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Quiz (10 pts)

(4 pts) Explain the control strategy for a flexible-macro rigid-
micro-structure robot?

A macro-micro robot manipulator can be controlled for
optimizing the manipulability of micro-structure.

(3 pts ) Describe one control strategy that can maintain the
manipulability above a threshold

(3 pts ) Describe one control strategy that can increase the
manipulability of micro-structure
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Flexible-macro rigid-micro manipulators

Micro
Macro-structure Manipulator

-~ - Macro e

Flexible arm of wide motion range Manipulator

Neither fast nor precise due to
flexibility

Micro-structure
Limited motion range

il T . T

Fast and precise motion
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Hybrid position/force control for flexible macro-

micro manipulators [1]

Micro

Manipulator
- - - Macro - b -

Manipulator

Macro-structure

Roughly realize the desired trajectory,
and suppress vibration

Micro-structure

Compensate for the position and force
errors due to the elasticity in the macro-
structure

il T . T

L T R I
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Heuristic Method

Choose a reference finger manipulability 1V

If W.(k)=W,  the finger will keep moving and tracing the desired
trajectory, while the arm maintains its previous position

It w_ (k) < W, ,moving the arm becomes necessary
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Heuristic Method

When it is necessary to move the arm
Ap,(k)=s,Ap. (k)

Finger remains motion less

6, (k) =0
Finger manipulability unchanged
AW, =0

* Moving the arm instead of moving the finger can
theoretically prevent any further decrease

* However, switching control between the arm results in
a sudden change in velocity
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Steepest Ascent Method

When the finger manipulability is under the defined threshold,
Computer the finger joint angles needed for increase manipulability

o,
6.,(k)=6,(k—1)+i—
J J G.gf

Computer desired frame transform of finger w.r.t. to the EE of arm
'pr(k)=A.(0)
Given the desired finger EE position, compute the desired the EE of

arm _ r
P (k)=5(p;(k) =R, - p,(F))
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Mobile manipulator



State-of-the-art mobile manipulators

a2t

NASA/GM Rohonaut ECA CAMELEON KUKA OmniRob Neobotix MM KR16

| Professional and domestic

; diic
I service (home- and health-care) | Space wary:. |

| Willow Garage PR2  Fraunhofer Care-O-Bot 3

NASA Mars Rover TALON IV Engincer IRobot - PackBot EOD SDU Mobile Manipulator AAU "Little Helper”



Amazon picking challenge 2015
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Commercialized
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Autonomous industrial mobile manipulator

(AIMM) [1]

Mass production
Efficiency

Manual production
Flexibility

e —— s — — —

Flow shop Job shop
: = | . Work- m
AIMN

i station 1 5 Work-

| ' station 2
Alhony J Work-

I staton 3 Work-

| 8 slation 4
vg\.

Kanban \ Kanban

Storage/
warehouse
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Early technologies

MORO (1984) Hilare 2bis (1992) Romeo & Jullet (1996) N/A (1999) Jaume (2000) The Manufacturing FAuStO (2004)
Fraunhofer, LAAS-CRNS Stanford University Siemens AG Asslistant (2001) Universily of Verona
Jaume | Universily
Germany Franco USA Germany < - Daimier Cheysior Naly
Spatn .
Germany

-

ML

1999 2000 2001 2004

KAMRO (1989) YAMABICO (1994) PURL-M (1998) DENSO Mobile

_KAMRO (1909) _ PURLA (1089) rob@work (2001 N/A (2003) N/A (2004)
e f-‘ﬂ(’:’{f"{-}" :f-’"”’-‘-"f"t M 4 - :L::;"}(’:::’:‘ e oo “999{ Ffra-mho(.’cr : Matsushita Electric industrial Trangm Unwverady
Germany Japan . DENSOQ Corporation, Germany & Panasonic Corporation China
Japan Japan
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Recent technologies [1]

Jido (2005) AMR (2007) N/A (2008) N/A (2008) N/A (2008) MM-KR16 (2009) MM-500 UR (2011) OmniRob I (2011)
LAAS-CRNS Cenlral Mechanical Hannover Fair 08 Joume | Univecsity Geogia Instituie of Technology Neobolix Neobolix KUKA
France Engineering Research Institide, Germany Spoin : USA y Germany Germany Germany

