of our recent work [15,46] which gave the
regularity for the fractional diffusion equation with fractional Laplacian by Fourier analysis and bootstrapping technique for
enhancing the regularity.

Compared to other numerical methods such as finite difference/finite volume/finite element methods, the advantage of
spectral methods is their spectral accuracy which means their convergence orders can change with regularity of solutions.
This advantage makes spectral methods one of the best tools to test regularity of solutions in practice. In this work, we
present a spectral Petrov-Galerkin method and prove the optimal convergence of such a method. In the symmetrical case
6 = 1/2, the spectral Petrov-Galerkin method reduces to spectral Galerkin method and an optimal error estimate is obtained
in [15]. In this work, we focus on the non-symmetrical case 8 # 1/2. Due to the asymmetry of the fractional operators, the
analysis is more challenging than that in [15].

The contribution of this work is summarized as follows.

« We present the regularity in terms of the right hand side function f for the two-sided equation with a reaction term.
Here we discuss of a large class of right hand side functions f. Here f can be smooth enough or only in L2

« We show the higher regularity of i in the weighted Sobolev spaces than the regularity of the solution u in usual Sobolev
spaces. The benefit of using weighted Sobolev spaces is that these spaces can better accommodate boundary singularity.

» We present the spectral Petrov-Galerkin method to verify the analyzed regularity and prove its optimal error estimate;
see Theorem 4.2.

The rest of this paper is arranged as follows. In Section 2, we introduce some basic notations and recall some proper-
ties of Jacobi polynomials and non-uniformly weighted Sobolev spaces. Some lengthy but important auxiliary materials are
presented in Appendix. In Section 3, we present the regularity of the two-sided fractional diffusion equations using Fourier
type analysis and a bootstrapping technique. In Section 4, we present a Petrov-Galerkin method and provide error estimates
as well. Several numerical results are shown to verify the theoretical convergence order in Section 5. Finally, we make some
concluding remarks.



Z. Hao, G. Lin and Z. Zhang/Applied Mathematics and Computation 374 (2020) 125045 3
2. Preliminary

In this section, we introduce Jacobi polynomials, Jacobi-weighted Sobolev spaces and basic facts for fractional derivatives
we will use.

We consider the interval 2 = (—1,1) for simplicity. Denote by Liyﬁ(Q) the space with the inner product and norm
defined by

1
U)o = [ e P Nullusg = @), (21)

where @?# = (1-x)Y 1+x)#, y,8 > —1. When y = 8 =0, we will drop o from the above notations. We also drop the
domain €2 from the notation for simplicity without incurring confusion.
The Jacobi polynomials P/ B (x) are mutually orthogonal: for y, g > —1,

/_]1 (1 =x)” (1 +x)PPLP )PV P (x) dx = h! P 8. (2.2)

Here 8, is equal to 1 if n =m and zero otherwise, and

2 27 +A+1 5 Fn+y+1DCn+B+1)
ot 20+y +B+1 T+y+B+DI(n+1)

The following asymptotic formula for a ratio of two gamma functions holds

fim LD g [1 e V)(§n+ y=1 +O(n‘2)] —1. (2.4)

- v

(2.3)

n—oo né—yr‘(n + y) = n— oo
We say that a, is equivalent to b, if there exits c; and c, such that cja, < b, < cya, asymptotically and denote them by

an ~ by. By (2.4), we know that hZ‘ﬁ ~ m

To incorporate singularities at the endpoints, we introduce the following non-uniformly Jacobi-weighted Sobolev space
(see e.g. [3,10]),

Bl s i={uldfuel?, s k=0,1,...,m}, mis a nonnegative integer, (2.5)

which is equipped with the following norm

m
2 12 k
||u||3::y.ﬂ = <Z|u|32%ﬂ> 2, |u|B’;M = ||8Xu||wy+k,ﬂ+k' (2.6)
k=0

When m is not an integer, the space can be defined via classical interpolation method, e.g. K- method; see [1]. For functions

in Bi)y-ﬁ’ we may introduce the following norm:
R 2s
2 _ ypyz_ 1+n 2.7
Iy, =Y 27)

where u,’f’ﬁ are the coefficients of the Jacobi-Fourier expansion of u in terms of P,i/’ﬁ. When s = m is an integer number, the
norm (2.7) is equivalent to the norm (2.6); see [14].
The following pseudo-eigen functions for the fractional diffusion operator in [9] are essential to analyze the regularity.

