Loco-manipulation

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- (6 pts)A 2-DOF manipulator arm is attached to a mobile base with non-holonomic constraints. How does the mobile base affect the manipulability when the 2-DOF is at its singularity configuration?
- (2 pts) What is loco-manipulation affordance?
- (2 pts) How to extract loco-manipulation affordance given a RGB+D camera?

Manipulability of 2-DOF arm

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Manipulability of mobile manipulator

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Manipulability of mobile manipulator

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Affordance of loco-manipulation

- Loco-manipulation affordance
 - Actions that involve the whole body for stabilization, locomotion or manipulation
- Affordance validation
 - Assign whole-body affordance to environmental primitives, based on their shape, orientation and extent
 - Use perception feedback to validate the affordance hypotheses
 - Execute the task

Typical loco-manipulation tasks

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Affordance extraction

Optional assignment

Optional assignment

- Student talk on "trajectory optimization"
 - If you need to make up for your low-score/late submission assignment
 - So far, 7 students signed up in total
 - Three lectures + additional section on the day of course review
- Reference:
 - <u>http://www.matthewpeterkelly.com/tutorials/trajectoryOptimization</u>

Optional assignment

- Wednesday, April 4
 - Samruddhi Kadam <u>spkadam@wpi.edu</u>
- Friday, April 6
 - Nalin Raut

- <u>nraut@wpi.edu</u>
- Abhilasha Rathod <u>arathod@wpi.edu</u>
- Nathaniel Goldfarb
- Wednesday, April 11
 - Max Merlin lecture with Gunnar on high-level motion planning
 - Guled Elmi
 - Gaurav Vikhe <u>gsvik</u>
- <u>ggelmi@wpi.edu</u>
 - <u>gsvikhe@wpi.edu</u>

Literature review student talk

- 4/13/2018
 - Bimanual team, Swarm team
- 4/18/2018
 - High-level planning

Project presentation

- 4/25/2018
 - Mobile team, Bimannual team, High-level planning
 - Surgical robot (Sam)
- 4/27/2018
 - pHRI team

Loco-Manipulation

- Loco-manipulation
 - Affordance
- Loco-manipulation motion planning
 - Motion Primitives
- Motion skill transferring from humans to humanoid robots
 - Inverse optimal control

Planning loco-manipulation using motion primitives [3]

- Complex loco-manipulation can be composed using parametrized control laws (i.e., motion primitives)
- Simultaneous execution of motion primitives may cause instability

Whole-body motion planning

- Whole–body planning
 - High dimensional, numerically intractable problems
 - Multi-contacts, many constraints
- Pseudo-inverse
 - Prioritized tasks and constraints
 - Project secondary tasks to the null space of pseudo-inverse Jacobian
- Sampling-based strategy
 - Sample and search the solution in C-space
 - How to address tasks constraints?

Sampling-based planning with Constraints

Rapidly-exploring Random Tree (RRT)

Rejection Sampling and Pose Constraints

Projection Sampling

Sample on any manifold or dimension

Constrained BiDirectional RRT (CBiRRT)

Projection Sampling

 Gradient descent on distance metric to reach manifold Star

Primitive-based Whole-body motion planning

- Derived from <u>RRT*</u>
- Similar to informed RRT
 - Use the information available from the primitives design to structure a sampling space with desirable properties

RRG

RRT

• Extends the nearest vertex towards the sample

RRG

• Extends all vertices returned by the Near procedure (if first was success).

- Similar to RRG, except for "rewiring" the tree as better paths are discovered.
- After rewiring the <u>cost has to</u> <u>be propagated</u> along the leaves

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

RRT*

Limitation of RRT*

- RRT* is asymptotically optimal everywhere
- Not necessary for single-query planning
- Improvement
 - Limit the search to the <u>sub-problem</u> that would have a better solution
 - How to define the space of sub-problem?

