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Quiz (10 pts)

(6 pts )A 2-DOF manipulator arm is attached to
a mobile base with non-holonomic constraints.
How does the mobile base affect the
manipulability when the 2-DOF is at its
singularity configuration?

(2 pts) What is loco-manipulation affordance?

(2 pts) How to extract loco-manipulation
affordance given a RGB+D camera?
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Manipulability of 2-DOF arm
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Manipulability of mobile manipulator

Ellipsoids of manipulability
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Manipulability of mobile manipulator

Ellipsoids of manipulabiality Measure of manipulability
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Affordance of loco-manipulation

Loco-manipulation affordance

Actions that involve the whole body for stabilization, locomotion or
manipulation

Affordance validation

Assign whole-body affordance to environmental primitives, based on
their shape, orientation and extent

Use perception feedback to validate the affordance hypotheses
Execute the task
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Typical loco-manipulation tasks

hold palm
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Affordance extraction

| .
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Optional assignment



Optional assignment

Student talk on “trajectory optimization”

If you need to make up for your low-score/late submission
assignment

So far, 7 students signed up in total
Three lectures + additional section on the day of course review

Reference:

http://www.matthewpeterkelly.com/tutorials/trajectoryOptimization
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http://www.matthewpeterkelly.com/tutorials/trajectoryOptimization

Optional assignment

Wednesday, April 4
Samruddhi Kadam spkadam@wpi.edu

Friday, April 6
Nalin Raut nraut@wpi.edu
Abhilasha Rathod  arathod@wpi.edu
Nathaniel Goldfarb

Wednesday, April 11
Max Merlin — lecture with Gunnar on high-level motion planning
Guled Elmi ggelmi@wpi.edu
Gaurav Vikhe gsvikhe@wpi.edu
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Literature review student talk

4/13/2018

Bimanual team, Swarm team

4/18/2018
High-level planning
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Project presentation

4/25/2018
Mobile team, Bimannual team, High-level planning
Surgical robot (Sam)

4]27/2018
pHRI team
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Loco-Manipulation



Overview

Loco-manipulation
Affordance

Loco-manipulation motion planning

Motion Primitives

Motion skill transferring from humans to humanoid robots

Inverse optimal control



Planning loco-manipulation using motion

primitives [3]

Complex loco-manipulation can
be composed using
parametrized control laws (i.e.,
motion primitives)

Simultaneous execution of
motion primitives may cause
Instability
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Whole-body motion planning

Whole-body planning
High dimensional, numerically intractable problems
Multi-contacts, many constraints

Pseudo-inverse
Prioritized tasks and constraints
Project secondary tasks to the null space of pseudo-inverse Jacobian

Sampling-based strategy
Sample and search the solution in C-space
How to address tasks constraints?
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Sampling-based planning with Constraints

Arm with three joints

Heavy Object
(Torque Constraint)

Sliding Surfaces
(Pose Constraint)
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P e

Joint 3

-, Joint2
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Rapidly-exploring Random Tree (RRT)

Start

obstacle
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Rejection Sampling and Pose Constraints

-1
Full Dimensional Lower Dimensional
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Projection Sampling

Sample on any manifold or dimension
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Constrained BiDirectional RRT (CBIRRT)
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Projection Sampling

Gradient descent on distance metric to reach mianifold
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Primitive-based Whole-body motion planning

(1a) v =k [m/s] | (1b) (1) v=0[m/s]

i}

(1e) v =k [m/s]

e - ——— o -

- ———— e e e ... e

- —_———————————— -

(2a) (2b) (2¢c) i (2d) (2e)
v =k [m/s] v = ki2 [m/s] v =k [m/s]
I
I
:
e S ; S 13
More fluent and efficient motions
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P-search*

Derived from RRT*

Similar to informed RRT

Use the information available from the primitives design to structure
a sampling space with desirable properties
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RRG

RRT RRG
Extends the nearest vertex towards Extends all vertices returned by the
the sample Near procedure (if first was
SUCCEeSS).
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RRT*

Similar to RRG, except for

“rewiring" the tree as better ( “
paths are discovered. —— \

\ A 1&‘ f{,j

.