Lemma 2.1 [9]. For the nth order Jacobi polynomial PC>°" (x), it holds that
L7 BT (0] = AP0 (), (28)
where

sin(ra) MNoa+n+1)
Tsin(wo) +sin(ro) Tt 1)

a
)‘B,n -

and o* = o — o and o is determined by the following equation:
_ sin(wo*)
" sin(wo*) +sin(wro)’

(2.9)

Remark 2.1. To ensure that (2.9) is uniquely solvable, we restrict o and o* into the interval (0,1]. In particular, o0 =1 and
o*=a-1for0=10=a~1ando*=1for =0, and A§ =1y = W These constants can be uniquely found
using a Newton’s method. See Section 5 for details and examples of these constants.

Throughout the paper, C or ¢ denote generic constants and are independent of any functions and of the truncation pa-
rameter N.
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3. Regularity

In this section, we present our regularity results in weighted Sobolev spaces and their proofs, see Theorems 3.1 and 3.2.
Some of the details of proofs which are less relevant are presented in Appendix.
The weak formulation of the problem (1.1) and (1.2) is to find u e Hg‘/z, such that

(LSu,v) + pu(u,v) = (f.v), VYveH? (3.1)
The wellposedness of the problem (1.1) and (1.2) has been established in [8], which is stated as follows.

Lemma 3.1 [8]. For the problem (1.1) and (1.2), there exits a unique solution u e H2'* such that |[ullye/2 < |l fll-as2. Where
H-%/2 is the dual space of Hg/ 2 with respect to the inner product in L? space.

Here we require that f e Lia* and thus u e L. In fact, we have by (A.4) that

Ked

lier = sup L2 o gy MlorellVloe o
VeH 2, y£0 1V] o2 VeHE". y0 V1] e

= Cllfllee-

This implies f e H"%/2 and thus by Lemma 3.1 there exists a unique solution u which belongs to Hg/ 2, By the Sobolev
embedding inequality, u e L.

We are now at the position to present the regularity of the two-sided FDE (1.1). In Theorem 3.1, we first consider the
regularity of the solution under the condition that forcing term f belongs to weighted Sobolev space B” .  , where the index
o*, o is defined in Lemma 2.1. Next, in Theorem 3.2, we study more stronger condition that f belongs to weighted Sobolev
space in terms of Jacobi index 6* — 1,0 — 1 instead of ¢*, o, and further improve the regularity of solution.

Theorem 3.1 (Regularity in weighted Sobolev spaces, I). Assume that f B:U
Ifi >0, then % "ue Bi"oy(ﬁ"‘*e with € > 0. Here a A1 = min{c, r}.

withr > 0. If £ =0, then @~ u € B**"

o*.0 wo.0* "

Proof. For ;1 =0, we write u=w%% Y2, unP,‘;’*"*(x). Then with Lemma 2.1 we have u, = (Agn)*lfn from the equation
Lfu=fand f=372, fnP,f*‘r (x). Since f e BZ} by the definition (2.7), we have

2 fn(1+n2r)
1A, Z S <00

o*,00

By (2.4), we know that A§ =~ n®. It follows that

u2(1+n2(a+r))
Z 2n4+a+1
00 fﬁ(kg_n)’2(1+n2(“”))

=2 n+a+1
n=0

00 f,}n‘z"‘(l 4 n2(a+r))
Z 2n+a+1

™ u

esr =
T —
Bw”ﬂ*

R

< 00,

which implies that w=°~°"u e B*"

W% 0* "
Now consider u > 0. We use a bootstrapping technique to obtain higher regularity. First, we can obtain that u = v O
and il € BZ‘) . In fact, we have from u e [® that f=f— pu e B . From the equation L{u = f and using the conclusion

when =0, we have i =w > °ueB® .. Theni=w" "*u € Bwo_a* and using Lemma A.5 leads to u € B!

w0 * wo*.0"

Furthermore, we obtain that f= f — yu e BrAl . Using the conclusion above again, we have ii € BZ(}:“ If r <1, then
we get the conclusion. When r > 1, i € B)'" . and hence iie BZM*, which, by Lemma A.6, we have u e BY ¥, with € > 0
arbitrary. _

Finally, by the fact that f = f—uu e BS;‘*_?” and the conclusion for = 0, we have w7~ u e BX)'t*~¢. O
Theorem 3.2 (Regularity in weighted Sobolev spaces, II). Assume that f € B"

wo*-1,0-1"

B¢ withe > 0. If o > 0, 0=~ u e BAHDN+a=€ gng pay ¢ grr@+—€
w0 0 w0 *.o

wo—1,0%-1

withr > 0. If w =0, then =% °"u e

Proof. Since feB’ ., ;. thenfe [2. Following the last theorem, we know that there exists a unique solution u e Hg/z.

