LECTURE 12 PARAMETER ESTIMATION FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

1. PARAMETER ESTIMATION FOR SODES

Consider the estimation of the parameter θ in the following scalar equation

\begin{equation}
 dX(t) = \theta f(X(t)) \, dt + \sigma b(X(t)) \, dw(t),
\end{equation}

where $w(t)$ is a standard Brownian motion and $a(\cdot), b(\cdot)$ are suitable real-valued functions such that a strong solution X is well-posed.

Usually, the solution $X(t)$ is observed at some realizations $X(t_i, \omega_j), i = 0, 1, 2, \ldots, N$ and $j = 1, 2, \ldots, M$.

1.1. Estimating σ using the quadratic variation argument. We can apply the quadratic variation of both sides of the equation and obtain

\begin{equation}
 \sigma^2 = \frac{\langle X \rangle_T}{\int_0^T b^2(X(t)) \, dt}.
\end{equation}

Thus with given observations, we obtain

\begin{equation}
 \hat{\sigma}^2 = \frac{1}{M} \sum_{j=1}^M \frac{\sum_{i=0}^{N-1} |X(t_{i+1}, \omega_j) - X(t_i, \omega_j)|^2}{\sum_{i=0}^{N-1} b^2(X(t_i, \omega_j))(t_{i+1} - t_i)}.
\end{equation}

It can be shown that (supposing uniform time step sizes)

\begin{equation}
 \sqrt{N} \left(\frac{\langle X \rangle_T}{\int_0^T b^2(X(t)) \, dt} - \sum_{i=0}^{N-1} |X(t_{i+1}) - X(t_i)|^2 \right) \rightarrow N(0, 2).
\end{equation}

We then apply Slutsky’s theorem to obtain the convergence of this estimator.

We will focus only on the estimation of the parameter θ as the estimation of σ is independent of estimating θ.

1.2. Estimating θ using the maximum likelihood method. Consider the following two scalar diffusion processes driven by the same Brownian motion.

\begin{align*}
 dX &= A(t, X(t)) \, dt + \sigma(t, X(t)) \, dw(t), \quad X(0) = X_0, \\
 dY &= a(t, X(t)) \, dt + \sigma(t, Y(t)) \, dw(t), \quad Y(0) = X_0.
\end{align*}

Here the functions A, a and σ satisfy the conditions to ensure existence of a unique strong solution. Assume that the initial conditions are independent of $w(t)$ and $\sigma \geq \sigma_0 > 0$.

Let

\begin{equation}
 B(t, x) = \frac{A(t, x) - a(t, x)}{\sigma(t, x)},
\end{equation}

then by Girsanov’s theorem (e.g., Theorem 8.6.8 of [Øksendal, 2003]),

\begin{equation}
 \tilde{w}(t) = - \int_0^t B(s, Y(s)) \, ds + w(t), \quad 0 \leq t \leq T.
\end{equation}
is a standard Brownian motion under P_T^Y, where the measure P_T^Y is defined by

$$P_T^Y(A) = \mathbb{E}^P[1_A \exp(\int_0^T B(t, Y(t)) \, dw - \frac{1}{2} \int_0^T B^2(t, Y(t)) \, dt)].$$

Here \mathbb{P} or P_T^X is the measure generated by the process X on $C([0, T]; \mathbb{R})$. We can write $Y(t)$ as

$$dY = A(t, Y(t)) \, dt + \sigma(t, Y(t)) \, d\tilde{w}(t).$$

Then we may define the likelihood (Radon-Nykodym derivative, see e.g. [Liptser and Shiryaev, 2001])

$$\frac{dP_T^X}{dP_T^T} = \exp(\int_0^T B(t, Y(t)) \, dw - \frac{1}{2} \int_0^T B^2(t, Y(t)) \, dt)$$

(1.10) $$= \exp(\int_0^T \frac{A(t, Y(t)) - a(t, Y(t))}{\sigma^2(t, Y(t))} \, dY(t) - \frac{1}{2} \int_0^T \frac{A^2(t, Y(t)) - a^2(t, Y(t))}{\sigma^2(t, Y(t))} \, dt)$$

