Mobile manipulator

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- (4 pts) Explain the control strategy for a flexible-macro rigidmicro-structure robot?
- A macro-micro robot manipulator can be controlled for optimizing the manipulability of micro-structure.
 - (3 pts) Describe one control strategy that can <u>maintain</u> the manipulability above a threshold
 - (3 pts) Describe one control strategy that can <u>increase</u> the manipulability of micro-structure

Flexible-macro rigid-micro manipulators

Macro-structure

- Flexible arm of wide motion range
- Neither <u>fast</u> nor <u>precise</u> due to flexibility
- Micro-structure
 - Limited motion range
 - Fast and precise motion

Hybrid position/force control for flexible macromicro manipulators [1]

- Macro-structure
 - Roughly realize the desired trajectory, and suppress vibration
- Micro-structure
 - Compensate for the position and force errors due to the elasticity in the macrostructure

Heuristic Method

- Choose a reference finger manipulability W_f
 - If $W_f(k) \ge W_{fr}$, the finger will keep moving and tracing the desired trajectory, while the arm maintains its previous position
 - If $W_f(k) < W_{fr}$, moving the arm becomes necessary

Heuristic Method

- When it is necessary to move the arm $\Delta p_d(k) = s_1 \Delta p_t(k)$
- Finger remains motion less

 $\dot{\boldsymbol{\theta}}_{f}(k) = 0$

Finger manipulability unchanged

 $\Delta W_f = 0$

- Moving the arm instead of moving the finger can theoretically prevent any further decrease
- However, switching control between the arm results in a sudden change in velocity

Steepest Ascent Method

- When the finger manipulability is under the defined threshold,
 - Computer the finger joint angles needed for increase manipulability

$$\boldsymbol{\theta}_{fd}(k) = \boldsymbol{\theta}_{fd}(k-1) + \lambda \frac{\partial W_f}{\partial \boldsymbol{\theta}_f}$$

- Computer desired frame transform of finger w.r.t. to the EE of arm ${}^t p_f(k) = A_f(\theta)$
- Given the desired finger EE position, compute the desired the EE of arm $p_{td}(k) = s_1^T (p_d(k) - R_t \cdot {}^t p_f(k))$

Mobile manipulator

State-of-the-art mobile manipulators [2]

Amazon picking challenge 2015

Commercialized

Autonomous industrial mobile manipulator (AIMM) [1]

- Mass production
 - Efficiency
- Manual production
 - Flexibility

Early technologies [1]

Recent technologies [1]

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Research focuses [2]

- Planning and control of redundant DOFs to achieve
 - Coordination of locomotion and manipulation
 - Configuration Optimization
 - Control stability
 - Obstacle avoidance
 - Robot-robot / human-robot cooperation
 - Outdoor applications

Coordination of manipulation and locomotion

Stability criterion

Viable stability region

$$d_f(x_{zmp}) = \frac{\sum_{i=1}^n (S_{zj}F_{xj} - S_{xj}F_{zj})}{\sum_{i=1}^n m_i(\ddot{z}_i + g) - \sum_{i=1}^n F_{zj}}$$
$$d_f(y_{zmp}) = \frac{\sum_{i=1}^n (S_{zj}F_{yj} - S_{yj}F_{zj})}{\sum_{i=1}^n m_i(\ddot{z}_i + g) - \sum_{i=1}^n F_{zj}}$$

Motion coordination

Manipulability affected by mobile base [4]

Manipulability metrics

Manipulability of 2-DOF arm

Manipulability of mobile manipulator

Manipulability of mobile manipulator

Cooperative mobile manipulator [5]

• How to minimized the internal forces?

Role assignment and coordination of heterogeneous robot components [6]

Role assignment of robot component

Phase	Action	HAND	ARM	MOBILE
А	Moving	Idle	Idle	
В	Searching	Idle	Position control	Idle
С	Measuring	Position/force control	Position control	Idle
D	Pulling	Grasp force control, Position measurement	Position control	Idle
Е	Opening	Grasp force control	Position/force control	Idle
F	Passing	Position control	Position control	Position control

(b)

(c)

(a)

Reference

- [1] Hvilshøj, Mads, et al. "Autonomous industrial mobile manipulation (AIMM): past, present and future." Industrial Robot: An International Journal 39.2 (2012): 120-135.
- [2] Bostelman, Roger, Tsai Hong, and Jeremy Marvel. "Survey of research for performance measurement of mobile manipulators." *in Journal of National Institute of Standards and Technology* (2016).
- [3] Huang, Q., Tanie, K., & Sugano, S. (2000). Coordinated motion planning for a mobile manipulator considering stability and manipulation. *The International Journal of Robotics Research*, 19(8), 732-742.
- [4] Bayle, Bernard, J-Y. Fourquet, and Marc Renaud. "Manipulability of wheeled mobile manipulators: Application to motion generation." *The International Journal of Robotics Research* 22.7-8 (2003): 565-581.
- [5] Khatib, Oussama, et al. "Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation." Intelligent Robots and Systems' 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on. Vol. 2. IEEE, 1996.
- [6] Chung, Woojin, et al. "Door-opening control of a service robot using the multifingered robot hand." *IEEE Transactions on Industrial Electronics* 56.10 (2009): 3975-3984.