Consider first 4 = 0. From Corollary A.1 in Appendix, we have the following relations: for n > 0

P];T—l,a*—] Aa 1,0%— 1P00*+Bo 1,0%— 1[)0({ +Co 1,0%— 1Poa* (32)

P];r*—l,rr—] — Ag—],(r*—]g;if _ Bg_lﬁ*_]Pr?;i +Cr(lr—1,(r*—lpr<lr>,(r’ (33)
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where A7~19"~1 B7=1.0"~1 and 7 ~"7"~! are defined in Corollary A.1 and P”;f = P = 0. Throughout the proof, to simplify
the notations, we drop the superscript o —1,0* — 1 for Ay, By and C, and abbreviate A§ ~as A,. From (3.2), we have

D unP T = Cun(AdPTG + BaPTS + GiPY)
=l n=0

= Z(un+2An+2 + Uns1Bas1 + unG)PJ 7. (3.4)
n=0

It follows from Lemma 2.1 that

Lo%u = L% (a)”'“* ZunP,‘,"l'”*‘1>

n=0

[o¢]
= Eg |:(UU’U* Z(un+2An+2 + Upy1Bnp1 + unCn)P;?’a*:|
n=0

= Z An(Uni2Ani2 + Uny1Bpyr + unCn)Pr?*'g~ (3.5)
n=0

From (3.3), we have

anpg*_]ﬁ_l = an(AnPno_*’zo —BnPG 7+ GP%)

=
o

(fr2Bns2 — far1Bus1 + fnCn)Pg*’G- (3.6)

ol

3
Il
o

Substituting (3.5) and (3.6) into (1.1) leads to

Z A (Uns2Ani2 + Uni 1Byt + unGa) Py 7 = Z(fn+2An+2 — far1Bui1 + faGo)PY 0. (3.7)
n=0 n=0

Taking the inner product of P,f*"’ with respect to weigh function @®"-° over both sides of the last Eq. (3.7) and by the
orthogonality of Jacobi polynomials, we arrive at

1
Uny2Ani2 + Unp1Bngr + UunGy = r(fn+2An+2 — fos1Bas1 + fuGr)
n

1 1
)»n )\n+2

1 1

= Fip2Ani2 + FopiBnn + G+ ( )fn+2An+2 - ()T + Tl)fnﬂBnH, (3.8)
n n+

where F, = f,/An. Multiplying Pﬁ”“’*’] on both sides and summing over n, using (3.4) again, we obtain

ZUHPU -l,0*-1 ZFnPa 10*—1_’_2()\"

Replacing n by k in the above equation and taking the product of P?~1:°"~1 with respect to the weight function w°-1.9"~1
leads to

un—Fn+Z< k )fk+2AI<+2(hg 10_1) (ng* PU 10*_1)(1)0 Lo*-1
+2

RN |
o i  — > (5 + 5 )ueaBusab (39)
-0 n

n+

. 1 1 * ,0* po-1,0*—
Z + fk+1Bk+1 (ha Lo 1) (Pa P L l)wa 1,0%-1,
e e

k=n

where h?~19"~1 is defined in (2.3). Notice that |A,| < C and [By| < CJk in Corollary A.1. By Lemma A.4, we have

|)f:| +C§<;},{‘>|fk+2|+cz<+ ) | fiea |- (3.10)

k=n

[un| <

For the second term on the right hand side, we have
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(1 221 1 [ % 1
Cg ()‘«k )\k+ ) |fk+2| |fk| k 2 ; k2o+2r+1

9] 1 5
(/n x2o+2r+1 dx) ’

oo
— 1 o —a—
DA i < Cllfllg

N

|f’|k2r1

| /\

M8 7

=
Il
=

The last term on the right hand side can be treated similarly.
Therefore, we have
lup| < Clfaln~* +Cn~*". (3.11)
By Definition (2.7), we have =% ~"u e B 1G+, with € > 0 arbitrary.

When p > 0, we apply the bootstrapping technique. By L{u = f—pue Li)a—l.a*—l and the conclusion above, we have

w99y e B¢ and hence w=%~°"u e B! which leads to u € B! Thus Lfu=f—pueB’L |, and
o1,

wo—1,0%-1 wo—lo0*-1 wo¥-1l0-1"

by the conclusion for 1 = 0, we have w=° f’*u € BrAlta-e
wo—1l.0%-1"

If r < 1, we have reached the conclusion since B’Ao”l“”*ﬂ gBM(J:f‘ € Ifr>1 then ©®°ueB ., by
'
Therefore, we have Lju=f—pue B2 Then by the conclusion

for =0, we have w9 u e Bgfj?‘a:: If r < 2, we have the conclusmn since B”fﬁ"‘ € S B If r > 2, we have

Lemma A.5 which further leads to u e B2

wo*-1l0-1" wo*-10-1"

0 ueB ., andbyLlemma A7, ueB € Thus Lju=f—pue BM“(D‘+1 - and by the conclusion for = 0, we

have w9 —"y ¢ BA@D+a—€

wo.0*

Remark 3.1. Throughout the paper we consider the constant w for simplicity and it is straightforward to extend our results
to variable coefficients cases, for example, u(x) e C3.