(1.11) $$= \exp(\int_0^T \frac{A(t, X(t)) - a(t, X(t))}{\sigma^2(t, X(t))} \, dX(t) - \frac{1}{2} \int_0^T \frac{A^2(t, X(t)) - a^2(t, X(t))}{\sigma^2(t, X(t))} \, dt).$$

For the problem of estimating θ, let $A(t, x) = \theta f(x)$ and $a(t, x) = \theta_0 f(x)$. Then by taking the logarithm of the likelihood and letting the derivative of the log-likelihood be zero, we have

$$\hat{\theta} = \frac{\int_0^T \frac{f(X(t))}{\sigma^2(X(t))} \, dX(t)}{\int_0^T \frac{f^2(X(t))}{\sigma^2(X(t))} \, dt}.$$

(1.12)

Multiplying $f(X)/\sigma^2(X)$ over both sides of the equation of X, we obtain that

$$\theta = \frac{\int_0^T \frac{f(X(t))}{\sigma^2(X(t))} \, dX(t) + \int_0^T \frac{f(X(t))}{\sigma(X(t))} \, dw(t)}{\int_0^T \frac{f^2(X(t))}{\sigma^2(X(t))} \, dt}.$$

(1.13)

Thus, we have

$$\hat{\theta} - \theta = \frac{\int_0^T \frac{f(X(t))}{\sigma(X(t))} \, dw(t)}{\int_0^T \frac{f^2(X(t))}{\sigma^2(X(t))} \, dt}.$$

(1.14)

Under certain conditions on f and σ, we may obtain that $\hat{\theta} - \theta$ converges in distribution to a normal random variable with zero mean and a certain variance. For convergence and its rate, we will defer discussions to the next section, where we will use the Ornstein–Uhlenbeck process as an example.

1.3. **Estimating θ using the Gaussian (or nonlinear) filter.** The parameter θ can be also estimated using the filtering technique.

Example 1.1 (Parameter estimation).

$$dY = \theta G(t) \, dt + D(t) \, dB(t), Y(0) = 0,$$

Suppose that we have $Y(t)$, $G(t)$, $D(t)$, we want to find out what θ is.

1Here we then have a weak solution $(Y(t), \tilde{w}(t))$ to Equation (1.1).
Solution. Here \(d\theta = 0\) (state model) and \(Y\) is the observation. Then from Lecture 5, we have
\[
\frac{dS}{dt} = -\frac{G^2(t)}{D^2(t)} S(t),
\]
and
\[
\hat{\theta}_t = \mathbb{E}[\theta|F_t^Y] = \frac{\hat{\theta}_0 S_0^{-1} + \int_0^t G(s) D^{-2}(s) dY(s)}{S_0^{-1} + \int_0^t G^2(s) D^{-2}(s) ds}.
\]
See Lecture 5 for the derivation of this formula.

Remark 1.2. Let \(S_0^{-1} = 0\) gives the maximum likelihood estimation.

1.4. **A least-square method.** We may also consider the following problem with multiple parameters
\[
\frac{dX}{dt} = \sum_{j=1}^N \theta_j f_j(x) \, dt + \sum_{j=1}^N \sqrt{\theta_j} g_j(x) \, dw_j(t), \quad \theta_j > 0. \quad X(0) = x.
\]
Suppose that \(\phi \in C_b^2(\mathbb{R}^d)\), then we have from Ito’s formula that
\[
\mathbb{E}[\phi(X(t))] - \mathbb{E}[\phi(X(0))] = \int_0^t \mathcal{L}\phi(X(s)) \, ds,
\]
where the operator \(\mathcal{L}\) is the generator of the process \(X(t)\) and
\[
\mathcal{L}v = \sum_{j=1}^n \theta_j f_j^\top \nabla v + \frac{1}{2} \text{Tr}(\sum_{j=1}^n \theta_j g_j g_j^\top H_X v).
\]
Denote \(\mathcal{L}_j = f_j^\top \nabla v + \frac{1}{2} \text{Tr}(g_j g_j^\top \nabla v)\). Then
\[
\sum_{j=1}^n \theta_j \int_0^t \mathcal{L}_j \phi(X(s)) \, ds = \mathbb{E}[\phi(X(t))] - \mathbb{E}[\phi(x)].
\]
This equation is under-determined. If we can obtain samples for various \(x\), e.g., \(x_i \in \mathbb{R}^d, i = 1, 2, \ldots, M\). We then obtain an equation of the form \(A\theta = b\), where \(A_{i,j} = \int_0^t \mathcal{L}_j \phi(X_{0,x_i}(s)) \, ds\) and \(b_i = \mathbb{E}[\phi(X_{0,x_i}(t))] - \mathbb{E}[\phi(x_i)]\). We can then obtain a least-square solution \(\hat{\theta} = A^+ b\), where \(A^+\) is the pseudoinverse of \(A\).

