Macro-micro manipulators

Jane Li

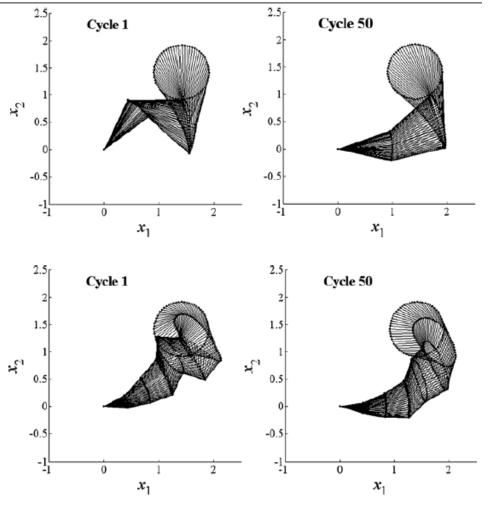
Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- (4 pts) Explain why it is important to have continuous and globally consistent behavior for redundant manipulators?
- (3 pts) Define a cost function that optimizes for repetitive motion
- (3 pts) What is the different between pointwise, pathwise and globally consistent IK resolution?

Consistent and predictable robot behavior

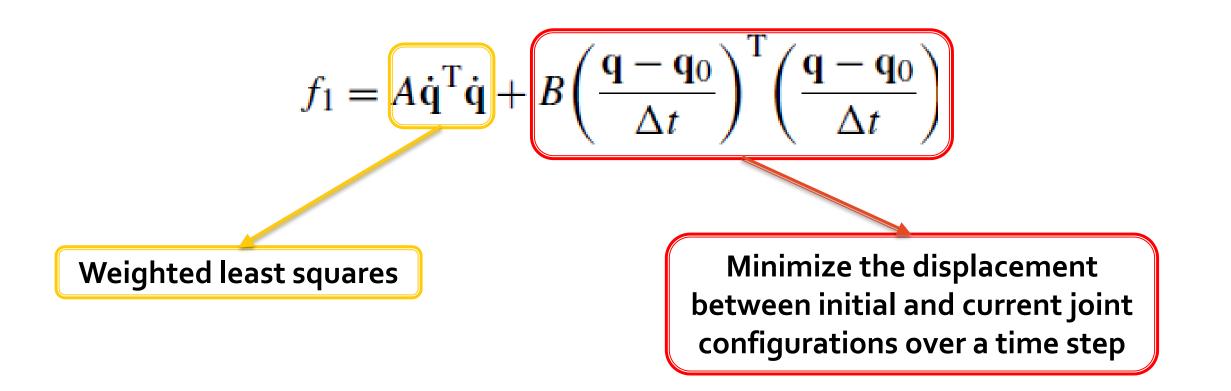
- To be consistent and predictable, robot motion needs to be repetitive in both task and configuration space
 - Close path in task space \rightarrow close path in configuration space
- Unpredictable robot behavior
 - Joint angle drift
 - Readjusting the manipulators' configuration with self-motion at every cycle → inefficient


3

Closed-loop pseudo-inverse

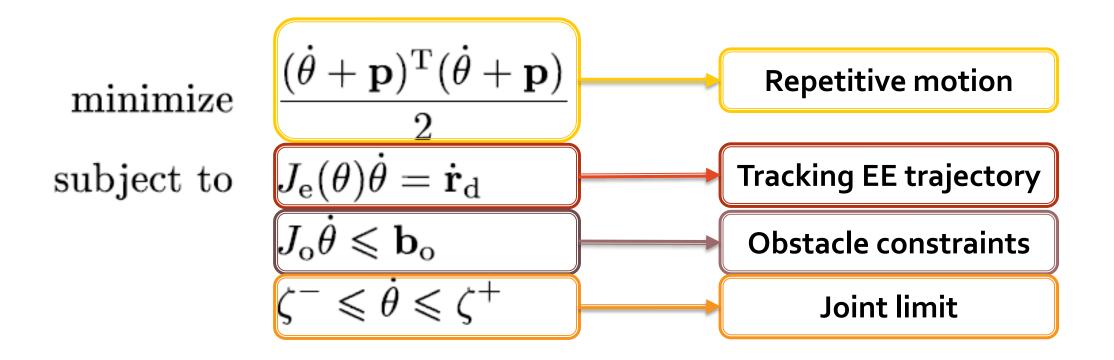
 Compute the joint position through <u>time integration</u> pseudo-inverse