4. Spectral Petrov-Galerkin method

In this section, we consider a spectral Petrov-Galerkin method and present an optimal error estimate and its proof based
on the obtained regularity in Section 3.
The spectral Petrov-Galerkin method is to find uy € Uy such that
(LGun. vn) + p(uy, Un) = (f on),  Vun € W (41)
The method is implicitly discussed in [9] and it is fully discussed in [28] when p = 0. Here we define the finite dimensional
spaces Uy := w”? Py = Span{¢yg. ¢1. . ... ¢y} and ¢y (x) := (1 -X)7 (1 +x)7 P77 (x), Vy := @ 7Py = Span{@g. ¢1. ... on}
and @y (x) 1= (1 -x)7"(1+x)°P7 7 (x).

4.1. Implementation

In this subsection, we first describe the implementation for the spectral Petrov-Galerkin method.
For implementation, plugging uy = Z’,;’ZO tnen(x) in (4.1) and taking vy = ¢, (x), we obtain from Lemma 2.1 and the
orthogonality of Jacobi polynomials that

N
Mg T+ Y Myalin = (f. @), k=0,1,2,....N, (4.2)
n=0

where Agk is defined in Lemma 2.1 and

M= [ 1](1 _X)PIT (PP (x) dx, (43)

To My, we apply Gauss-Jacobi quadrature rule, e.g.

N
My ~ ) P77 (3P (x))w;.
j=0
Here x;’s are the zeros of Jacobi polynomial Py A % (x), w; ’s are the corresponding quadrature weights. The quadrature rule here
is exact since n+k < 2N while the quadrature rule is exact for all (2N + 1)th order polynomials. The integral in S, can be
calculated similarly. To find f, = (f, ¢,), we use a different Gauss—Jacobi quadrature rule: f, ~ f, = Z?‘ZO f (xj)P,:’*'“(xj)wj.
Here ;s are the roots of Jacobi polynomial Po% (%), wj's are the corresponding quadrature weights. Here N is taken to be

N+1
large enough so that the quadrature errors can be ignored.
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4.2. Error analysis of the spectral Petrov-Galerkin method

The well-posdeness of the discrete problem (4.2) can be readily shown by the Lax-Milgram theorem.

Before presenting the error estimates, we need the following approximation properties. Define the Li -orthogonal pro-

o.0%
Jection 7DI?IVU* : Liw* — Py such that (Pﬁ“’*u — U, V) 00+ = 0 for any v e Py, or equivalently P57 (u)(x) = N o ,P70 (x).
Denote 17 u := w7 P3" (0= u).

Lemma 4.1 (Estimate of projection error). Let =%~ u e BZ . and L{u e BT}U*_G. Then, for 0 < m < N, we have the following

0.0

estimates:

lu -7 ullyo o < N ulgn (4.4)
and

12§ (u =TI W oo < NI LGUlpn . . (4.5)

Proof. For i =w % %"uec BZ we have the expansion as

ot
o]

U= =" Y upP (4.6)
n=0

By the definition of the operator H,‘\’,"’*, we obtain

o0
u—TF"u=w"" Y uPy7 = (i — Py ). (4.7)
n=N+1

Then by the error estimate for the orthogonal projection Pﬁ'”*, e.g. in [26], we obtain (4.4).
By Lemma 2.1, it holds that

S o0
Lou=> A% P77, LEu—-TF7u)y= Y Af u.P".
n=0 n=N+1
By (A.6), we have
DI (L) = 3 Ay BuBT ™"
n=m

Thus, we have

g (u—TZ" w2, = Y (g ) |a*h] 7, (4.8)
n=N+1
D (LEW 2 e smosm = Y (g )7 (AR )P | RT . (4.9)
n=m

It follows from the Definition (2.7) that
hg" 1

o0
g —T T W2, = D (A )77 ) |dal*he o™ e (o2
n-m ( n,m )

n=N+1
ha*,a 1 00
N+1 o \2(AC*.0\2|{3 |20 +mo+m
= portmo+m (da*,a 2 Z ()“O,n) (dn,m || hn—m
N+1-m N+1,m n=N+1
h(r*,(r 1
N+1 m) ¢ pa 2
— h(r*+m,(r+m (d(r*,(r 2 ”D (Lgu)||wn*+m.a+m- (410)
N+1-m N+1,m