2. **Parameter estimation for bilinear SPDEs**

Example 2.1 (Stochastic heat equation driven by additive noise). Consider the following evolution equation
\[
du(t, x) - \theta \Delta u(t, x) \, dt = \sigma \, dW^Q(t, x), \quad t > 0, \quad x \in \mathbb{R}^d
\]
with zero initial condition \(u(0, x) = 0\), and \(\Delta u = \sum_{k=1}^d \partial^2_{x_i} u\) denotes the Laplace operator, \(\theta, \sigma \in \mathbb{R}_+\). Here \(G\) is a smooth bounded domain in \(\mathbb{R}^d\) and we consider zero Dirichlet boundary condition.

If \(-\Delta\) and \(Q\) have only point spectrum and the same set of eigenfunctions (in this case, the equation is called a fully diagonalizable equation), say \(Qe_k = q_k e_k\) and \(-\Delta e_k = \nu_k e_k\), then we have
\[
du_k(t) + \theta \nu_k u_k \, dt = \sigma \sqrt{q_k} du_k(t), \quad k \geq 1.
\]
Here \(u_k = (u, e_k)\) and \(\{e_k\}\) is a complete orthonormal system in \(L^2(G)\).
From the discussion in the last section, the MLE gives
\begin{equation}
\hat{\theta}_N^k = -\frac{\sigma \int_0^T \nu_k^\alpha q_k^\rho u_k(t) \, dt}{\int_0^T \nu_k^{1+\alpha} q_k^\rho u_k^2(t) \, dt} = \theta - \frac{\sigma \int_0^T \nu_k^\alpha q_k^{\rho+1/2} u_k(t) \, dt}{\int_0^T \nu_k^{1+\alpha} q_k^\rho u_k^2(t) \, dt},
\end{equation}
where \(\alpha = 1\) and \(\rho = -1\). But the derivation of an estimation of \(\theta\) (1.13) shows that we can take arbitrary \(\alpha \in \mathbb{R}\) and \(\rho \in \mathbb{R}\).

As we have an explicit form of the difference \(\hat{\theta}_N^k - \theta\)
\begin{equation}
\hat{\theta}_N^k - \theta = -\frac{\sigma \int_0^T \nu_k^\alpha q_k^{\rho+1/2} u_k(t) \, dt}{\int_0^T \nu_k^{1+\alpha} q_k^\rho u_k^2(t) \, dt},
\end{equation}
we may work out the convergence and its rate which is stated in the following theorem; see details of calculation in Chapter 6.1 of [Lototsky and Rozovsky, 2017].

Theorem 2.2. Assume \(q_k \equiv 1\) and \(\alpha = 1\) and \(\rho = -1\). For each \(k \geq 1\), the estimator \(\theta_N^k\) is asymptotically normal with rate \(\sqrt{T}\).
\begin{equation}
\lim_{T \to \infty} \sqrt{T}(\hat{\theta}_N^k(T) - \theta) \overset{d}{=} N(0, \frac{2\theta}{k^2}).
\end{equation}
For each \(T > 0\),
\begin{equation}
\lim_{k \to \infty} k(\hat{\theta}_N^k(T) - \theta) \overset{d}{=} N(0, \frac{2\theta}{T}).
\end{equation}

Exercise 2.3. Show the convergence of \(\hat{\theta}_N^k\) to \(\theta\) is also in probability.