$$\Delta q = \mathbf{J}^{\dagger} \Delta x$$


Unpredictable, not repeatable arm configurations

Simulation Result

				2.5	Cycle 1	2.5	Cycle 50
CLGA	r = 0.7	r = 1.0	r = 2.0	1.5		1.5	
3 <i>R</i>	9.96E-04	8.84E-04	1.08E-03	1. 		x ²	
4R	7.12E-04	7.38E-04	5.70E-04	0.5		0.5	
5 <i>R</i>	6.73E-04	5.42E-04	6.15E-04	-0.5-	× •••	-0.5	Ý V
6 <i>R</i>	5.98E-04	4.81E-04	8.57E-04	-1	0 1 2		0 1 2
7 <i>R</i>	1.26E-03	5.44E-04	5.39E-04	-1	x_1	-1	x_1
CLP	r = 0.7	r = 1.0	r = 2.0	2.5	Cycle 1	2.5	Cycle 50
3 <i>R</i>	1.35E+01	6.41E+00	5.80E-01	1.5-		1.5-	
4R	8.2E+00	4.4E + 00	5.8E-01	x ¹	All All	* 1.	
				0.5		0.5	
5 <i>R</i>	7.2E+00	2.2E + 00	4.4E-01	0-	- Carlos - Carlos	0	
5 <i>R</i> 6 <i>R</i>	7.2E+00 5.4E+00	2.2E+00 4.9E+00	4.4E-01 3.0E-01	0- -0.5-		-0.5	
	-	-		-0.5 -1		-0.5 -1	


Cost function for GA

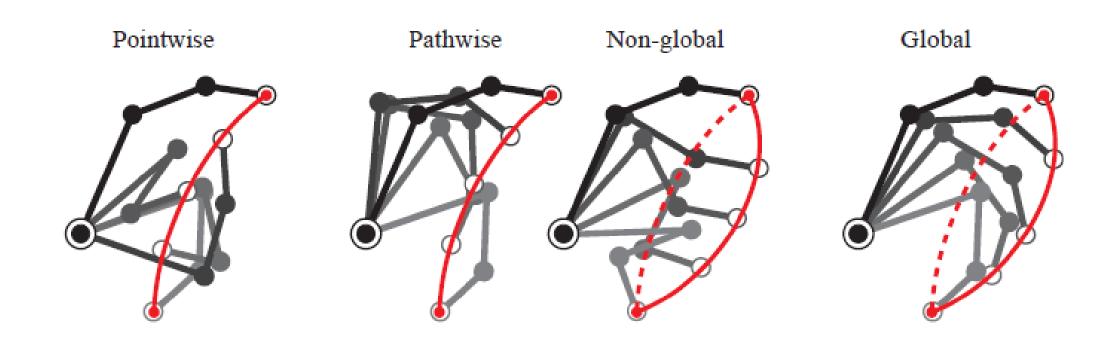
6

Multi-objective optimization

Formulation of Optimization Problem

7

Formulation of Optimization Problem


$$\begin{array}{ll} \text{minimize} & \underbrace{(\dot{\theta} + \mathbf{p})^{\mathrm{T}}(\dot{\theta} + \mathbf{p})}{2} & \text{Repetitive motion} \\ \text{subject to} & J_{\mathrm{e}}(\theta)\dot{\theta} = \dot{\mathbf{r}}_{\mathrm{d}} \\ & J_{\mathrm{o}}\dot{\theta} \leqslant \mathbf{b}_{\mathrm{o}} \\ & \zeta^{-} \leqslant \dot{\theta} \leqslant \zeta^{+} & \underbrace{\|\dot{\theta}(t) + \eta(\theta(t) - \theta(0))\|_{2}^{2}}{2} \end{array}$$

$$\mathbf{z}(t) = \theta(t) - \theta(0)$$

$$\eta > 0 \in R$$

$$\mathbf{\dot{z}}(t) = -\eta \mathbf{z}(t) \implies \|\mathbf{z}(t)\|_2 = \exp(-\eta t) \|\mathbf{z}(0)\|_2 \to 0$$

$$\theta(t) = \theta(0), \ t \to \infty$$

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Continuous, globally consistent redundancy resolution