When N is sufficiently large, we have the following asymptotic estimate:

g 1
T @ S N2, (411)
N+1-m N+1,m

Combining (4.8)-(4.11) leads to (4.5). When m is not an integer, we can apply standard space interpolation to obtain the
conclusion. O

Lemma 4.2. Let o € (1, 2). Suppose u satisfies =% u e Lfow* and || £§u|l ,o+oc < co. Then we have

"

Agollullpro < AG ollull oo < |LGU oo (4.12)
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Proof. For u satisfying @~ —°"uel? ., we write u =" Y32 guyP{"°" and derive from Lemma 2.1 that
o0 [o )
lull? oo =D a7, NLgulll o =D (Ag )% [unl*h 7,
n=0 n=0

where by (2.3), we have h3°" = hJ"°. Noticing the sequence {A% .} is monotonically increasing, we have
Agollullpero = A5 ollull oor < [1LG U oo

This completes the proof. O

Theorem 4.1 (Stability). Assume that |u| < A§ o/2. The problem (4.1) admits a unique solution uy such that
ILgunllpero < Cll fll oo

Proof. Take vy = w"*vffﬁg uy in (4.1). By Lemma 4.2 and Cauchy-Schwartz inequality, we get
IL§unllZo 0 = —p(un, @7 LEuy) + (f, @7 Luy)

| lllunll oo 1£GUN Il wor .o 4 1| fll oo | LG UN I o0

< [RI/AG I LGuNIZ e o + 11 fllwoo 15 UN Nl oo
< 172201L5un 120 + 1 fllaoo | L5 Nl oo

Ok

IA

which leads to the desired result directly. O

Theorem 4.2 (Convergence order). Suppose that u and uy satisfy the problems (3.1) and (4.1), respectively. If f e B;Uuﬁf1
withr > 0 and 0 < u < A /2, then we have the following optimal error estimate:

lu—unllyoo <N V|0 %% ulpy ,y=(@+1)AT+a—c.
w0 0*

Proof. Denote 1y = u — H,‘\’,"’*u and ey = H;"”*u — uy, then u — uy = ny + ey. Combining (3.1) and (4.1), we can obtain the
following error equation:

(LGen, Un) + p(en, Un) = —(LGNN. Un) — (1N, UN),

= —u(nn, Un), Yuy e Wy,

where we have used the orthogonal property

o0
(L5 (u =TI ). vy) = Z )‘g,nuﬂpz?*’”a Uy ] =0, VuyeUy=w" Py
n=N+1

Taking vy = @7 L%ey, we get

lcgenll2, - = —p(en, @7 Lien) — pu(nn, @7 L ey)
= —p(en, @77 LYen) — (N, @7 LIen).

Following a similar derivation in the proof for stability Theorem 4.1, we obtain

l£genllwoo < 20limnll oo
By Lemma 4.2, we have

lenllo oo < 1/A8 gl £5enllurmo < 208/38 pllmNlluomo < 1]l oo
Using the triangle inequality leads to

lu—unllpoor < llenllpoo + 1Nl oo < 200Nl o-oor

Since feB ., with r > 0, we can see from Theorem 3.2 that w % ue BZ)M*. Applying Lemma 4.1 leads to the
desired result. O

Remark 4.1. For the spectral Petrov-Galerkin method, we need 0 < u < A§ ;/2. However, this assumption seems to be re-

laxed to the case for all & > 0. The key is to show that (uy, w“*"ﬁguN) is positive for all uy € Uy. Unfortunately, this is an
open problem and we are not able to prove this for technical reasons. However, when 0 = 1/2, the spectral Petrov-Galerkin
method coincides with spectral Galerkin method in [46] where we only need u > 0.
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Table A1
Numerical values for (o, 0*) corresponding to different 6 and .

a=12 a=14 a=16 a=18

6 =07 (0.8829,03171) (0.8602, 0.5398)  (0.8900, 0.7100)  (0.9411, 0.8589)
=10 (1.0000, 0.2000)  (1.0000, 0.4000)  (1.0000, 0.6000)  (1.0000, 0.8000)

Z?)I;lvee:\g'eznce orders and errors of the spectral Petrov-Galerkin method (4.1) for Example 5.1 with f = sinx.
a=12 a=14 a=16 a=18
N E1(N) rate E1(N) rate E1(N) rate Ei(N) rate
6=07 16 3.84e-05 7.39e—06 1.24e-06 1.75e—-07