Loco-Manipulation

- Loco-manipulation
 - Affordance
- Loco-manipulation motion planning
 - Motion Primitives
- Motion skill transferring from humans to humanoid robots
 - Inverse optimal control

Typical loco-manipulation tasks

Support Pose Transitions [1]

Description
Locomotion tasks
downstairs w. handle
upstairs w. handle
upstairs, turn and downstairs
walks w. hand sup. to avoid obst.
walk over beam w. handle
Loco-Manipulation tasks
kick box with foot w. hand sup.
lean to place a cup on table
lean to pick a cup on table
lean to pick a cup in air
lean to wipe
bimanual pick and place
pick up from floor w. hand sup.
Balancing tasks
push rec. fr. behind push w. lean
push rec. fr. left push w. lean
inspect show sole w. sup.
rec. fr. lost balance on 1 leg
lean on table w. hands
Kneeling tasks
kneel down
kneel up

Pose transition time

Pose transition probability

Motion segmentation

Taxonomy of support poses

Characteristics of support poses

- Number of contacts
 - Each support point creates a new closed kinematic loop
 - Motion planning complexity increases with number of supports
- Type of contact
 - 5 types = Hold, palm, arm, feet, and knee support
 - Selecting 36 out of 51 total combination \rightarrow the more commonly used

Characteristics of support poses

- Stability
- Power grasps vs. resting poses
 - In addition to the standing and kneeling poses, there are 10 extra classes where there is contact with the torso (i.e., resting poses)
 - Transitions to and from resting poses are more complex (future work)

Hand grasping v.s. whole-body poses

- Similarity
 - Contact affordance matters
- Difference
 - Hand grasping can start with no contact with environment
 - Whole-body poses always start with at least one contact with environment (due to gravity)

Affordance of loco-manipulation [2]

- Efficiently identify actions in unknown environment
 - Detect environment elements that allow interaction (e.g., doors, handles, handrails, stairs, etc.)
 - Utilize fixed environment structure for stable loco-manipulation

Affordance of loco-manipulation

- Loco-manipulation affordance
 - Actions that involve the whole body for stabilization, locomotion or manipulation
- Affordance validation
 - Assign whole-body affordance to environmental primitives, based on their shape, orientation and extent
 - Use perception feedback to validate the affordance hypotheses
 - Execute the task

Affordance of loco-manipulation

Affordance extraction

Geometric primitive extraction

Assign Affordance hypothesis

Affordance	Shape	Parameters	Conditions ^{1,2}	Valid.
Support (S)	Planar	Normal n	$n \uparrow z_{\mathit{world}}$	(1a)
Support (S)		Area a	$a \ge \lambda_1$	(14)
Lean (Ln)	Planar	Normal n	$n \perp z_{\mathit{world}}$	(1a)
Ecan (En)		Area a	$a \ge \lambda_2$	(14)
	Planar	Normal n	$a\in [\lambda_3,\lambda_4]$	
		Area a		
Grasp (G)	Cylindrical	Radius r	$r \in [\lambda_5, \lambda_6]$	(3)
Grasp (G)		Direction d	$\ d\ \leq \lambda_7$	(3)
	Spherical	Radius r	$r\in [\lambda_8,\lambda_9]$	
Hold (H)	Cylindrical	Radius r	$r \in [\lambda_{10}, \lambda_{11}]$	(2a)
		Direction d	$\ d\ \ge \lambda_{12}$	(24)
Puch (P)	Planar	Normal n	$n \perp \pmb{z_{world}}$	(1b)
I ush (I)		Area a	$a \le \lambda_{13}$	(10)
	Planar	Normal n	$a \le \lambda_{15}$	
		Area a		
Lift (Lf)	Cylindrical	Radius r	$r \le \lambda_{15}$	(2b)
		Direction d	$\ d\ \le \lambda_{16}$	(20)
	Spherical	Radius r	$r \le \lambda_{17}$	

Grasp point and robot location

- Compute possible grasp points
- Computer robot location through inverted reachability
- Additional information that helps with affordance validation

Experimental affordance validation

- Touch
 - Touch the primitive and exert forces along the primitive's normal direction. Compare the resistance force against threshold
- Grasp
 - Grasp the primitive and exert forces along the expected direction of utilization. Compare the resistance force against threshold
- Push
 - Push the primitive and perceive the caused effect

Experimental affordance validation

- Pipe
 - Grasp + lift
- Chair
 - Push
- Box 1
 - Can be pushed
- Box 2
 - Cannot be pushed

- [1] Asfour, Tamim, et al. "On the Dualities Between Grasping and Whole-Body Loco-Manipulation Tasks." *Robotics Research*. Springer, Cham, 2018. 305-322.
- [2] Kaiser, Peter, et al. "Validation of whole-body loco-manipulation affordances for pushability and liftability." *Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on*. IEEE, 2015.
- [3] Settimi, Alessandro, et al. "Motion primitive based random planning for loco-manipulation tasks." *Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on*. IEEE, 2016.
- [4] Clever, Debora, and Katja D. Mombaur. "An Inverse Optimal Control Approach for the Transfer of Human Walking Motions in Constrained Environment to Humanoid Robots." *Robotics: Science and Systems*. 2016.