\ 1

{

-

2

2011

MM-500 (2006) MIMRO (2007) RobuTER/ULM (2008) UMan (2008) Little Helper (2009) OmniRob (2009) The SDU Mobile Little Helper Il (2011)
Neéobotix Fraunholer, Advanced Technologies University of Massachusells Aalbovg University KUKA Manipulator (2010) Aalborg University,
Germany Germany Devoiopmen! Centre USA Denmark Germany Unwerstty of Southem Denmark

Algena Donmark

Denmavk
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Research focuses [2]

Planning and control of redundant DOFs to achieve
Coordination of locomotion and manipulation
Configuration Optimization
Control stability
Obstacle avoidance
Robot-robot / human-robot cooperation
Outdoor applications
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Coordination of manipulation and locomotion

[3]

@nd' effector tra juctﬂrD
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Stability criterion

”?H —
ZMP =zero moment point m /9 7
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Motion coordination

/Inputi Given end-point trajecmr}/

and planned vehicle motion

Compute manipulator configuration
by maximizing manipulability

Y —

——

Plan ZMP trajectory considering
stability and configuration

/ Planned ZMP trajectory /

Solve trunk turning angle and elbow rotation
angle to realize the planned ZMP trajectory
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Manipulability affected by mobile base [4]

x+(a+aCi +aCn)Cs — (@151 +ar52) S,
y+(a+aCy+aCp)S; + (a1 5) + ax512)Cy.

9
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Manipulability metrics
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Manipulability of 2-DOF arm

Ellipsoids of manipulability Measure of manipulability
1.5
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Manipulability of mobile manipulator

Ellipsoids of manipulability
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Manipulability of mobile manipulator

Ellipsoids of manipulabiality Measure of manipulability
2 - ]__........\........,........,........,.._._._._._._._:
1.5 F 5
1| :
E o5t =" :
- :
o :
05 :
Ellipzoids scale 1/3 :
-1 1 1 1 1 1 1 i i i i i
-0.5 0 0.5 1 15 2 02 0.4 06 08 1
x (1m.) Robotic arm extent (m.)

RBE 550 — Motion Planning — Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/30/2018 24



Cooperative mobile manipulator [5]

How to minimized the internal forces?

X4 Motion/Force | ¢ r Fwd. ==t
Xd | Grasp fa,1 Controller e JF tof Robot (1) fu Kin. [fs1
Kinematics 1t
Eforced, and ) '
. Virtual
P X, N +| Motion/Force | ¢ r Fwd, =N
—int.d N Fal '
Linkage fa,nv Controller " J& »| Robot (V) Kin. |[fonv
i . |
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Role assignment and coordination of

heterogeneous robot components [6]
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Role assignment of robot component

Action HAND ARM MOBILE

A Moving [dle Idle
B Searching Idle Position ldle
control
C Measuring Position/force Position Idle
control control
D Pulling Grasp force Position Idle
control, Position  control
measurement
E Opening Grasp force Position/force  Idle
control control
F Passing Position control ~ Position Position
control control
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Loco-Manipulation



Overview

Loco-manipulation
Affordance

Loco-manipulation motion planning

Motion Primitives

Motion skill transferring from humans to humanoid robots

Inverse optimal control



Typical loco-manipulation tasks

hold palm
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Support Pose Transitions [1]

Description

Locomotion tasks

downstairs w. handle

upstairs w. handle

upstairs, turn and downstairs
walks w. hand sup. to avoid obst.
walk over beam w. handle
Loco-Manipulation tasks

kick box with foot w. hand sup.
lean to place a cup on table
lean to pick a cup on table

lean to pick a cup in air

lean to wipe

bimanual pick and place

pick up from floor w. hand sup.
Balancing tasks

push rec. fr. behind push w. lean
push rec. fr. left push w. lean
inspect show sole w. sup.

rec. fr. lost balance on 1 leg
lean on table w. hands
Kneeling tasks

kneel down

kneel up
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Pose transition time

lFoot -> 2Feet

| I 303 transitions
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Pose transition probability
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Motion segmentation
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Taxonomy of support poses

{ Less area of contact More area of contact

#

Standing Kneeling Resting

Su

&

Single

Less stable - More mobility
Double

Triple

More stable - Less mobility

Quadruple

-

- | Lﬂﬂnfact types - R Single foot support | |Single knee support ((~okiced double
e [ 1 = i - -1
(hand or foot) <~ (arm or knee} T ¥~ (hand) 7 ¥ Double fest support| [Double knee support | [SUPPOr
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Characteristics of support poses