32 3.90e-06 330 5.82e-07 3.67 7.68e-08 4.02 8.46e-09 437
64 3.80e—07 336 4.40e-08 3.73 450e—-09 4.09 3.83e-10 447
128  3.60e—-08 3.40 3.23e-09 3.77 254e-10 4.15 1.66e—11 4.53

Order 3.40 3.80 4.20 4.60

0= 16 3.87e—-06 1.99e—-06 7.04e—-07 1.63e—-07
32 3.94e—-07 329 1.56e-07 3.67 442e-08 4.00 8.14e—09 432
64 3.80e-08 338 1.17e-08 3.74 2.61e-09 4.08 3.75e-10 4.44
128  3.55e-09 342 856e-10 3.78 1.49e-10 4.13 1.65e—-11 4.51

Order 3.40 3.80 4.20 4.60

5. Numerical results

In this section, we present three examples with different forcing terms f: smooth (Example 1), weakly singular at an
interior point (Example 2) and weakly singular at boundary (Example 3).

Since exact solutions are unavailable, we use reference solutions u..r, which are computed with a very fine resolution
using the same methods for computing uy. In the computation, we take © = 1 and measure the error as follows:

El (N) = ”uref - uN”w*ZUfZU*v EZ (N) = ”uref - uN”a)"’»"’* (5-1)

where the weight function w?-# = (1 —x)? (1 +x)#, uy = XN 61,09 P77 and s = Usyo.

For the first two examples without boundary singularity, we use E;(N) to measure the error. Note the weighted index is
negative, thus E;(N) < E{(N) and the convergence order of E{(N) is at least the order of E;(N). For the third example, we use
E5(N) to measure the error.

Here we present numerical results for 6 < (0.5, 1], in particular, & = 0.7, and 6 = 1. Since ¢ and o* depends on the
fractional order « and 6, we find the values of o, 0* numerically using Newton's method with a tolerance 10-16. We list in
Table A.1 the values of (o, o*) for different 0’s and «’s. For illustration, we present only four digits in the table while in
computation we keep fifteen digits for ¢ and o*.

Example 5.1. Consider f = sinx for x € (—1,1). Here f belongs to B>, . By Theorem 3.2, ="~ u e BXtIE
According to Theorem 4.2, the convergence orders are expected to be 2« + 1 — € for the spectral Petrov-Galerkin method
(4.1). In Table A.2, we observe that the convergence orders are 2« + 1 for the spectral Petrov-Galerkin method when the
order v =1.2, 14, 1.6, 1.8.
In this example, the spectral Petrov-Galerkin method (4.1) has the convergence order 2« + 1 — €, which suggests that
the regularity index 2« + 1 — € for the solution and somewhat verifies Theorem 3.2.

Example 5.2. Consider f = |sinx| for x € (=1, 1). The function f has a weak singularity at x=0 and f ¢ BL‘S € for any

o*—1,0-1

€ > 0. By Theorem 3.2, @7 ~%"u ¢ B¥+1.3-€,
o

According to Theorem 4.2, the convergence orders are expected to be « + 1.5 — € for the spectral Petrov-Galerkin method
(4.1).

From Table A.3, we can observe that the convergence order is « + 1.5 — € for the spectral Petrov-Galerkin method (4.1),
which is in agreement with the theoretical prediction when the order @« = 1.2, 1.4, 1.6, 1.8.