We need \((\hat{\theta}_N^k)^+ = \hat{\theta}_N^k \vee 0\) to ensure that the estimator of \(\theta\) is positive.

Above we use the information of one single frequency \(k\), averaging over \(k = 1, 2, \ldots, N\) leads to another estimation and we expect higher-order convergence of the averaging as \(N\) modes of solutions have more information. Denote
\begin{equation}
\hat{\theta}_N = \sum_{k=1}^n \frac{a_k}{\sum_{k=1}^n a_k} \hat{\theta}_N^k, \quad \hat{\theta}_N^k = \frac{b_k}{a_k}, \quad a_k = \int_0^T \nu_k^{1+\alpha} q_k^\rho u_k^2(t) \, dt, \quad b_k = -\sigma \int_0^T \nu_k^\alpha q_k^\rho u_k(t) \, dt.
\end{equation}
The estimator \(\hat{\theta}_N\) can be written as
\begin{equation}
\hat{\theta}_N = -\frac{\sigma \sum_{k=1}^N \int_0^T \nu_k^\alpha q_k^\rho u_k(t) \, dt}{\sum_{k=1}^N \int_0^T \nu_k^{1+\alpha} q_k^\rho u_k^2(t) \, dt} = \theta - \frac{\sigma \sum_{k=1}^N \int_0^T \nu_k^\alpha q_k^{\rho+1/2} u_k(t) \, dt}{\sum_{k=1}^N \int_0^T \nu_k^{1+\alpha} q_k^\rho u_k^2(t) \, dt}.
\end{equation}

When \(\alpha = 1\), \(\rho = -1\), \(q_k \equiv 1\), the proof convergence is sketched as follows. By the ergodicity of the process \(u_k\),
\begin{equation}
\frac{1}{T} \int_0^T \sum_{k=1}^N q_k^{-1} \nu_k^2 u_k^2(t) \, dt \to \sum_{k=1}^N q_k^{-1} \frac{\sigma^2}{2\mu_k(\theta)}, \quad T \to \infty.
\end{equation}
We can also show that \(\sigma \sum_{k=1}^N \int_0^T \nu_k q_k^{-1} u_k(t) \, dt\) converges in distribution to a normal random variable with mean zero (see Chapter 6.3 of [Lototsky and Rozovsky, 2017] for a proof) using the martingale central limit theorem A.2 in Appendix.

Theorem 2.4. Assume that, \(\nu_k \to \infty\), \(q_k \to 0\), and \(\alpha, \rho\) are such that
\begin{equation}
\nu_n^{\alpha-1} q_n^{2\rho+2} \leq M, \quad n \geq 1, \quad \sum_{k \geq 1} \nu_k^\alpha q_k^{2\rho+2} = \infty,
\end{equation}
for some \(M \in \mathbb{R} \). Then, \(\hat{\theta}_N \) is a consistent estimator of \(\theta \), i.e. \(\hat{\theta}_N \to \theta \) with probability one. Moreover, if
\[
\sum_{k \geq 1} \nu_k^{2\alpha-1} q_k^{4\rho+4} = \infty,
\]
then, \(\hat{\theta}_N \) is also asymptotically normal
\[
\frac{\sum_{k=0}^{N} \nu_k^\alpha q_k^{2\rho+2}}{\sqrt{\sum_{k=0}^{N} \nu_k^{2\alpha-1} q_k^{4\rho+4}}} (\hat{\theta}_N - \theta) \xrightarrow{d_{N \to \infty}} \mathcal{N}(0, \frac{2\theta}{T}).
\]

When \(q_k \equiv 1 \) and \(\nu_k = k^2 \) \((G = (0, \pi) \subseteq \mathbb{R}^1)\), then the convergence rate is
\[
\sqrt{\sum_{k=1}^{N} \nu_k^{2\alpha-1}} \approx N^{2(2\alpha-1)+1/2}N^{-(2\alpha+1)} = N^{-\frac{3}{2}}.
\]

Exercise 2.5. What is the convergence rate for \(\theta_N \) when \(T \to \infty \)?

