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Observe the motion of the surface 
of the water, which resembles that 
of hair….….

Physics-Informed Learning Machines



Data + Physical Laws
* Dinky, Dirty, Dynamic, Deceptive Data



Solving Differential Equations from Measurements Only!

Remove the tyranny of Grids! And of serious Math!

Use noisy measurements - Predict with uncertainty!

Execute Poincare’s will!

“…once we allow that we don’t know f(x), but do know some things, 
it becomes natural to take a Bayesian approach”

Persi Diaconis, Stanford (1988)







Outline

Deep Neural Networks
Continuous Time
Discrete Time



Theorem (Cybenko, 1989) 
Let 𝜎𝜎 be any continuous sigmoidal function. Then, the finite 
sums of the form 

𝐺𝐺 𝑥𝑥 = �
𝑗𝑗=1
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𝛼𝛼𝑗𝑗𝜎𝜎 𝑦𝑦𝑗𝑗 � 𝑥𝑥 + 𝜃𝜃𝑗𝑗

are dense in 𝐶𝐶 𝐼𝐼𝑑𝑑 .

 G. Cybenko, “Approximation by superpositions of a sigmoidal function”, 
Mathematics of Control, Signals and Systems, 303-314, 2(4), 1989

 Hornik et. al., 1989; Barron (1994); Mhaskar (1996)

Approximation Theory in Neural Networks: Functions



Data + Neural Networks + Physical Laws

*Physics-Informed Neural Networks (PINNs)

Physics-informed neural networks: A deep learning 
framework for solving forward and inverse problems 
involving nonlinear partial differential equations

M Raissi, P Perdikaris, GE Karniadakis
Journal of Computational Physics 378, 686-707

arXiv:1711.10561; arXiv:1711.10566



Physics-Informed Neural Networks (PINNs)

 sPINNs: stochastic PINNs
 fPINNs: fractional PINNs
 LePINNs: Levy process PINNs
 nPINNs: Nonlocal PINNs…



 Minimize:

What is a PINN? Physics-Informed Neural Network
We employ two (or more) NNs that share the same parameters





i-RK-100!
101 outputs

IC: 200 points
4 layers/200 neurons



Hidden Fluid Mechanics
M. Raissi, A. Yazdani and G.E. Karniadakis, arXiv:1808.04327

https://arxiv.org/abs/1808.04327


PINNs for the Da Vinci Problem
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Boundary conditions:
• On outside boundary

σx = q, σy = τxy = 0
• On inside boundary

σr = τrθ= 0
Symmetry constraints:

• On the line AB
u =0 and τxy=0

• On the line CD
v=0 and τxy=0
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Governing equations

PINNs for Solid Mechanics
(Dr. Guofei Pang (Brown U) & Dr. Ming Dao (MIT))



Inverse problem:  Identify Young's modulus (E), 
Poisson's ration (µ) and hole size (r0)

*Red points:   PDE residuals    *Green points:  Candidate inside BCs 
*Blue points:  Outside BCs and symmetry constraints             
*Black points: sensors      

True E: 1.0      
Identified E: 0.999
True µ: 0.25         

Identifed µ: 0.248
True r0:           0.05   

Identifed r0: 0.0495
L2 relative errors:  

0.32% (σr)    0.31% (σθ)
0.36% (τrθ) 



* Red points:   PDE residuals              *Blue points:  Outside BCs
* Brown, green and yellow points:   Inside BCs      
* Black points:  randomly distributed sensors

The Real Problem: Find the material defects 



fPINNs: fractional PINNs
(Dr. Guofei Pang & Lu Lu, Brown U)



Finite Differences versus fPINNs (𝑵𝑵 = λ)

♣ For small N or λ, the sampling or discretization error dominates.
♣ For large N or λ, the optimization error dominates.
♣ The higher the approximation order is, the earlier the  optimization error dominates, 

since the higher order scheme yields more complex loss function.
♣ NN approximation error is negligible since fPINN can replicate FDM’s solution for 

small N.