In this example, the spectral Petrov-Galerkin method (4.1) has the convergence order « + 1.5 — €, which suggests the
regularity index o + 1.5 — € for the solution and verifies Theorem 3.2.
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Table A.3
Convergence orders and errors of the spectral Petrov-Galerkin method (4.1) for Example 5.2 with f =
| sinx|.
a=12 a=14 a=16 a=18
N E1(N) rate E1(N) rate E1(N) rate E1(N) rate
6=07 16 1.43e-03 5.05e—04 2.19e-04 1.12e-04
32 2.50e-04 2.51 7.73e-05 2.71 2.98e-05 2.87 1.38e-05 3.02
64 4.00e-05 2.64 1.08e-05 2.84 3.69e-06 3.02 1.52e-06 3.18
128 6.11e-06  2.71 1.44e-06 290 433e-07 3.09 1.58e-07 3.26
Order 2.70 2.90 3.10 3.30
0= 16 9.36e—04 4.69e—04 2.32e-04 1.17e-04
32 1.69e-04 247 7.52e-05 2.64 3.30e-05 281 1.47e-05 2.99
64 2.81e-05 259 1.10e-05 2.77 4.25e-06 295 1.66e-06 3.15
128  4.49e-06 2.65 1.54e-06 2.84 5.20e-07 3.03 1.77e-07 3.23
Order 2.70 2.90 3.10 3.30
Table A.4
Convergence orders and errors of the spectral Petrov-Galerkin method (4.1) for Example 5.3 with f = (1 —
x2)~04ginx.
a=12 a=14 a=16 a=18
N E>(N) rate E>(N) rate E>(N) rate E>(N) rate
6=07 16 5.75e-03 1.13e-03 3.20e-04 1.12e—-04
32 1.86e-03 1.63 2.73e-04 2.05 6.05e-05 240 1.72e-05 2.71
64 5.85e-04 1.67 6.37e-05 2.10 1.09e-05 247 2.47e-06 2.80
128 1.80e-04 1.70 1.47e-05 2.12 1.94e-06 2.50 3.45e-07 2.84
Order 1.72 2.14 2.51 2.86
6=1 16 4.42e-03 1.16e-03 3.43e-04 1.15e—-04
32 1.56e-03 1.50 3.15e-04 1.88 7.09e-05 227 1.82e-05 2.67
64 533e-04 1,55 8.23e-05 194 1.40e-05 233 2.71e-06 274
128  1.78e-04 158 2.10e-05 197 2.72e-06 237 3.95e-07 2.78
Order 1.60 2.00 2.40 2.80

Example 5.3 (Boundary singularity for the right hand side f). Consider f= (1 —x2)fsinx for x e (—1,1). Here fe
ngfzﬂ’g“*é; see Lemma A.8 in Appendix. From Theorem 3.1, =% u e BZ;(J”*“’**Z’M”A“*G.

We consider the singular forcing term f = (1 —x2)# sinx where 8 = —0.4. In this case, we apply Theorem 3.1 instead
of Theorem 3.2 in order to get higher regularity index. From Theorem 3.1, @7~y ¢ B*+(@ 0" +2h+na=¢ gor g _ 04,

w0.0*
0w e BZZ_E,iA”*+O'2)A“‘€. According to Theorem 4.2, the convergence orders for the spectral Petrov-Galerkin method
are o + 0 Ao* + 0.2 — €, which is demonstrated in Table A.4.

6. Summary and discussion

In this paper, we discuss the regularity of the two-sided fractional diffusion equations with Riemann-Liouville operators
under the homogeneous Dirichlet boundary conditions. Writing u = w®°"ii, we find that the regularity index of i is shown
to be 2a +1 — € with € > 0 arbitrary. We also validate our finding by considering the spectral Petrov-Galerkin method.
With the regularity index, we showed the optimal error estimate when the reaction coefficient w is small.

Our regularity estimate is sharp for y <« + 1 (y is regularity index of right hand side f). One of promising applications
of current work is that the regularity estimates can be extended to the low-regularity or non-smooth data f, e.g., the fraction
differential equations with color or white space-noise.

However, when y > « + 1, it is numerically found that the convergence order can reach up to 2« + 1+ min{o, o*} — €,
which suggests higher regularity of solution ii. In the symmetrical case, 6 = % and o = o* = §, the optimal regularity has
been proved in [15]. For the non-symmetrical case, as the equivalence of non-uniformly weighted Sobolev spaces is not
established as that in [15], we can not prove the optimal regularity for non-symmetrical case right now. We will address
such fundamental issues in our follow-up work.

The estimate for Petrov-Galerkin method requires some additional condition on p. Further improvement in the error
estimates is needed. The analysis in this paper can be extended to FDEs with different low-order terms, such as FDEs with
an advection term. We will leave this topic for future research.
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Appendix. Auxiliary lemmas

We denote by H*(€2) and H§(€2) the usual Sobolev spaces as in [1] with semi-norm | - s

_ 2
|U|H5(Q) — (h/Q A |U(X) U(Y)| dxdy>]/2.

|X 7y|1+25

We recall the following results (cf.[8]) which play essential roles in the weak formulation and analysis of fractional differ-
ential equations.

Lemma A1 [8]. For any v e Hg‘/z with 1 < o < 2, we have
(L40, V) = E[V]20n. & = — cOS (%n) (A1)

In order to show convergence, we also need Hardy-type inequality below.

