Observe the motion of the surface of the water, which resembles that of hair.......

George Em Karniadakis
Division of Applied Mathematics, Brown University

The CRUNCH group: Home of “Math + Machine Learning + X”
https://www.brown.edu/research/projects/crunch/home
Data + Physical Laws

* Dinky, Dirty, Dynamic, Deceptive Data

Three scenarios of Physics-Informed Learning Machines
Solving Differential Equations from Measurements Only!

“...once we allow that we don’t know $f(x)$, but do know some things, it becomes natural to take a Bayesian approach”

Persi Diaconis, Stanford (1988)

✓ Remove the tyranny of Grids! And of serious Math!

✓ Use noisy measurements - Predict with uncertainty!

✓ Execute Poincare’s will!
Nonlinear regression with Gaussian processes

\[y = f(x) + \epsilon, \quad f \sim \mathcal{GP}(\mu(x), K(x, x'; \theta)) \]

History:
- Wiener–Kolmogorov filtering (1940)
- Kriging (spatial statistics, 1970)
- GP regression (machine learning, 1996)

Workflow:
- Assign a Gaussian process (GP) prior over functions
- Given a training set of observations \((x, y)\) calibrate the GP hyper-parameters
- Use the conditional posterior \([f|y]\) to infer predictions for unobserved \(x\)'s with quantified uncertainty

<table>
<thead>
<tr>
<th>covariance function</th>
<th>expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>(\sigma_0^2)</td>
</tr>
<tr>
<td>linear</td>
<td>(\sum_{d=1}^{D} \sigma_d^2 x_d x'_d)</td>
</tr>
<tr>
<td>polynomial</td>
<td>((x \cdot x' + \sigma_0^2)^p)</td>
</tr>
<tr>
<td>squared exponential</td>
<td>(\exp(-\frac{r^2}{2\ell^2}))</td>
</tr>
<tr>
<td>Matérn</td>
<td>(\frac{2^{\nu-1} - \Gamma(\nu)}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell} r\right)^\nu K_\nu \left(\frac{\sqrt{2\nu}}{\ell} r\right))</td>
</tr>
<tr>
<td>exponential</td>
<td>(\exp(-\frac{r}{\ell}))</td>
</tr>
<tr>
<td>(\gamma)-exponential</td>
<td>(\exp\left(-\left(\frac{r}{\ell}\right)^\gamma\right))</td>
</tr>
<tr>
<td>rational quadratic</td>
<td>((1 + \frac{r^2}{2\alpha \ell^2})^{-\alpha})</td>
</tr>
<tr>
<td>neural network</td>
<td>(\sin^{-1}\left(\frac{2x^T \Sigma x'}{(1 + 2x^T \Sigma x)(1 + 2x'^T \Sigma x')}\right))</td>
</tr>
</tbody>
</table>

Rasmussen, C. E. Gaussian processes for machine learning (2006)
Solving differential equations from measurements only

\[\frac{\partial}{\partial x} u_2(x) + \int_0^x u_2(\xi)d\xi = f(x) \]

\[\sum_{d=1}^{10} \frac{\partial^2}{\partial x_d^2} u(x) = f(x) \]

\[u_2(t, x) + \frac{\partial}{\partial x} u_2(t, x) - \frac{\partial^2}{\partial x^2} u_2(t, x) - u_2(t, x) = f(t, x) \]

\[-\infty \mathcal{D}_x^\alpha u_2(x) - u_2(x) = f(x) \]

\[u_2(x) \sim \mathcal{GP}(0, g(x, x'; \theta)) \quad \text{Linearity} \quad f_2(x) \sim \mathcal{GP}(0, k(x, x'; \theta)) \quad \rightarrow \quad k(x, x'; \theta) = \mathcal{L}_x \mathcal{L}_x g(x, x'; \theta) \]

Problem setup:

- \(f_2(x) \) is an unknown, black box function
- only scattered, noisy, variable fidelity observations of \(f_2(x) \) are available
- we have no data on \(u_2(x) \) other than the necessary initial/boundary conditions
- no numerical discretization!