Example 2.6 (Stochastic heat equation driven by additive noise).
\[
\begin{aligned}
\frac{d}{dt}\left(u(t,x) - (A_0 u(t,x) + \theta A_1 u(t,x))\right) &= \sigma dW^Q(t,x), \quad (t,x) \in (0,T] \times (0,\pi),
\end{aligned}
\]
with zero initial and boundary conditions, and \(\theta \in \mathbb{R} \) and \(\sigma \in \mathbb{R}^+ \).

The procedure of finding \(\theta \) is similar to the one we use in the last example and the estimator is
\[
\hat{\theta}_N = -\frac{\int_0^T (Q^{-1} A_1 u^N, du_N) - \int_0^T (Q^{-1} A_1 u^N, A_0 u^N), dt}{\int_0^T \left\| Q^{-1/2} A_1 u^N \right\|^2 dt},
\]
while
\[
\begin{aligned}
\theta &= -\frac{\int_0^T (Q^{-1} A_1 u^N, du_N) - \int_0^T (Q^{-1} A_1 u^N, A_0 u^N), dt + \sigma \int_0^T Q^{-1} A_1 u^N dW^Q(t)}{\int_0^T \left\| Q^{-1/2} A_1 u^N \right\|^2 dt}.
\end{aligned}
\]

Here \(u^N = P^N u = \sum_{k=1}^{N} u_k e_k \), where \(e_k \)'s are the common eigenfunctions of \(A_0, A_1 \) and the operator \(Q \). If we set \(A_0 e_k = \rho_k e_k \) \((\rho_k > 0)\), \(A_1 e_k = \nu_k e_k \) \((\nu_k > 0)\) and \(Q e_k = q_k e_k \), we then have
\[
\hat{\theta}_N - \theta = \frac{\sigma \int_0^T Q^{-1} A_1 u^N dW^Q(t)}{\int_0^T \left\| Q^{-1/2} A_1 u^N \right\|^2 dt} - \frac{\sigma \sum_{k=1}^{N} \int_0^T \nu_k q_k^{-1} u_k dw_k(t)}{\int_0^T \sum_{k=1}^{N} q_k^{-1} \nu_k q_k^{-1} u_k^2 dt}.
\]

Denote \(I_{N,\theta} = \sigma^2 \sum_{k=1}^{N} \frac{\nu_k^2}{\mu_k(\theta)} \), where \(\mu_k(\theta) = \nu_k + \theta \rho_k \).

Theorem 2.7. Let \(q_k \equiv 1 \). Assume that \(\theta \in \mathbb{R} \) and \(u(0,x) = 0 \). Assume also that \(\mu_k(\theta) \to +\infty \) when \(k \to \infty \) and \(\sup_k \frac{|\nu_k|}{\mu_k(\theta)} < +\infty \). When \(\lim_{N \to \infty} I_{N,\theta} = +\infty \), then \(\lim_{N \to \infty} \hat{\theta}_N = \theta \) with probability one.
\[
\lim_{N \to \infty} \sqrt{I_{N,\theta}(\hat{\theta}_N - \theta)} \xrightarrow{d} \mathcal{N}(0, \frac{2}{T}).
\]
When $\lim_{N \to \infty} I_{N, \theta} < +\infty$,

$$\lim_{N \to \infty} \hat{\theta}_N = \frac{\sum_{k=1}^{\infty} \nu_k q_k^{-1} \int_0^T u_k \, dw_k(t)}{\sum_{k=1}^{\infty} \int_0^T q_k^{-1} \nu_k^2 u_k^2 \, dt}.$$ (2.18)

The proof of this theorem can be found at Chapter 6.3 of [Lototsky and Rozovsky, 2017].

2.1. General theory. Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$ satisfy the usual conditions and let H be a separable Hilbert space equipped with the inner product (\cdot, \cdot) and the norm $\|\cdot\|$. Let’s consider the following evolution equation

$$du(t) + (\theta A + B) u(t) \, dt = (Mu(t) + \sigma) \, dW^Q(t),$$

with the initial condition $u(0) = u_0 \in H$, and $\sigma, \theta > 0$ and

- the leading operator A is a linear, positive defined, self-adjoint operator in H;
- B is a linear or nonlinear operator in H;
- M is an operator acting in a suitable Hilbert space;
- W^Q is a Q-cylindrical Brownian motion in H.