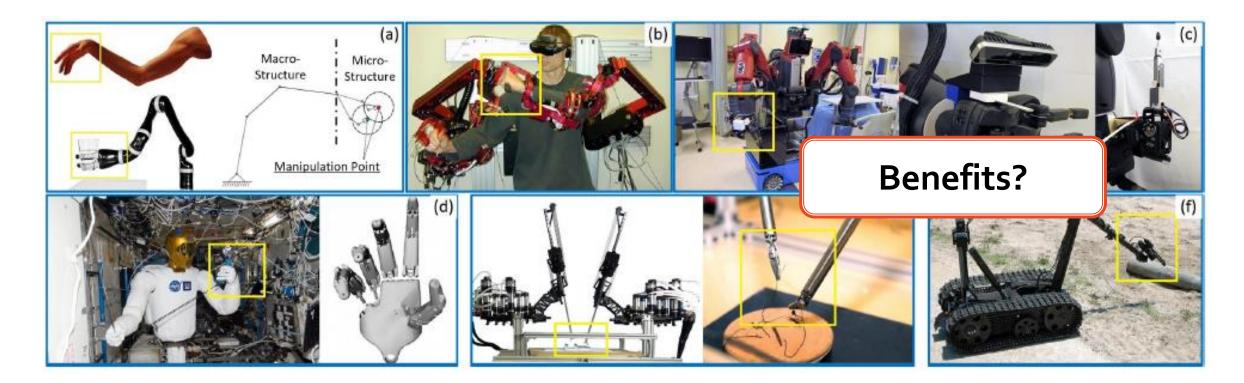
9

Optional Assignment: Student talk on Trajectory Optimization

Optional assignment

- Student talk on "trajectory optimization"
 - If you need to make up for your low-score/late submission assignment
 - Allow maximally 3 students to team up, 10 min talk each
 - Submit your slides with notes on Canvas by April 2nd
- Reference:
 - <u>http://www.matthewpeterkelly.com/tutorials/trajectoryOptimization</u>

Macro-micro manipulators


Research Questions

- How to resolve the kinematic redundancy?
- How to coordinate macro- and micro-structures?
 - Arm-hand structure
 - Body-arm structure
- How to handle bimanual coordination?

- How to coordinate macro- and micro-structures
 - Macro-micro manipulators
 - Mobile manipulator
 - Loco-manipulation

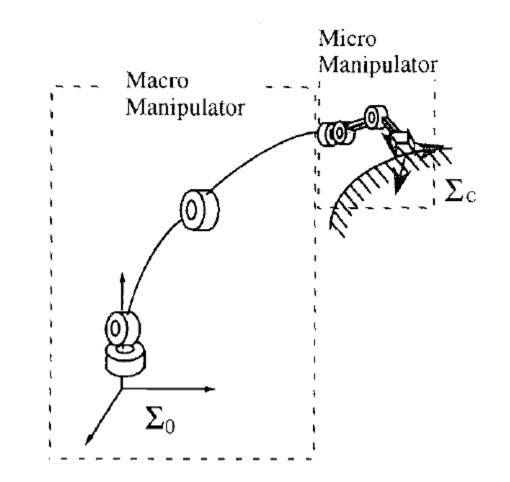
Macro-micro manipulator system

- Reduce endpoint inertia
- Inherent stable physical configuration for force control

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Related work

- Macro-micro structures
 - Flexible-macro/rigid-micro manipulators [1,3]
 - Compliant base manipulators [4]
 - Coarse/fine dual-stage manipulators [5, 6, 7]
- Control strategy
 - Additional task constraints [8]
 - Optimizing manipulability[9,10]