“once we accept that we don’t know \(f \), but we do know something, it becomes natural to take a Bayesian approach” P. Diaconis, “Bayesian numerical analysis”, 1988

“stochastic methods will transform pure and applied mathematics in the beginning of the third millennium, as probability and statistics will come to be viewed as the natural tools to use in mathematical as well as scientific modeling” D. Mumford, “The dawning age of stochasticity”, 2000

Outline

Deep Neural Networks

- Continuous Time
- Discrete Time
Theorem (Cybenko, 1989)

Let \(\sigma \) be any continuous sigmoidal function. Then, the finite sums of the form

\[
G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j \cdot x + \theta_j)
\]

are dense in \(C(I_d) \).

- Hornik et. al., 1989; Barron (1994); Mhaskar (1996)
Data + Neural Networks + Physical Laws

Physics-Informed Neural Networks (PINNs)

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

M Raissi, P Perdikaris, GE Karniadakis
Journal of Computational Physics 378, 686-707

Physics-Informed Neural Networks (PINNs)

- sPINNs: stochastic PINNs
- fPINNs: fractional PINNs
- LePINNs: Levy process PINNs
- nPINNs: Nonlocal PINNs...
What is a PINN? Physics-Informed Neural Network

We employ two (or more) NNs that share the same parameters

Minimize:

\[
MSE \, u = \frac{1}{N_u} \sum_{i=1}^{N_u} |u(t_u^i, x_u^i) - u^i|^2,
\]

\[
MSE \, f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2.
\]

L-BFGS
Physics Informed Neural Networks

\[u_t + uu_x - (0.01/\pi)u_{xx} = 0 \]

def \(u(t, x) \):
 \[u = \text{neural_net}(\text{tf.concat}([t, x], 1), \text{weights}, \text{biases}) \]
 return \(u \)

def \(f(t, x) \):
 \[u = u(t, x) \]
 \[u_t = \text{tf.gradients}(u, t)[0] \]
 \[u_x = \text{tf.gradients}(u, x)[0] \]
 \[u_{xx} = \text{tf.gradients}(u, x)[0] \]
 \[f = u_t + u^2 u_x - (0.01/\text{tf.pi})u_{xx} \]
 return \(f \)

\[
\sum_{i=1}^{N_u} |u(t_u^i, x_u^i) - u^i|^2 + \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2
\]
I-RK-100!
101 outputs

IC: 200 points
4 layers/200 neurons

Hidden Fluid Mechanics
PINNs for the Da Vinci Problem

B1
Exact $c(t, x, y)$

Learned $c(t, x, y)$

B2
Exact $p(t, x, y)$

Learned $p(t, x, y)$

B3
Exact Streamlines

Learned Streamlines
Governing equations

\begin{align*}
\frac{E}{1-\mu^2} \left(\frac{\partial^2 u}{\partial x^2} + \frac{1-\mu}{2} \frac{\partial^2 u}{\partial y^2} + \frac{1+\mu}{2} \frac{\partial^2 v}{\partial x \partial y} \right) &= 0 \\
\frac{E}{1-\mu^2} \left(\frac{\partial^2 v}{\partial y^2} + \frac{1-\mu}{2} \frac{\partial^2 v}{\partial x^2} + \frac{1+\mu}{2} \frac{\partial^2 u}{\partial x \partial y} \right) &= 0
\end{align*}

Boundary conditions:
- On outside boundary
 \(\sigma_x = q, \quad \sigma_y = \tau_{xy} = 0 \)
- On inside boundary
 \(\sigma_r = \tau_{r\theta} = 0 \)

Symmetry constraints:
- On the line AB
 \(u = 0 \) and \(\tau_{xy} = 0 \)
- On the line CD
 \(v = 0 \) and \(\tau_{xy} = 0 \)
Inverse problem: Identify Young's modulus (E), Poisson's ratio (µ) and hole size (r₀)

- True E: 1.0
- Identified E: 0.999
- True µ: 0.25
- Identified µ: 0.248
- True r₀: 0.05
- Identified r₀: 0.0495
- L2 relative errors:
 - 0.32% (σᵣ)
 - 0.31% (σθ)
 - 0.36% (τᵣθ)

*Red points: PDE residuals *Green points: Candidate inside BCs
*Blue points: Outside BCs and symmetry constraints
*Black points: sensors
The Real Problem: Find the material defects

* Red points: PDE residuals
* Blue points: Outside BCs
* Brown, green and yellow points: Inside BCs
* Black points: randomly distributed sensors
fPINNs: fractional PINNs

(Dr. Guofei Pang & Lu Lu, Brown U)
For small N or λ, the sampling or discretization error dominates.