We consider diagonalizable SPDEs (not key assumption but it does simplifies problems)

- the operators A and Q have pure point spectrum, and a common system of eigenfunctions $\{e_k\}_{k \geq 1}$ that forms a complete orthonormal system in H.

Thus

$$\hat{W}^Q(t) = \sum_{k=1}^{\infty} \sqrt{q_k} e_k \hat{w}_k(t),$$

where w_k are independent standard Brownian motions.

Estimating σ for SPDEs is essentially the same as for SODEs. We will focus on estimating the parameter $\theta \in \Theta \subset \mathbb{R}^+$ and assume that the positive constant σ is known.

We apply the projection operator \mathcal{P}^N to (2.19), and obtain

$$du^N + (\theta A^N(t) + \Psi^N(t)) \, dt = \sigma dW^{Q,N}(t), \quad u^N(0) = \mathcal{P}^N u_0,$$ (2.20)

where $\Psi^N = \mathcal{P}^N B(u)$, and $W^{Q,N} = \mathcal{P}^N W^Q$. and \mathcal{P}^N is the projection operator from H onto $H^N = \text{span} \{e_k : k = 1, \ldots, N\}$.

Denote $u_N = \mathcal{P}^N u = \sum_{k=1}^{N} u_k e_k$, where $u_k = (u, e_k), \; k \geq 1$, are the Fourier coefficients (or modes) of the solution u with respect to $\{e_k\}_{k \geq 1}$. Denote by \mathbb{P}^T_θ the probability measure on $C([0, T]; H^N)$ generated by the solution u_N^T of (2.20). We assume that the family of measures $\{\mathbb{P}^T_\theta(\cdot)\}_{\theta \in \Theta}$ are mutually absolutely continuous (without justification, no need actually). Using the Radon-Nykodym derivative or Likelihood Ratio

$$\frac{d\mathbb{P}^T_\theta}{d\mathbb{P}^T_{\theta_0}} (u_N) = \exp \left(- (\theta - \theta_0) \sigma^{-2} \int_0^T (Q^{-1} A u^N, du^N) - \frac{1}{2} (\theta^2 + \theta_0^2) \sigma^{-2} \int_0^T \|Q^{-1/2} A u^N\|^2 \, dt \right)$$

(2.21)

We can formally compute the maximum likelihood estimator (MLE) for the parameter of interest θ by maximizing the log-likelihood ratio $\log(\frac{d\mathbb{P}^N_\theta}{d\mathbb{P}^N_{\theta_0}} (u_N))$ with respect to θ, and
obtain the following estimator
\begin{equation}
\hat{\theta}_N^2 = -\frac{\int_0^T (Q^{-1}Au^N, du_N) + \int_0^T (Q^{-1}Au^N, P^N B(u)) \, dt}{\int_0^T \|Q^{-1/2}Au^N\|^2 \, dt}.
\end{equation}

The above methodology can be applied to the following Navier-Stokes equation with additive noise. For details, see [Cialenco and Glatt-Holtz, 2011] or the review paper [Cialenco, 2018].

Example 2.8 (2D Navier–Stokes Equations forced with additive noise). Consider the equation that describes the flow of a viscous, incompressible fluid
\begin{align}
du - \theta Du \, dt + (u \cdot \nabla u) u \, dt + \nabla P \, dt &= \sigma \, dW^Q(t), \\
\nabla \cdot u &= 0, \\
u(0) &= u_0,
\end{align}
where \(u \) represent the velocity field and \(P \) the pressure. Here we may consider either zero boundary conditions on a bounded domain in \(\mathbb{R}^2 \), or periodic domain with periodic boundary conditions.

For an estimation of multiple parameters using the MLE, see Chapter 6.3 of [Lototsky and Rozovsky, 2017].

3. The p-variation method

Measurements of the solution \(u(t, x) \) are only at some discrete time points \(t_i \) and/or some discrete spatial points \(x_j \), over one path/realization \(\omega \in \Omega \).