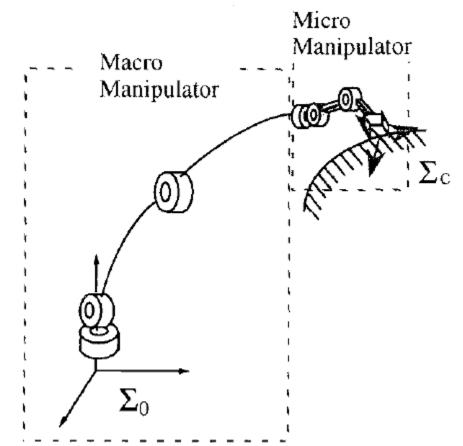


- Motivated by industry robots
 - Long arms for improved high-mobility
 - Light arm in comparison to their load
 - Elasticity need compensation for arm deformation and vibration

Flexible-macro rigid-micro manipulators

Macro-structure

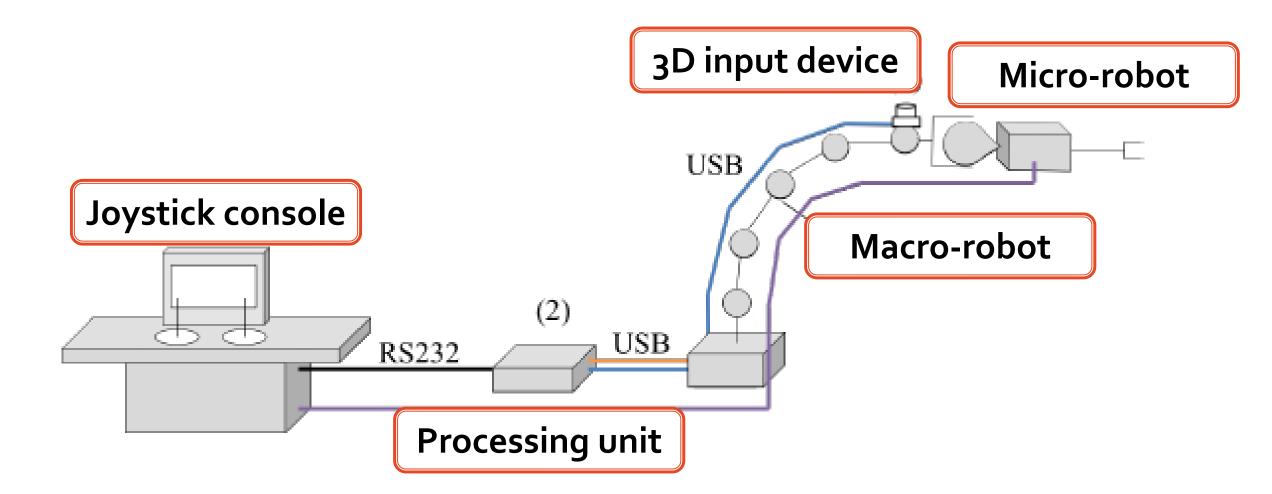
- Flexible arm of wide motion range
- Neither <u>fast</u> nor <u>precise</u> due to flexibility
- Micro-structure
 - Limited motion range
 - Fast and precise motion



Tesla Robots

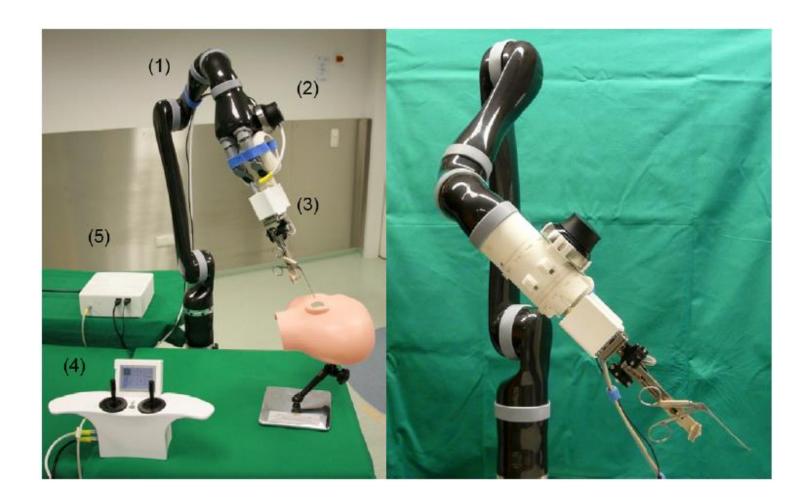
Hybrid position/force control for flexible macromicro manipulators [1]