. ~—
After rewiring the cost has to .
L~ '“'xq_ -

be propagated along the ’ \
leaves
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Similar to RRG

Rewire and
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Limitation of RRT*

RRT* is asymptotically optimal everywhere
Not necessary for single-query planning

Improvement

Limit the search to the sub-problem that would have a better
solution

How to define the space of sub-problem?
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Informed RRT

The sub-problem can be defined as “search in a n-dimensional
ellipse”—> where to draw the new sample

After ;'.m initial solution is fr_%und all As the solution is ih]prc:ﬁ.-'ed Lh;E? area of In thf_} absence r_:-f -:Jhsmcle.%:‘; the
possible improvements lie within an the ellipse decreases. : ellipse degenerates to a line:
| ellipse. - N\ '
Ne -
;\ .
IX :
PN i
N ' "\ M=
‘ /h“ — ’ / — e
Do S A e S
P — - 7 —
CeHy | SOy
59 iterations, chest = 148.24 175 iterations, chest = 107.12 1142 iterations, cpesy = 100
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heuristic sampling domain

!

Vo — 2.
“best “min

l Cmin
Chest =)
‘}(f — {X c X { Hxst-art T XHQ + HX o Xgoa.l| ‘g < ('-best}
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Algorithm 1: Informed RRT*(xsart. Xgoa1)

Vo '{xﬁlarl }'-

E «—0;

Neoln — O

T =(V.E);

for iteration = 1... N do

6 Chest +— Miny__, =X, ;. 1008t (Xzoln 1}
7 Xrand +— Sample (Xstart, Xgoals Chest )
Xnearest — Nearest (T ,%rand);

/ Xnew +— Steer (Xnearest: Xrand ::':

fad b

Informed RRT*

=

L

10 if CollisionFree (Xpearest, Xnew ) then
11 Vv J,xm.-.r }:
/ Xnear + Near (T, xpew, TRRT* )
Xmin *— Xnearest:
1-1- l:"|| | 1 "k._ I:':'..lt IJ{'” | 1/ | + C Li]:I.E I:x['_g'-.:L]'II-.-'[ 5 Xnew :':
15 for Yxpear © Xnear do
& Iﬁ '-F-"IIIZ--.'L' '\— CDJ'-'T- lx"(.ﬂrj + C- LlIlE I:Kr-_:-.,:“-. Kr-_(.-_-\,- I.
;ilgﬂrlthl" .2: Salﬂp]_e {15[‘_.;__1_1'1_.. }:g.:)ﬂ_l_._ (.-r“l;_.]__};} 7 if cnew < Crmin then
- 18 if CollisionFree (Xpear; Xnew) then
L if Cmax < OO then L) L Xmin ¥ Xnear-
2 Cmin | Xgoal — K.—Ei:lt’t,”. " 20 €min +— Cnew,
Xcentre v (Kﬁtnrt + Kg{}n,]% 2 v - "
C + RotationToWorldFrame (x X ] - E + EU{(Xmin, Xnew) |1
’ % . Astart, Agoal /- 1 for Yxpear © Xpear do
ry < ﬂ]]]éh:-:_."'lz: 23 Cnear + Cost (Xnear):
. 4 Chnew +— Cost (Xpew | + © - Line (%X pew . Xnear )
. 2 _ 2 |'I" . I'!IE W Lenew | e THEW near |
{PI-}‘IIE__H. — (‘J(‘]]]lﬂ'. E"]]]]]]) ! 2" 5 II l:‘.'r-_.:.-.-._- " l.’.'r'_.".;.u- th'E."" )
L — di‘]g Jl""l ra, . F‘n}' 6 if EnllisionFr-.;e (¥ pew: Xnear ) then
7 Xparent +— Parent (Xnear):
Xball — SampleUnltNEall ) 5 E « E\ {(xparent, Xnear)
| Xrand (CLXpan + Xcentre) N X 29 E + E U {(Xnew,Xnear) |
else -
(X)) 30 if I"'.I.C-..l‘l'i."'g on (Xpew ) then
Xrand ~ U (X'); 31 |_ Xeoln & Xaaln Y ‘x b
return X;.q4: -
32 return T ;
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Informed RRT*

By directly sampling the ellipse, we focus the search
to only the states that have the possibility of improving the sclution.
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Motion primitives as parameterized actions

Definition 1: We define a generi 1S a

6-tuple 7(q, x, 2. T with Example — Locomotion primitives

o 2 responds ¢
the image space of the output function of the dyiTamies e g =0. -
et e X1 3 |[zybv]",
system; L : : : -
- . . . e o0r. an optimization routine, applied on a simplified
e 0 : X x (Q — x: the steering function of the

d}-'n' 1mizes the time variable ¢ subject to state
control constraints and returns the robot desired
trajectory,
Space: 1t can be L)% w - « Cp =t,
o I' € R>q: the|durationjjof the execution of the ¢ Tp.is the duration of execution of the steering function
e £=p(t,y),p:Rsoxx — == {0,1}: oL, o |
enables the execution of the primitive, where ¢ 134fhe « & = 0 until a sample laying in xr 1s added to 7.