Lemma A.2 [25]. Let A be a convex set and 1 < o < 2. For any v € (§°(A), it holds
/ [v(x) —v(y)|? lvx)[*
AJa X =y Ada)e

where C and ky are positive constants which only depend on dimension n, o, and d(x) denotes the distance from point x € A
to the boundary of A.

dxdy > kn. (A.2)

By Lemma A.2, it can be readily shown that the inequality (A.2) still holds for v € Hg/z with o € (1, 2), i.e,
[Vllo-e-e < Clvlpor, Vv e HY? (A.3)
The inequality (A.3) immediately leads to the following conclusion:
Lemma A.3. For any v e Hg/z with 1 < a < 2, we have
IVl poor <ClV|gar, |V[pom—o < ClV|ger, (A4)
where o and o* are defined in Lemma 2.1.
The following relations hold for Jacobi polynomials P,f"ﬁ (x), see e.g. [2],

n+a+p+1

R (%) = ——

PP ), B> 1. (A.5)

By (A.5), we have
'h+a+B+1+1)

Ipo.p _ Jo-Bpatl. B+l B _
PP =dy PP (), a B> -1n=1 dif = N CErE (A.6)
Theorem A.1. The Jacobi polynomials P,‘f“ﬂ (x) satisfy
PP — AP 3 P 4 BP o PP 4GP oy = 0, (A7)
where Pfiﬁ =0 and
Avh _ —2(n+a)(n+p)
n m+a+B)2n+a+B8)Cn+a+p+1)
Fub _ 2(a — B) cub _ 2n+oa+pB+1) .
n Cn+a+pB)2n+a+B+2) m Cn+a+B+1)2n+a+B+2)

The relation (A.5) and Theorem A.1 lead to the following result:

Corollary A.1. The Jacobi polynomials P,‘j"’s (x) satisfy
PP — pxPpet Aol | grpatl Bl | cobpatlfil o g, (A8)
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where we let Ag’ﬁ :A‘]’“ﬂ = Bg"ﬂ =0 and Pf‘;“’ﬂ” = Pf{’l’ﬁ“ =0 and

(n+a)(n+B) wp _ (@=B)n+a+B+1)
T nt+a+B)Rn+a+p+1) " T Cn+a+pB)Cn+a+p+2)
ap  (M+a+B+1)n+a+B+2)
T 2ntba+B+1D)Rn+a+B+2)

Lemma A4. For any k > n > 0, it holds that |X| < C where

(P,?H'ﬁﬂa PEPY o

Ag'ﬁ =

Xy = ey , a>-1, B>-1. (A.9)
n
and h%P is defined in (2.3).
Proof. By (3.2), we get
S = ALPXD, + BEPXD |+ CPXD. (A10)
Thus we have
1 B3,
Xi= g K=k Xp=pXiataX kzn
C" n+1
Ba./S Aotﬂ
where p, = —ﬁ and q, = —C’gfﬁ. Denote Y;! = (X!, ;. X{)" and Ay = (py. qi; 1,0). Then we have Y | =AY, It follows
k+2 k+2

that

Ve lloe = NARY oo < 1Aklloo [y oo = max{

1,

Pl + @ 1Y oo

where [|Y!]lc = max{|X|, |X},,|}. Recalling Az’ﬂ, B;:'ﬁ and C,?’ﬂ in Corollary A.1, we have for k > 2

B la —BlCk+a+p+1) lo — Bl 1
|pr—al = Cg'ﬂ T Qk+a+B)k+a+B+2) k +O<k7>’ and
AP (k+a)(k+B)2k+a + B +2)

Qk*ZZ_C’?,ﬁ C (kta+B+Dk+a+B+2)2k+a+p)

B a+pB+2 1
)

Thus we arrive at

oa+B+2—|a- Bl 1 2min(wo, B) +2 1
=1- ol =)=1-—"""——"+0(-5).
[Pl + k * (kZ) k * (k2>
Since « > —1 and 8 > —1, |py| +q, < 1. Thus for any k > n > 0, we have ||V, llc < [[Yklloo. Which leads to the desired
result. O

In the proof of the regularity of the problem (1.1) and (1.2), we have used the following lemmas. We refer the interested
readers to [14] for proofs of lemmas.

Lemma A5. Let u=vw®° . IfveB! .. thenueB! . .IfveBt . . fork=12 thenueB ., .
Lemma A.6. Let u = vw®°" with ve B2 .. Then u e B*;€ _ with € > 0 arbitrary and 1 < & < 2.

O Wwo*.
Lemma A.7. Let u = vw®°" withve B3 | . .. Then ueB*!1-€ with € > 0 arbitrary and 1 < « < 2.

[0) N w

Lemma A.8 (cf. Example 5.3 in Section 5). Let u= (1 —x2)P¢(x) with B > —1/2. Here ¢(x) is C function. Then u e
Bzﬁ+0Aa*+l—e
w0 *.0

with € > 0.
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