- Macro-structure
 - Roughly realize the desired trajectory, and suppress vibration
- Micro-structure
 - Compensate for the position and force errors due to the elasticity in the macrostructure



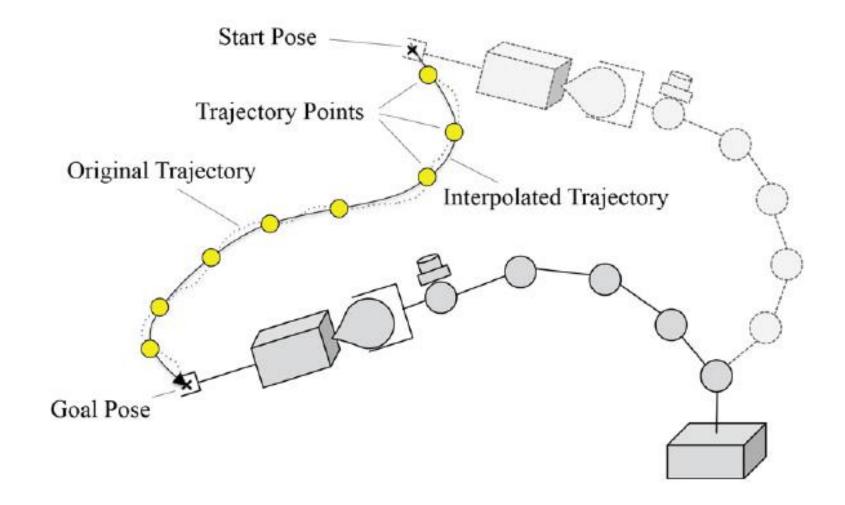
Recent Example

- A modular micro-macro robot system for ear surgery [2]
 - Handheld micro instruments
 - Sub-millimeters precision
 - Limited view due to narrow ear canal
 - Delicate intervention