For large N or λ, the optimization error dominates.

The higher the approximation order is, the earlier the optimization error dominates, since the higher order scheme yields more complex loss function.

NN approximation error is negligible since fPINN can replicate FDM’s solution for small N.
Why Fractional Operators + PINNs?

Data of groundwater solute transport from Macro-dispersion Experimental (MADE) site at Columbus Air Force Base

- Green: Tritium concentration data from MADE site
- Red: Prediction in the literature using trial and error
- Blue: Prediction from machine learning

Figure 3.1 Schematic of Injection Well
To Discover (truly) New Equations!

\[
\frac{\partial^{0.75} u(x,t)}{\partial t^{0.75}} = -0.14 \times \frac{\partial u(x,t)}{\partial x} + 0.14 \times \frac{\partial^{2-0.0028x} u(x,t)}{\partial |x|^{2-0.0028x}}
\]

Old fractional model (One example)

\[
\frac{\partial^{0.73+0.00053x} u(x,t)}{\partial t^{0.73+0.00053x}} = -0.14 \times \frac{\partial u(x,t)}{\partial x} + 0.14 \times \frac{\partial^{1.87-0.0029x} u(x,t)}{\partial |x|^{1.87-0.0029x}}
\]

New fractional model

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Old fractional model</th>
<th>New fractional model</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to identify parameters</td>
<td>Trial and error</td>
<td>Machine learning</td>
</tr>
<tr>
<td>Extension to a large number of parameters</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Prediction accuracy</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
Mathematics of PINNs

- Nonlinear approximation theory
- Robust training & optimization
- Multifidelity approximation
- Learnability & small data
Theorem (Chen and Chen, 1993):

Suppose that U is a compact set in $C[a,b]$, f is a continuous functional defined on U, and $\sigma(x)$ is a bounded sigmoidal function, then for any $\varepsilon > 0$, there exist $m + 1$ points $a = x_0 < \ldots < x_m = b$, a positive integer N and constants $c_i, \theta_i, \xi_{i,j}, i = 1, \ldots, N, j = 0, 1, \ldots, m$, such that

$$
|f(u) - \sum_{i=1}^{N} c_i \sigma \left(\sum_{j=0}^{m} \xi_{i,j} u(x_j) + \theta_i \right)| < \varepsilon
$$

holds for all $u \in U$.

Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems

Tianping Chen and Hong Chen

\[G(u)(y) - \sum_{k=1}^{N} \sum_{i=1}^{M} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \sigma(w_k y + \zeta_k) \leq \epsilon \]

we show how to construct neural networks to approximate the output of a dynamical system as a whole, not merely at a fixed point, thus show the capability of neural network in identifying dynamic systems. Moreover, we point out that using existing algorithms in literatures (for example, backpropagation algorithm), we can determine those parameters in the network, i.e., identify the system.
Overview: Statistical Learning perspective

\[\mathcal{Y}^X \] (all functions)

\[\mathcal{H} \]

- \(h_{\text{real}} \)
- \(\hat{h} \)
- \(h^* \)
- \(f^*_{\text{truth}} \)

Optimization Error \quad Generalization Error \quad Approximation Error

- General loss: \(\mathcal{L}_D(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell(h(x), y)] \implies h^* \)
- Empirical loss: \(\mathcal{L}_{\mathcal{T}_m}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h(x_i), y_i) \implies \hat{h} \)
- \(h_{\text{real}} \): an actual approximation (e.g. after 1M gradient descent iterations)
Shallow Networks vs Deep Networks

- **It seems that deep networks appear to perform better than shallow ones of comparable size.** From approximation theoretical point of view, there are some explanations:

1. *Eldan et. al. (2016)* showed that there is a simple function expressible by a small 2-hidden-layer feedforward neural networks, which cannot be approximated by any 1-hidden-layer network with the same accuracy, unless its width is exponential in the dimension.