Let \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\) be a stochastic basis satisfying the usual conditions. We consider the following stochastic partial differential equation on \(H = L^2(G) \), where \(G = (0, \pi) \).

\begin{equation}
\begin{cases}
\partial_t u(t, x) = \theta u_{xx}(t, x) + \sigma \tilde{W}(t, x), & x \in G, \ t > 0, \\
u(0, x) = 0,
\end{cases}
\end{equation}

where \(\theta, \sigma \) are some positive constants, and \(\tilde{W}(t, x) \) is a space-time white noise and we also assume zero boundary conditions \(u(t, 0) = u(t, \pi) = 0, \ t > 0 \). Here \(\theta, \sigma \in \mathbb{R}_+ \) are the (unknown) parameters of interest.

Here we assume that the observation is at a fixed time instant and at discrete space locations. Specifically, for a fixed instant of time \(t > 0 \), and given interval \([a, b] \subset G\), the solution \(u \) is observed at points \((t, x_j), \, j = 1, \ldots, m \), with \(x_j = a + (b - a)j/m, \ j = 0, 1, \ldots, m \).

Introduce the partition \(\mathcal{T}^m(a, b) = \{a_j \mid a_j = a + (b - a)j/m, \ j = 0, 1, \ldots, m\} \) for the uniform partition of size \(m \) of a given interval \([a, b] \subset \mathbb{R}\). Assume that \(t > 0 \) is a fixed time instant, and consider the partition \(\mathcal{T}^m(a, b) \) of the fixed interval \([a, b] \subset G\). Suppose that the solution \(u \) of (3.1) is observed at the grid points \(\{(t, x_j) \mid x_j \in \mathcal{T}^m(a, b), j = 1, \ldots, m\} \).

Consider the following estimators for \(\theta \) and \(\sigma^2 \) respectively
\begin{align}
\tilde{\theta}_{m,t} := -\frac{(b-a)\sigma^2}{2\sum_{j=1}^m(u(t, x_j) - u(t, x_{j-1}))^2}, \text{ (known } \sigma \text{)} ,
\end{align}
\begin{align}
\tilde{\sigma}_{m,t}^2 := \frac{2\theta}{b-a} \sum_{j=1}^m(u(t, x_j) - u(t, x_{j-1}))^2, \text{ (known } \theta \text{)} .
\end{align}

These estimators are consistent and asymptotically normal.
Theorem 3.1. Assume that \(u \) is the solution of (3.1) and that \(\sigma \) is known. The estimator (3.2) of \(\theta \) is (strongly) consistent, i.e., \(\lim_{m \to \infty} \hat{\theta}_{m,t} = \theta \) with probability one, and asymptotically normal,

\[
\sqrt{m}(\hat{\theta}_{m,t} - \theta) \xrightarrow{d} N(0, 2\theta^2).
\]

Assuming that \(\theta \) is known, the estimator (3.3) is a (strongly) consistent and asymptotically normal estimator of \(\sigma^2 \), with

\[
\sqrt{m}(\hat{\sigma}_{m,t}^2 - \sigma^2) \xrightarrow{d} N(0, 2\sigma^4).
\]

Proof. For every fixed \(t > 0 \), there is a Brownian motion \(B(x) \) on \([0, \pi]\), and a Gaussian process \(R(x) \in C^\infty(0, \pi) \) such that

\[
u(t, x) = \frac{\sigma}{\sqrt{2\theta}} B(x) + R(x), \quad x \in [0, \pi].
\]

Indeed, we may take

\[
B(x) = \xi_0 + \sum_{k \geq 1} \frac{1}{k} \xi_k e_k(x), \quad R(x) = -\frac{\sigma x}{\sqrt{2\theta}} \xi_0 + \frac{\sigma}{\sqrt{2\theta}} \sum_{k \geq 1} \frac{a_k - 1}{k} \xi_k e_k(x),
\]

\[
\xi_k = \sqrt{\frac{2\theta k^2}{(1 - e^{-2\theta k^2})\sigma^2}} u_k(t), \quad a_k = \sqrt{1 - e^{-2\theta k^2}}.
\]

Here \(\xi_k \)'s are i.i.d. standard Gaussian random variables. From Lecture 2, we know that \(B \) is a standard Brownian motion on \([0, \pi]\) and that \(R \) is smooth.