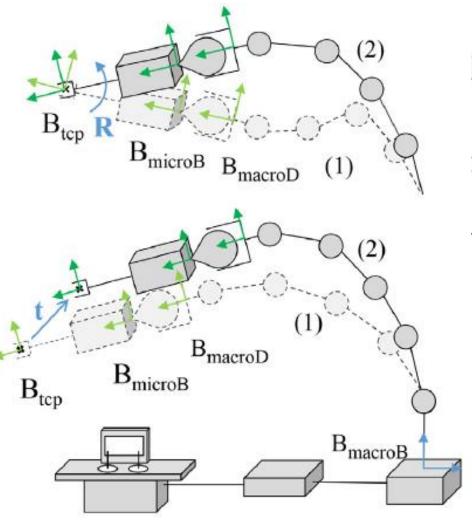


Micro-Macro Telemanipulator System

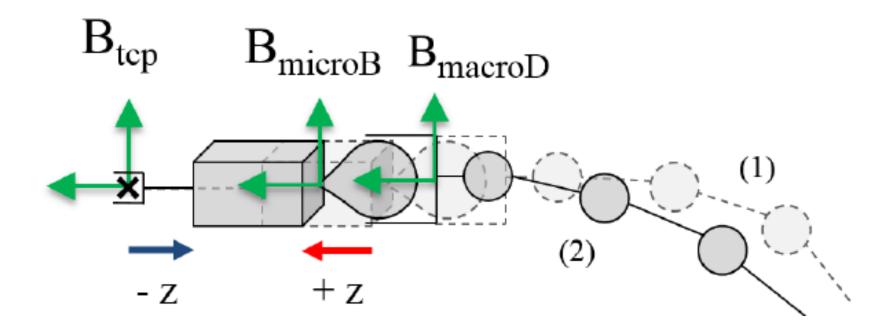
Micro-Macro Telemanipulator System


- Hand-on control
 - 3D mouse
- Teleoperation
 - Joysticks

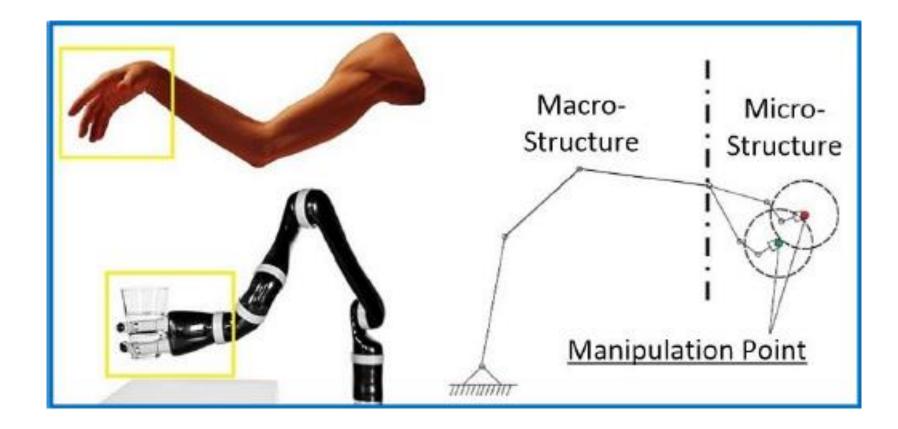
Separate control for macro/micro-structure


No.	Control Mode	Involved Robots	Input Mode
1	Coarse Alignment with Path Recording	Macro	Hands-On
2	Coarse Alignment along Recorded Path	Macro	Hands-On
3	Rotation	Macro	Telemanipulated
4	Translation	Macro	Telemanipulated
5	Fine Manipulation 1:1	Micro	Telemanipulated
6	Fine Manipulation 1:3	Micro	Telemanipulated
7	Fine Manipulation 1:5	Micro	Telemanipulated
8	Workspace Expansion	Macro, Micro	Telemanipulated

Coarse alignment


Macro- and micro-manipulator control

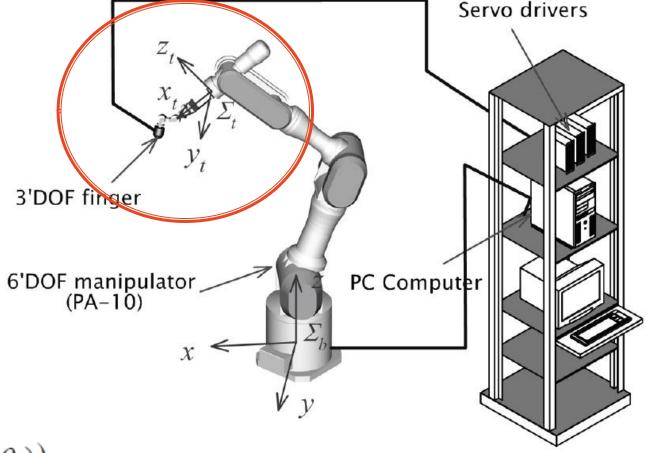
- Control Macro-manipulator
 - Rotation about instrument tip (TCP)
 - Translation along micro robot axis
- Fine manipulation
 - Macro-manipulator remains motionless
 - Three different scaling for control input



Workspace expansion

- Micro-structure has limited workspace
 - Ear canal = 25~35 mm, while the micro-robot = 20 mm

A control strategy inspired by hand-arm coordination


Optimize micro-structure manipulability [10]

