Loco-manipulation

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- (6 pts)A 2-DOF manipulator arm is attached to a mobile base with non-holonomic constraints. How does the mobile base affect the manipulability when the 2-DOF is at its singularity configuration?
- (2 pts) What is loco-manipulation affordance?
- (2 pts) How to extract loco-manipulation affordance given a RGB+D camera?

Manipulability of 2-DOF arm

Manipulability of mobile manipulator

Manipulability of mobile manipulator

Affordance of loco-manipulation

- Loco-manipulation affordance
	- Actions that involve the whole body for stabilization, locomotion or manipulation
- Affordance validation
	- Assign whole-body affordance to environmental primitives, based on their shape, orientation and extent
	- Use perception feedback to validate the affordance hypotheses
	- Execute the task

Typical loco-manipulation tasks

Affordance extraction

Optional assignment

Optional assignment

- Student talk on "trajectory optimization"
	- If you need to make up for your low-score/late submission assignment
	- So far, 7 students signed up in total
	- Three lectures + additional section on the day of course review
- Reference:
	- <http://www.matthewpeterkelly.com/tutorials/trajectoryOptimization>

Optional assignment

- Wednesday, April 4
	- Samruddhi Kadam spkadam@wpi.edu
- Friday, April 6
	-
	- Nalin Raut nraut@wpi.edu
	- Abhilasha Rathod arathod@wpi.edu
	- Nathaniel Goldfarb
- Wednesday, April 11
	- Max Merlin lecture with Gunnar on high-level motion planning
	- - Guled Elmi ggelmi@wpi.edu
	- Gaurav Vikhe gsvikhe@wpi.edu

Literature review student talk

- 4/13/2018
	- Bimanual team, Swarm team
- 4/18/2018
	- High-level planning

Project presentation

- 4/25/2018
	- Mobile team, Bimannual team, High-level planning
	- Surgical robot (Sam)
- 4/27/2018
	- pHRI team

Loco-Manipulation

- Loco-manipulation
	- Affordance
- Loco-manipulation motion planning
	- Motion Primitives
- Motion skill transferring from humans to humanoid robots
	- Inverse optimal control

Planning loco-manipulation using motion primitives [3]

- Complex loco-manipulation can be composed using **parametrized control laws** (i.e., motion primitives)
- Simultaneous execution of motion primitives may cause **instability**

Whole-body motion planning

- Whole–body planning
	- High dimensional, numerically intractable problems
	- Multi-contacts, many constraints
- Pseudo-inverse
	- Prioritized tasks and constraints
	- Project secondary tasks to the null space of pseudo-inverse Jacobian
- Sampling-based strategy
	- Sample and search the solution in C-space
	- How to address tasks constraints?

Sampling-based planning with Constraints

Rapidly-exploring Random Tree (RRT)

Rejection Sampling and Pose Constraints

Projection Sampling

• Sample on any manifold or dimension

Constrained BiDirectional RRT (CBiRRT)

Projection Sampling

• Gradient descent on distance metric to reach manifold 'Star

Primitive-based Whole-body motion planning

- Derived from **RRT***
- Similar to **informed RRT**
	- Use the information available from the primitives design to structure a sampling space with desirable properties

RRG

• RRT

• Extends the nearest vertex towards the sample

• RRG

• Extends all vertices returned by the Near procedure (if first was success).

- Similar to RRG, except for "**rewiring**" the tree as better paths are discovered.
- After rewiring the **cost has to be propagated** along the leaves

RRT*

Limitation of RRT*

- RRT $*$ is asymptotically optimal everywhere
- Not necessary for single-query planning
- **Improvement**
	- Limit the search to the **sub-problem** that would have a better solution
	- How to define the space of sub-problem?

Informed RRT

• The sub-problem can be defined as "search in a n-dimensional ellipse" \rightarrow where to draw the new sample

heuristic sampling domain

$$
X_{\widehat{f}} = \left\{ \mathbf{x} \in X \: \middle| \: \left| |\mathbf{x}_{\text{start}} - \mathbf{x}| \right|_2 + \left| |\mathbf{x} - \mathbf{x}_{\text{goal}}| \right|_2 \le c_{\text{best}} \right\}
$$

Informed RRT*

Informed RRT*

Motion primitives as parameterized actions

Motion primitives as parameterized actions

Definition 1: We define a generic *motion primitive* π as a 6-tuple $\pi(q, \chi, \underline{\sigma}, T, \xi, C)$ with