Number of contacts
Each support point creates a new closed kinematic loop
Motion planning complexity increases with number of supports

Type of contact
5 types = Hold, palm, arm, feet, and knee support
Selecting 36 out of 51 total combination = the more commonly used

RBE 550 — Motion Planning — Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/30/2018 37



Characteristics of support poses

Stability

Power grasps vs. resting poses

In addition to the standing and kneeling poses, there are 10 extra
classes where there is contact with the torso (i.e., resting poses)

Transitions to and from resting poses are more complex (future
work)
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Hand grasping v.s. whole-body poses

Similarity
Contact affordance matters

Difference
Hand grasping can start with no contact with environment

Whole-body poses always start with at least one contact with
environment (due to gravity)
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Affordance of loco-manipulation [2]

Efficiently identify actions in unknown environment

Detect environment elements that allow interaction (e.qg., doors,
handles, handrails, stairs, etc.)

Utilize fixed environment structure for stable loco-manipulation
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Affordance of loco-manipulation

Loco-manipulation affordance

Actions that involve the whole body for stabilization, locomotion or
manipulation

Affordance validation

Assign whole-body affordance to environmental primitives, based on
their shape, orientation and extent

Use perception feedback to validate the affordance hypotheses
Execute the task
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Affordance of loco-manipulation

RGB-D images

Environmental
Primitives

Affordance Validation
Depending on the measured haptic
feedback and the resulting level of

confidence, the affordance

Haptic Feedback

AR hypotheses become actual
e\ affordances and can be instantiated
as Object Action Complexes (OACs)

Validation Instantiation

Object Action Complexes
A framework that represents
the sensorimotor experience

and behaviors based on the
coupling of objects and actions

Validation
OACs

[ Whole-Body Control
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Affordance extraction

| .
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Geometric primitive extraction

Algorithm 1 primitiveExtraction(S, Tpiy. Tmax)
Input Segmentation &
Input Minimum and maximum point cloud sizes Tins Tmax

Qutput A set of environmental primitives ¥

Match segment s against geometric
models, e.qg., plane, cylinder, sphere

N

"'r-"-"{:}"lindm' — RANSACCFH"‘M' (C}}

Wsphere RANSACSPWT(C}}

Wbest 4= ATE MAX4p & [ Yyiane , Veytingers Vipnere } | P
if eyt = () then

Before adding to the set of discovered
primitives, the underlying point cloud is further
partitioned in a clustering process based on
Euclidean distances between points = Why?

new

O« O0\P

\ . Uhest

return W
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Assign Affordance hypothesis

Affordance Shape Parameters  Conditions!:2 Valid.
: . Normal n T Zwe
Support (S) | Planar " n T Zwortd (1a)
Area a a > A\
N (] ; 4 J— zh'.l Fi
Lean (Ln) Planar ormat " orld (1a)
Area a a > Ao
Normal n
Planar " a € [As, A4]
Area a
o Radius » r e |As, Ag
Grasp (G) Cylindrical o As; Ae] (3)
Direction d  ||d|| < Ax
Spherical Radius r r € [Ag, Ag]
L Radius - A10, A
Hold (H) Cylindrical . : i " r € o, A (2a)
Direction d  ||d|| = A12
Normal n Lz .
Push (P) Planar " " orld (1b)
Area a a < Mg
Normal n
Planar " a < A5
Area a
. Radius r < As ,
Lift (Lf) Cylindrical "= A5 (2b)
Direction d  ||d|| < Ay
Spherical Radius r r < A7
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Grasp point and robot location

Compute possible grasp points

Computer robot location
through inverted reachability

Additional information that
helps with affordance validation
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Experimental affordance validation

Touch

Touch the primitive and exert forces along the primitive’s normal
direction. Compare the resistance force against threshold

Grasp

Grasp the primitive and exert forces along the expected direction of
utilization. Compare the resistance force against threshold

Push

Push the primitive and perceive the caused effect
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Experimental affordance validation

Pipe
Grasp + lift
Chair

Push
Box 1

Can be pushed
Box 2

Cannot be pushed
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