Upper Limb Stroke Rehabilitation: Gaming and Virtual Reality

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10+2 points)

- (6 pts) How to compute swivel angle?
	- You can use your own language to describe. Not required to use equations.
- (4 pts) List two criteria for rendering natural arm postures
- (2 pts) Optional: what is Jacobian matrix augmentation?

How to compute the swivel angle?

 P_{s} P_e ă

Elbow pivot axis \vec{n} :

$$
\vec{n} = \frac{P_w - P_s}{\left| |P_w - P_s| \right|}
$$

$$
\vec{\mathbf{f}}' \text{ is } \overrightarrow{P_e - P_c}
$$

$$
\begin{array}{rcl}\n\vec{f} & = & P_e - P_s \\
\vec{f'} & = & \vec{f} - (\vec{f} \cdot \vec{n}) \cdot \vec{n}\n\end{array}
$$

Reference direction \vec{a} :

$$
\vec{a} = [0,0,-1]^T
$$

 \vec{u} is the projection of \vec{a} on Plane S:

$$
\vec{u} = \frac{\vec{a} - (\vec{a} \cdot \vec{n})\vec{n}}{||\vec{a} - (\vec{a} \cdot \vec{n})\vec{n}||}
$$

Swivel angle ϕ :

$$
\phi = \arctan(\vec{n}\cdot(\vec{f'} \times \vec{u}), \vec{f'} \cdot \vec{u})
$$

What we already know ...

Regularity in human arm motions

Robot manipulator redundancy resolution

- **Resolutions at Different Levels** Position, velocity, acceleration
- General Resolution to Inverse Kinematics Pseudo-inverse, general IK solver, ...
- Task-based Resolutions

Jacobian matrix augmentation

Performance-based Resolutions

Various performance indices, global vs local optimization, ...

Human arm motion control

Motion Regularity and Variability

Donders' law [Donders:1848], Fitts' law [Fitts:54], 2/3-power law [Terzuoloa, Viviania: 80], motion variability [Bernstein:67], uncontrolled manifold [Scholz, Schoner: 99]

Arm Motion Control Criteria

Energy [Tillery, Soechting: 95], motion smoothness [Flash, Hogan: 85, Suzuki, Uno: 89, Kawato, Nakano: 99], task accuracy [Harwood, Harris: 99], control complexity [Todorov, Jordan:02]

■ Criterion Synthesis

Spatial+temporal [Biess, Flash: 07]

- Real-time control, unplanned motion
- Natural arm posture
- Related biological functions to behavior
	- New bio-inspired motion control criteria

Criterion 1 - Maximize Motion Effciency to Head

Criterion 2 - Close to Equilibrium Arm Posture

P

Criterion 3 – Minimize Joint Angle Change

Given $\phi(k)$, $\phi(k+1) \in [\phi(k) - 0.5^{\circ}, \phi(k) + 0.5^{\circ}]$ such that: $\phi(k+1)$ = $\underset{\phi'(k+1)}{\arg \min} |\vec{\theta}(k) - \vec{\theta}'(k+1)| = \underset{\phi'(k+1)}{\arg \min} \sqrt{\sum_{i=1}^{4} (\theta_i(k) - \theta'_i(k+1))^2}$

Criterion 4 - Minimize Kinetic Energy

Given $\phi(k)$, $\phi(k+1) \in [\phi(k) - 0.5^{\circ}, \phi(k) + 0.5^{\circ}]$ such that:

$$
\phi(k+1) = \arg\min_{\phi'(k+1)} |Ke(k) - Ke^{'}(k+1)|
$$

Criterion 5 - Minimize Work in Joint Space

Given $\phi(k)$, $\phi(k+1) \in [\phi(k)-0.5^\circ, \phi(k)+0.5^\circ]$ such that:

$$
\phi(k+1) = \arg \min_{\phi'(k+1)} |W_i|_{t_k, t_{k+1}} = \arg \min_{\phi'(k+1)} \sum_{i=1}^4 |W_i|_{t_k, t_{k+1}}
$$

Vicon & TRINA Training Session

Vicon Training

TRINA Training

Resources

- Vicon mocap system
	- Object tracking using Tracker 3
		- https://www.youtube.com/watch?v=fpAKToBQ1hQ&list=PLxtdgDam3USXPrhG A70ix8WT_nZBLK7qB
	- Human motion tracking using Nexus 2
		- https://www.youtube.com/watch?v=I0XjCLMD_NE&list=PLxtdgDam3USUSIeuO 6UloG3ogPsFNtEJS
	- Collection of Vicon training tutorials
		- https://www.youtube.com/user/Vicon100/playlists

Resources

- Training Session
	- https://drive.google.com/drive/folders/10zwBhGY6i_KewoE7HGwJs2xUNic ro-0T?usp=sharing
- Project meeting slides, including training session
	- https://drive.google.com/open?id=1eH94hnH1ZDP7RudQ2tYScdXaZFZd1OB
- Instructions for using Vicon, TRINA and data collection
	- https://drive.google.com/open?id=1_vpn4awJUuJ3DMsHQMCkgHTuD4gBX QTh

Synthesized Kinematic Redundancy Resolution for Natural Arm Posture Control

Further Questions

- We have so many optimization criteria
	- Which is the best?
	- Individual or blending?
	- How to combine?
	- What can we infer from the algorithm that can accurately predict arm posture?