2. *Liang et. al. (2017) and Yarotsky (2016)* the authors claimed the number of neurons needed by a shallow network to approximate a function is exponentially larger than the corresponding number of neurons needed by a deep network for a given degree of function approximation.

3. *Hanin et. al. (2017)* show that any continuous function $f: [0,1]^{d_{in}} \rightarrow \mathbb{R}^{d_{out}}$ can be approximated by a ReLU forward neural net of width $d_{in} + d_{out}$; to achieve ε error uniformly, the depth should be in the order $\left(\frac{O(\text{diam}(K))}{\omega_f^{-1}(\varepsilon)} \right)$.

Function Approximation by Deep and Narrow NN

1D Examples

\[f(x) = |x| \]

- \[|x| = \text{ReLU}(x) + \text{ReLU}(-x) = \begin{bmatrix} 1 & 1 \end{bmatrix} \text{ReLU}(\begin{bmatrix} 1 \\ -1 \end{bmatrix} x) \]

- 2-layer with width 2

Train a 10-layer ReLU NN with width 2 (MSE loss, whatever optimizer)

- Collapse to the mean value (A): \(\sim 93\% \)
- Collapse partially (B)

Function Approximation by Deep and Narrow NN

1D Examples

$$f(x) = x \sin(5x)$$

$$f(x) = 1_{\{x>0\}} + 0.2 \sin(5x)$$

Loss

- Mean squared error (MSE) ⇒ mean
- Mean absolute error (MAE) ⇒ median

![Graphs showing different functions and loss functions](arXiv:1808.04947; arXiv:1903.06733)
Function Approximation by Deep and Narrow NN

(Lu Lu & Dr. Yeonjong Shin, Brown U)

Training of NNs
- NP-hard [Sima, 2002]
- Local minima [Fukumizu & Amari, 2002]
- Bad saddle points [Kawaguchi, 2016]

ReLU
- Dying ReLU neuron: stuck in the negative side

Deep ReLU nets?

Dying ReLU network
- NN is a constant function after initialization

Collapse
- NN converges to the “mean” state of the target function during training

arXiv:1903.06733
Function Approximation by Deep and Narrow NN

N^L will eventually Die in probability as $L \to \infty$

Theorem 1 (Before Training)

Let $N^L(x)$ be a ReLU NN with L layers, each having N_1, \ldots, N_L neurons. Suppose

1. Weights are independently initialized from a symmetric distribution around 0,
2. Biases are either from a symmetric distribution or set to be zero.

Then

$$P(N^L(x) \text{ dies}) \leq 1 - \prod_{\ell=1}^{L-1} (1 - (1/2)^N)$$

Furthermore, assuming $N_\ell = N$ for all ℓ,

$$\lim_{L \to \infty} P(N^L(x) \text{ dies}) = 1, \quad \lim_{N \to \infty} P(N^L(x) \text{ dies}) = 0.$$
Dead Networks would Collapse

Theorem 2 (During Training)

Suppose the ReLU NN dies. Then for any loss \mathcal{L}, the network is optimized to a constant function by any gradient based method.

Theorem 3 (Before Training: special case)

Let $\mathcal{N}^L(x)$ be a bias-free ReLU NN with $L \geq 2$ layers, each having N neurons at $d_{in} = 1$. Suppose weights are independently initialized from continuous symmetric distributions around 0. Then

$$1 - \prod_{\ell=1}^{L-1} (1 - (1/2)^N) \geq P(\mathcal{N}^L(x) \text{ dies})$$

$$\geq 1 - (\mathcal{P}_{22})^{L-2} - \frac{(1 - 2^{-N+1})(1 - 2^{-N})}{1 + (N - 1)2^{-N}}((\mathcal{P}_{22})^{L-2} - (\mathcal{P}_{33})^{L-2})$$

where $\mathcal{P}_{22} = 1 - \frac{1}{2^N}$ and $\mathcal{P}_{33} = 1 - \frac{1}{2^{N-1}} - \frac{N-1}{4N}$.
Numerical Test (1M runs per point)

- A ReLU NN with $d_{in} = 1$
- Weights randomly initialized from symmetric distributions
- Biases are initialized to 0