We then can calculate the convergence rate explicitly using the representation (3.6) \(\square \)

Remark 3.2 (fixed location and various observations at discrete time instants). Assume that the solution \(u \) is observed at points \(\{(t_i, x), i = 1, \ldots, n\} \), where \(t_i := c + (d - c)i/n, \ i = 0, 1, \ldots, n, \) and \(t_i \in [c, d] \subset (0, +\infty) \) and a fixed \(x \) from the interior of \(G \). For the equation (3.1), we may consider the following estimators for \(\theta \), and \(\sigma^2 \) respectively,

\[
\hat{\theta}_{n,x} := \frac{3(d - c)\sigma^4}{\pi \sum_{i=1}^n (u(t_i, x) - u(t_{i-1}, x))^4}, \ (\text{known } \sigma),
\]

\[
\hat{\sigma}_{n,x}^2 := \sqrt{\frac{\theta \pi}{3(d - c)} \sum_{i=1}^n (u(t_i, x) - u(t_{i-1}, x))^4}, \ (\text{known } \theta).
\]

These estimators are consistent and asymptotically normal, see [Cialenco and Huang, 2020], where the schemes for estimating \(\theta \) and \(\sigma \) concurrently are also discussed.

For estimations based on Bayesian analysis, interested readers are referred to [Cheng et al., 2018].

Appendix A. Central limit theorems

Theorem A.1. Suppose that \(\sigma_k \in L^2(\Omega, L^2([0, T])) \) is a sequence of independent real-valued predictable process and the strong law of large numbers holds

\[
\lim_{N \to \infty} \frac{\sum_{k=1}^N \int_0^T \sigma_k^2 \, dt}{\sum_{k=1}^N \mathbb{E}[\int_0^T \sigma_k^2 \, dt]} = 1, \ a.s.
\]

Then the central limit theorem holds

\[
\frac{\sum_{k=1}^N \int_0^T \sigma_k \, dw_k(t)}{\left(\sum_{k=1}^N \mathbb{E}[\int_0^T \sigma_k^2 \, dt]\right)^{1/2}}
\]
converges in distribution to a standard normal random variable when $N \to \infty$.

The first conclusion is a variant of the strong law of large numbers, see e.g. Theorem 6.2.11 of [Lototsky and Rozovsky, 2017] and the second conclusion can be proved by the following theorem.

Theorem A.2 (Martingale central limit theorem, Theorem 5.5.4 of [Liptser and Shiryaev, 1989]). Assume that for $t \geq 0$ and $\varepsilon > 0$, $X_\varepsilon(t)$ and $X(t)$ are real-valued continuous square-integrable martingales. Also, $X(t)$ is a Gaussian process with $X(0) = X(t_0) = 0$. If for some $t_0 > 0$,

(A.3) \[
\lim_{\varepsilon \to 0} \langle X_\varepsilon \rangle(t_0) = \langle X \rangle(t_0), \quad \text{in probability},
\]

Then $\lim_{\varepsilon \to 0} X_\varepsilon(t_0) \overset{d}{=} X(t_0)$.

APPENDIX B. SOME IMPORTANT TOPICS WE DIDN’T COVER

- Nonlinear problems with non-globally Lipschitz nonlinear terms (we assume that at most Lipschitz nonlinearity for SPDEs, but we do have non-globally Lipschitz nonlinear terms for SODEs)
- Weak convergence, including convergence in probability, convergence in law etc.
- Spectral methods, finite/spectral element methods for space and/or time discretization (we focus on finite difference schemes)
- Numerical methods for multiscale stochastic partial differential equations
- Theory and numerics for stochastic partial differential equations with Levy noises, see e.g. [Peszat and Zabczyk, 2007];
- Inference of a stochastic process (or random field)
- Large Deviations for SPDEs and their computation
- ...

REFERENCES