A Framework for Comparison

- Propose methods for synthesize multiple control criteria
	- Least squares method
	- Exponential method
- Validate prediction algorithm using reaching motion data

Least Squares Method

At time step k :

$$
\phi(k)=\sum_{i=1}^5 c_i(k)\phi_i(k)
$$

Linear regression:

$$
C(k+1)_{_{5\times 1}} = A^{-1}\cdot b
$$

Coefficient normalization:

$$
c_i(k+1) = \frac{C_i(k+1)}{\sum_{i=1}^5 C_i(k+1)}
$$

$$
A = \begin{bmatrix} \phi_{c1}(k-19) & \cdots & \phi_{c5}(k-19) \\ \vdots & \ddots & \vdots \\ \phi_{c1}(k) & \cdots & \phi_{c5}(k) \end{bmatrix}_{20\times 5}
$$

$$
b = \begin{bmatrix} \phi_{\exp}(k-19) \\ \vdots \\ \phi_{\exp}(k) \end{bmatrix}_{20 \times 1}
$$

Exponential method

At time step k, estimation error ε_i :

$$
\varepsilon_i(k) = |\phi_{\exp}(k) - \phi_i(k)|
$$

The inferred contribution for Criterion i:

$$
C_i(k+1) = \exp[-\frac{\varepsilon_i^2(k)}{\hat{\sigma}^2(k)}]
$$

Coefficient normalization:

$$
c_i(k+1) = \frac{C_i(k+1)}{\sum_{i=1}^5 C_i(k+1)}
$$

According to the principle of maximum entropy, the probability of the criterion *i* can be expressed as:

$$
p_i = c \cdot \exp(-\lambda \varepsilon_i^2)
$$

Experiment

Shoulder (P_s) , elbow (P_e) , wrist (P_w) position at 100 Hz 8 start points \times 7 end points \times 5 repeats \times 10 subjects = 2800 trials

Prediction Error Distribution

Estimated Coefficient

Further question

- Good prediction algorithm
	- Now we can accurately predict the arm posture of reaching motion in free space …
- Insight
	- What can we learn from the coefficients of these control criteria?
	- Unsupervised learning

Criterion Contribution Inference

Cluster Components

Cluster Frequencies

A Spatial Map - Our insight

Reference

• Zhi Li, Dejan Milutinovic and Jacob Rosen, "Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements". IEEE Transactions on Neural Systems & Rehabilitation Engineering, 23(6), pp. 1020 - 1030, Nov. 2015

Upper Limb Stroke Rehabilitation: Gaming and Virtual Reality

Why do we need games?

- Intensive therapy can recover a significant amount of lost motor control
- Video games encourage patients to practice more at home
	- Provide a motivating context
	- Provide performance feedback

Cognitive, visual and motor losses after stroke

- Memory and speech
- Unilateral neglect in Vision
	- No longer perceive one side of their visual field
- Paralysis and weakness

How to recover the lost function?

- Overcoming learned non-use
- Learning to use existing redundant neural pathways
- Developing new neural pathways through brain plasticity

Traditional stroke therapy

- Perform repeated motions under therapist supervision
	- Non-purposeful exercises
	- Purposeful exercises
- Practice at home
	- Prescribed by therapist
	- Only 31% patients actually do it

Commercial games and consoles

Commercial games and consoles

Commercial games and consoles

Limitation of commercial games

Design customized games for stroke rehab

- Desired properties in stroke rehabilitation games
- Important human factors for stroke rehab games
	- Identification of the target audience, visibility and feedback
- Meaningful play and challenges
- Game design criteria
- Games that adapt to a patient's level of recovery

Considerations in rehab game design

- Social context
	- Multi-player games provide additional motivations
	- Competitive / collaborative games
- Type of motion required
	- Single or multi-joint motions
- Cognitive challenges

Games for example

• Motor, visual and cognitive challenges

Learned Lessons in previous user studies

- How to make games playable for a broad range of stroke patients?
	- Assume no use of hands
	- Simple games should support multiple methods of user input
	- Calibrate to the patient's motion range
	- Direct and natural mappings are necessary

Learned Lessons in previous user studies

- How to ensure that games are valuable from a therapeutic perspective?
	- Ensure that users' motions cover their full range
	- Detect compensatory motion
	- Allow coordinated motions
	- Let therapists determine difficulty

Learned Lessons in previous user studies

- How to make games fun and challenging?
	- Audio and visuals are important
	- Automatic difficulty adjustments provide adequate challenge
	- Non-Player Characters (NPCs) and Storylines are intriguing

Kinect-based applications for stroke rehab

Limitations of Kinect-based Stroke Rehab

- Reasonable accuracy, but only for gross motions
- Unable to accurately assess internal joint rotations of shoulder
- Cannot capture rehab goals that include fine motor skills
- Not suitable for severely disabled patients