Data of groundwater 
solute transport

from 
Macro-dispersion 

Experimental
(MADE) site 

at Columbus Air 
Force Base

 Green: Tritium concentration  data 
from MADE site

 Red:  Prediction in the literature using 
trial and error

 Blue: Prediction from machine learning

Why Fractional Operators + PINNs?
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Old fractional model (One 
example) 

New fractional model 

Comparison Old fractional 
model New fractional model

How to identify 
parameters Trial and error Machine learning

Extension to a large number 
of parameters Difficult Easy

Prediction accuracy Low High

To Discover (truly) New Equations!



Mathematics of PINNs

 Nonlinear approximation theory

 Robust training & optimization

 Multifidelity approximation

 Learnability & small data



Theorem (Chen and Chen, 1993):
Suppose that 𝑈𝑈 is a compact set in 𝐶𝐶 𝑎𝑎, 𝑏𝑏 , 𝑓𝑓 is a

continuous functional defined on 𝑈𝑈, and 𝜎𝜎 𝑥𝑥 is a bounded
sigmoidal function, then for any 𝜀𝜀 > 0, there exist 𝑚𝑚 + 1
points 𝑎𝑎 = 𝑥𝑥0 < ⋯ < 𝑥𝑥𝑚𝑚 = 𝑏𝑏, a positive integer 𝑁𝑁 and
constants 𝑐𝑐𝑖𝑖, 𝜃𝜃𝑖𝑖, 𝜉𝜉𝑖𝑖,𝑗𝑗, 𝑖𝑖 = 1,⋯ ,𝑁𝑁, 𝑗𝑗 = 0,1,⋯ ,𝑚𝑚, such that
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𝑐𝑐𝑖𝑖𝜎𝜎 �
𝑗𝑗=0

𝑚𝑚

𝜉𝜉𝑖𝑖,𝑗𝑗𝑢𝑢 𝑥𝑥𝑗𝑗 + 𝜃𝜃𝑖𝑖 < 𝜀𝜀

holds for all 𝑢𝑢 ∈ 𝑈𝑈.

T.P. Chen and H. Chen, Approximations of continuous functionals by neural 
networks with application to dynamic systems, IEEE Transactions on Neural 
Networks, 910-918, 4(6), 1993.

Approximation Theory in Neural Networks: Functionals









Function Approximation by Deep and Narrow NN

arXiv:1808.04947; arXiv:1903.06733

https://arxiv.org/abs/1903.06733


Function Approximation by Deep and Narrow NN

arXiv:1808.04947; arXiv:1903.06733

https://arxiv.org/abs/1903.06733


arXiv:1808.04947; arXiv:1903.06733

https://arxiv.org/abs/1903.06733


Function Approximation by Deep and Narrow NN

arXiv:1903.06733

(Lu Lu & Dr. Yeonjong Shin, Brown U)

https://arxiv.org/abs/1903.06733


Function Approximation by Deep and Narrow NN

arXiv:1903.06733

(Before Training)

https://arxiv.org/abs/1903.06733


(During Training)

(Before Training: special case)



Function Approximation by Deep and Narrow NN

(1M runs per point)



Function Approximation by Deep and Narrow NN

arXiv:1903.06733

(use of Upper Bound)

https://arxiv.org/abs/1903.06733


arXiv:1903.06733

https://arxiv.org/abs/1903.06733


arXiv:1903.06733

https://arxiv.org/abs/1903.06733


arXiv:1903.06733

https://arxiv.org/abs/1903.06733






Conclusions

 PINNs integrate seamlessly data + mathematical physics

 Same formulation for forward and inverse problems

 Overcome the curse of dimensionality

 Can be used in any scientific field

 Can discover new dynamical systems equations



Center Director: George Em Karniadakis
PNNL & Division of Applied Mathematics,  Brown University

The CRUNCH group: Home of “Math + Machine Learning + X”
https://www.brown.edu/research/projects/crunch/home

https://www.pnnl.gov/computing/philms/

PhILMs: Collaboratory on Mathematics and Physics-Informed Learning Machines
For Multiscale and Multiphysics Problems


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Conclusions
	Slide Number 41