More likely to die when it is deeper and narrower
Function Approximation by Deep and Narrow NN

Safe Operating Region for a ReLU NN (use of Upper Bound)

Keep the dying probability < 10% or 1%

![Graph showing safe operating region for a ReLU NN](image)

arXiv:1903.06733
Randomized Asymmetric Initialization

- **Goal**: Design an initialization method to *avoid*
 1. vanishing gradient (dying networks)
 - by decreasing $P(\mathcal{N}^L(x) \text{ dies})$
 2. exploding gradient
 - by properly choosing initialization parameters
 - the length map analysis

\[
q_\ell = \frac{E \left[\| \mathcal{N}^\ell(x) \|^2 \right]}{N}
\]

arXiv:1903.06733
Randomized Asymmetric Initialization

- **Our initialization method:**
- 1. Choose a probability dist. P on $[0, M]$ (ex. Beta(α, β)).
- 2. Each row, $\mathbf{V}_j^\ell := [\mathbf{W}_j^\ell, \mathbf{b}_j^\ell] \sim N(0, \sigma^2)$
- 3. **Randomly** choose one component of \mathbf{V}_j^ℓ, say, $((\mathbf{V}_j^\ell)_k)^{N+1} = \mathbf{b}_j^\ell$
- 4. Set $((\mathbf{V}_j^\ell)_k)^{N} \sim P$.
- **Intuition:** Since every entry of $\mathbf{n}^{\ell-1} := [\phi(\mathcal{N}^{\ell-1}(\mathbf{x})), 1]$ is non-negative, the probability

$$P \left(\langle \mathbf{V}_j^\ell, \mathbf{n}^{\ell-1} \rangle > 0 | \mathbf{n}^{\ell-1} \right) \geq 0.5.$$

is greater or equal to those to the symmetric initialization.

arXiv:1903.06733
Dying probability of new initialization

Thm: Let $\mathcal{N}^L(x)$ be the L-layer ReLU Neural Network with each layer having N neurons. If W^ℓ, b^ℓ are chosen as described, then

$$P(\mathcal{N}^L(x) \text{ dies}) \leq 1 - \prod_{j=1}^{L-1} (1 - (1/2 - \delta_j)^N)$$

for some $0 < \delta_j < 1/2$ and $\delta_1 = 0$.

In the case of symmetric initialization, $\delta_j = 0, \forall j$, that is

$$P(\mathcal{N}^L(x) \text{ dies}) \leq 1 - \prod_{j=1}^{L-1} (1 - (1/2)^N)$$

arXiv:1903.06733
Dying Probability - Initialization

- Run 100,000 independent simulations
- **Orthogonal Init.**: Orthogonal initialization (Saxe et al., 2014)
- **Rand. Asym. Init.**: New initialization
- Dying probability = $P(\mathcal{N}^{\ell}(x) \text{ is a constant})$
Example 1

- Target function: \(f(x) = |x| = \text{ReLU}(x) + \text{ReLU}(-x) \)
- Network Architecture: \(L = 10, N = 2. \) \(L_2 \)-loss, ADAM

<table>
<thead>
<tr>
<th>1,000 simulations</th>
<th>Fail (constant)</th>
<th>Success</th>
<th>Half-Trained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric (He)</td>
<td>93.6%</td>
<td>2.2%</td>
<td>4.2%</td>
</tr>
<tr>
<td>New (Beta)</td>
<td>40.3%</td>
<td>37.3%</td>
<td>22.4%</td>
</tr>
</tbody>
</table>
Conclusions

- PINNs integrate seamlessly data + mathematical physics
- Same formulation for forward and inverse problems
- Overcome the curse of dimensionality
- Can be used in any scientific field
- Can discover new dynamical systems equations
PhILMs: Collaboratory on Mathematics and Physics-Informed Learning Machines For Multiscale and Multiphysics Problems

PhILMs

https://www.pnnl.gov/computing/philms/

Center Director: George Em Karniadakis
PNNL & Division of Applied Mathematics, Brown University

The CRUNCH group: Home of “Math + Machine Learning + X”
https://www.brown.edu/research/projects/crunch/home