Informed RRT

 The sub-problem can be defined as "search in a n-dimensional ellipse"→ where to draw the new sample

heuristic sampling domain

$$X_{\widehat{f}} = \left\{ \mathbf{x} \in X \mid ||\mathbf{x}_{\text{start}} - \mathbf{x}||_2 + ||\mathbf{x} - \mathbf{x}_{\text{goal}}||_2 \le c_{\text{best}} \right\}$$

Informed RRT*

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Informed RRT*

Motion primitives as parameterized actions

Motion primitives as parameterized actions

Definition 1: We define a generic motion primitive π as a 6-tuple $\pi(q, \chi, \sigma, T, \xi, C)$ with

- $q \in Q$: the parameters that characterize the primitive;
- χ: the image space of the primitive that corresponds to the image space of the output function of the dynamical system;
- σ : X × Q → χ: the steering function of the primitive that is a set-valued function based on the system dynamics from the primitive space to the image space; it can be a map on (0, 1)^d, with d ≥ 2;
- $T \in \mathbb{R}_{\geq 0}$: the duration of the execution of the primitive;
- $\xi = \rho(t, y), \rho : \mathbb{R}_{\geq 0} \times \chi \to \Xi = \{0, 1\}$: a trigger that enables the execution of the primitive, where t is the time variable;
- $C: \mathbb{R}_{\geq 0} \times X \times Q \to \mathbb{R}$: the cost function associated with the primitive.

Example – manipulation primitives

- $q_M = o$, where o is the object pose,
- $\chi_M \ni [x \, y \, \tau]^T,$
- σ_M , the inverse kinematics of the robotic arm, giving the joints desired values corresponding to a certain value of σ and τ ,
- $C_M = t$,
- T_M , is the duration of execution of the steering function σ_M ,

• $\xi_M = 1$ when $||o - r|| \le \delta$, with r the pose of the robot and $\delta > 0$, otherwise it is 0.

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Main idea

- Main idea
 - Use the <u>motion primitives</u> for a subsystems as <u>local planner</u> in classical sample based planning algorithms to obtain a plan for the whole system

Basic assumption

- A motion primitive has an associated control law that stabilize the subsystem it belongs to, while <u>the control of other sub-systems are null</u> (i.e., generate steady motion)
- Check for feasibility
 - e.g. using ZMP-condition for humanoid robots

P-Search* algorithm

Algorithm 1: $\mathcal{T} \leftarrow P-\text{Search}^*(z_I, z_G)$ **Data:** $\mathcal{P} = (V, E), z_I, z_G$ **Result:** \mathcal{T} a tree whose vertices are points $z \in \chi$. Given two vertices $z_i, z_j \in \chi_k$ an edge (z_i, z_j) is an instantiation of the primitive $\pi_k \in V$ that steers z_i toward z_j in χ_k . 1 $\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, z_I, \mathcal{T});$ Motion primitive available given the current states 2 $z_{new} = z_I;$ 3 for i = 1 to N do $\mathbb{P}_A \leftarrow \text{ActivePrimitives}(z_{new});$ 4 Pick up one motion primitives (e.g. $\chi_i \leftarrow \text{SamplePrimitive}(\mathbb{P}_A);$ 5 choose manipulation primitives) $z_{rand} \leftarrow \texttt{Sample}(\chi_i); \checkmark$ 6 $(z_{new}, \mathcal{T}) \leftarrow \texttt{LocalRRT}^*(\chi_i, z_{rand}, \mathcal{T})$ Specify the motion primitive (e.g., sample a set of joint s return \mathcal{T} ; angles for manipulation motion

P-Search* algorithm

Experiment

Transfer human walking motion to humanoids

[2]

43

Inverse optimal control

Optimality criteria

- Actuation and energy consumption
 - Minimize actuation in the stance foot, swing foot, torque, hip torque of the swing foot, angular momentum in x and y direction, vertical center of mass oscillations, absolute swing foot velocity
- Motion fitting error
 - Minimize planar distance between foot position at touch down and capture point, periodicity gap in center of mass velocities
- Others
 - Minimize overall single support duration, absolute swing foot velocity at touch down

Demonstration

- Link for demo video:
 - http://orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

46

- [1] Asfour, Tamim, et al. "On the Dualities Between Grasping and Whole-Body Loco-Manipulation Tasks." *Robotics Research*. Springer, Cham, 2018. 305-322.
- [2] Kaiser, Peter, et al. "Validation of whole-body loco-manipulation affordances for pushability and liftability." *Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on*. IEEE, 2015.
- [3] Settimi, Alessandro, et al. "Motion primitive based random planning for loco-manipulation tasks." *Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on*. IEEE, 2016.
- [4] Clever, Debora, and Katja D. Mombaur. "An Inverse Optimal Control Approach for the Transfer of Human Walking Motions in Constrained Environment to Humanoid Robots." *Robotics: Science and Systems*. 2016.

Extra credit homework – evaluation form