time variable: /
~ost functionfassociated

e U :R>0x X xQ — R: the
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Motion primitives as parameterized actions

Definition 1: We define a t‘rc neri 13 a

6-tuple 7(q, x, a

Example — manipulation primitives

L ]
' - -
gv = o, where o 1s the object pose,
-'T
‘:-;"rh[LII]. Xm 3 [zyT]
! . ) . . « oM, thf_ mum kinematics of the robotic arm, giving
e 0 : X x Q — x: the steering function of the

_ ) _ values corresponding to a certain value
that 1s a set—valued function based on the

/' .
&t s C-sz-

imitive

Space; 11 can be_a map « s L), W . = e 1. 1s the duration of execution of the steering function
e I'cR~p: lhecsf the execution of the 1 ‘
o &= p(? y),p:Ropxx = 2= {0,1}:| a trigger | } W ||o—r| < 4, with r the pose of the robot
enables the execution of the primitive, where ¢ 1s the and 0 > 0, otherwise it 1s 0.

time variable;
e U :R>px X x @ — R: the |cost function| associated
with the primitive.
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Main idea

Main idea

Use the motion primitives for a subsystems as local planner in classical
sample based planning algorithms to obtain a plan for the whole system

Basic assumption

A motion primitive has an associated control law that stabilize the
subsystem it belongs to, while the control of other sub-systems are null
(i.e., generate steady motion)

Check for feasibility
e.g. using ZMP-condition for humanoid robots
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P-Search* algorithm

Algorithm 1: 7 + P-Search™(zr, z¢)
Data: P = (V. E), z1, zq
Result: 7 a tree whose vertices are points z € y.
Given two vertices z;, z; € X an edge (z;, 2;)
is an instantiation of the primitive 7 € V' that
steers z; toward z; 1n xg.

1 7 + InsertNode(l,z;,T): Motion primitive available

2 Znew = ZI. given the current states
3fori=11to N do

4 Py + ActivePrimitives(znpew):

3 Xi ¢ SamplePrimitive(Py):;

6 Zrand v Sample{‘h—]:

7| (Znew, T') 4 LocalRRT (Xi, Zrands Specify the motion primitive

(e.g., sample a set of joint

§ return 7 . . .
angles for manipulation motion
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P-Search* algorithm

Algorithm 2: (z,.,.7) + LocalRRT"(xx.2,7T)

Znearest < Nearest(xg,z,7T):
{’ETH.‘U.-" Inr:ur;] — StEer{znr:e:t:r'm«'i- Z )
if Unfeasible(Tpew) t
L return (—, 7):

if ObstacleFree(x,e,) then

Z’H!’f(l’l' Jr Nea‘lﬂ {Eﬂ{'.“[,l'.-" :rj'

E’]"ﬂiﬂ -{_ IShCDSE?arent{T" Z?’LE‘HF" 311!’.:{1?'{'_‘3! 3 ETI!’.:H.‘}
T + InsertNode(zmin, Znew, ] )

T + REWiIE{T. er,rfa:r'- Zmins E:ru:ur,}:

return (zpew.7 ):

Check feasibility (e.g., ZMP-condition)

[ ]

i

4

(e

Se
return (—,7):
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Experiment

-

No-zero walking speed |
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Transfer human walking motion to humanoids

[2]

Sagitta, Plane crontal P2 y-z plane

|

(TD) (TD) (TD) (TD) }discnntinuitie&

M- continuous

(sS)leg 1 (DS} (sslleg 2 (Ds) (sSlleg1 (Ds) (sS)leg 2 (Ds) phases
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Inverse optimal control

nverse optimal weiahts
control .
(with human dynamical model)

e, A , e 5, ot

data {![Ti_if}i: five

(for humans)

w

human motion

transfer rules

i Il' ! ra !
objective
(for robaot,
usually robot specific)

e b, A

obot motion optimal control
robot moton trajectories {[w ith robot dynamical model)

F 3
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Optimality criteria

Actuation and energy consumption

Minimize actuation in the stance foot, swing foot, torque, hip torque of
the swing foot, angular momentum in x and y direction, vertical center of
mass oscillations, absolute swing foot velocity

Motion fitting error

Minimize planar distance between foot position at touch down and
capture point, periodicity gap in center of mass velocities

Others

Minimize overall single support duration, absolute swing foot velocity at
touch down
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Demonstration

Link for demo video:
http://forb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016
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Extra credit homework — evaluation form
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