- $q \in Q$: the parameters that characterize the primitive;
- χ : the image space of the primitive that corresponds to the image space of the output function of the dynamical system;
- σ : $X \times Q \rightarrow \chi$: the steering function of the primitive that is a set-valued function based on the system dynamics from the primitive space to the image space; it can be a map on $(0, 1)^d$, with $d \ge 2$;
- $T \in \mathbb{R}_{\geq 0}$: the duration of the execution of the primitive;
- $\xi = \rho(t, y), \rho : \mathbb{R}_{\geq 0} \times \chi \to \Xi = \{0, 1\}$: a trigger enables the execution of the primitive, where t is the time variable:
- $C : \mathbb{R}_{\geq 0} \times X \times Q \to \mathbb{R}$: the cost function associated with the primitive.

Example – manipulation primitives

- $q_M = 0$, where o is the object pose,
- \blacktriangleright $\chi_M \ni [xy \tau]^T$,
- σ_M , the inverse kinematics of the robotic arm, giving the joints desired values corresponding to a certain value θ and τ .
- $C_M = t$,
- T_M , is the duration of execution of the steering function σ_M ,

 \bullet $\zeta_M = 1$ when $\|o-r\| \leq \delta$, with r the pose of the robot and $\delta > 0$, otherwise it is 0.

Main idea

- Main idea
	- Use the **motion primitives** for a subsystems as **local planner** in classical sample based planning algorithms to obtain a plan for the whole system

• Basic assumption

- A motion primitive has an associated control law that stabilize the subsystem it belongs to, while **the control of other sub-systems are null** (i.e., generate steady motion)
- Check for feasibility
	- e.g. using ZMP-condition for humanoid robots

P-Search* algorithm

Algorithm 1: $\mathcal{T} \leftarrow P-Search^*(z_I, z_G)$

Data: $\mathcal{P} = (V, E), z_I, z_G$ **Result:** \mathcal{T} a tree whose vertices are points $z \in \chi$. Given two vertices $z_i, z_j \in \chi_k$ an edge (z_i, z_j) is an instantiation of the primitive $\pi_k \in V$ that steers z_i toward z_j in χ_k . $1 \mathcal{T} \leftarrow \text{InsertNode}(\emptyset, z_I, \mathcal{T});$ Motion primitive available given the current states 2 $z_{new} = z_I$; 3 for $i = 1$ to N do $\mathbb{P}_A \leftarrow$ ActivePrimitives $(z_{new});$ 4 Pick up one motion primitives (e.g. $\vert \quad \chi_i \leftarrow$ SamplePrimitive(\mathbb{P}_A); 5 choose manipulation primitives) $z_{rand} \leftarrow$ Sample (χ_i) ; 6 $(z_{new}, \mathcal{T}) \leftarrow$ LocalRRT^{*} $(\chi_i, z_{rand}, \mathcal{T})$ Specify the motion primitive (e.g., sample a set of joint s return \mathcal{T} ;

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 4/4/2018 40

angles for manipulation motion

P-Search* algorithm

Experiment

Transfer human walking motion to humanoids

$\lceil 2 \rceil$

Inverse optimal control

Optimality criteria

- Actuation and energy consumption
	- Minimize actuation in the stance foot, swing foot, torque, hip torque of the swing foot, angular momentum in x and y direction, vertical center of mass oscillations, absolute swing foot velocity
- **Motion fitting error**
	- Minimize planar distance between foot position at touch down and capture point, periodicity gap in center of mass velocities
- **Others**
	- Minimize overall single support duration, absolute swing foot velocity at touch down

Demonstration

- Link for demo video:
	- http://orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016

Reference

- [1] Asfour, Tamim, et al. "On the Dualities Between Grasping and Whole-Body Loco-Manipulation Tasks." *Robotics Research*. Springer, Cham, 2018. 305-322.
- [2] Kaiser, Peter, et al. "Validation of whole-body loco-manipulation affordances for pushability and liftability." *Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on*. IEEE, 2015.
- [3] Settimi, Alessandro, et al. "Motion primitive based random planning for loco-manipulation tasks." *Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on*. IEEE, 2016.
- [4] Clever, Debora, and Katja D. Mombaur. "An Inverse Optimal Control Approach for the Transfer of Human Walking Motions in Constrained Environment to Humanoid Robots." *Robotics: Science and Systems*. 2016.

Extra credit homework - evaluation form