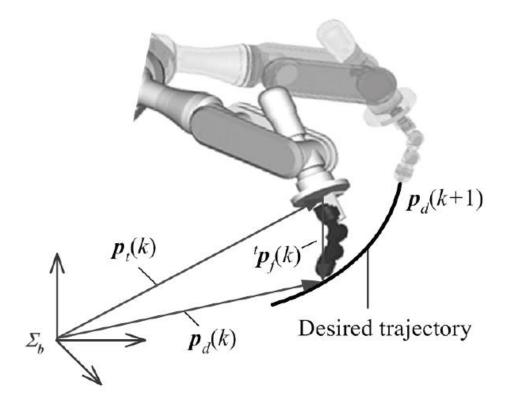
Whole manipulator

$$\dot{\boldsymbol{p}}_f = \boldsymbol{J} \cdot \dot{\boldsymbol{\theta}}$$

- Macro-structure $\dot{\boldsymbol{p}}_t = \boldsymbol{J}_a \cdot \dot{\boldsymbol{\theta}}_a$
- Micro-structure ${}^t \dot{\boldsymbol{p}}_f = \boldsymbol{J}_f \cdot \dot{\boldsymbol{\theta}}_f$
- Finger manipulability

 $W_f = \sqrt{\det(\boldsymbol{J}_f(\boldsymbol{\theta}_f) \cdot \boldsymbol{J}_f^T(\boldsymbol{\theta}_f))}$ $== l_2 l_3 \sin \theta_3 \left(l_1 + l_2 \sin \theta_2 + l_3 \sin(\theta_2 + \theta_3) \right)$

 $= \boldsymbol{J} \cdot \boldsymbol{\theta}$

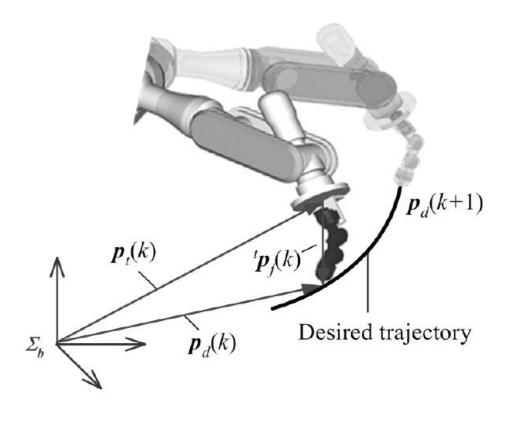

- Choose a reference finger manipulability W_f
 - If $W_f(k) \ge W_{fr}$, the finger will keep moving and tracing the desired trajectory, while the arm maintains its previous position
 - If $W_f(k) < W_{fr}$, moving the arm becomes necessary

• At time t=kT, $(k=0, 1, 2, \cdots)$

$$\boldsymbol{p}_{d}(k) = \boldsymbol{s}_{1}\boldsymbol{p}_{t}(k) + \boldsymbol{R}_{t} \cdot \boldsymbol{p}_{f}(k)$$

Where

$$\mathbf{s}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

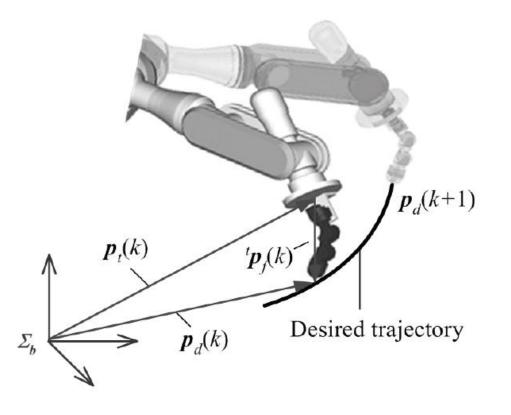


 Assuming the orientation of the arm remains unchanged

$$\Delta \boldsymbol{p}_{d}(k) = \boldsymbol{s}_{1} \Delta \boldsymbol{p}_{t}(k) + \boldsymbol{R}_{t} \cdot \boldsymbol{\Delta}^{t} \boldsymbol{p}_{f}(k)$$

• Where

$$\Delta \boldsymbol{p}_{d}(k) = \boldsymbol{p}_{d}(k) - \boldsymbol{p}_{d}(k-1)$$
$$\Delta \boldsymbol{p}_{t}(k) = \boldsymbol{p}_{t}(k) - \boldsymbol{p}_{t}(k-1)$$
$$\Delta^{t} \boldsymbol{p}_{f}(k) = {}^{t} \boldsymbol{p}_{f}(k) - {}^{t} \boldsymbol{p}_{f}(k-1)$$

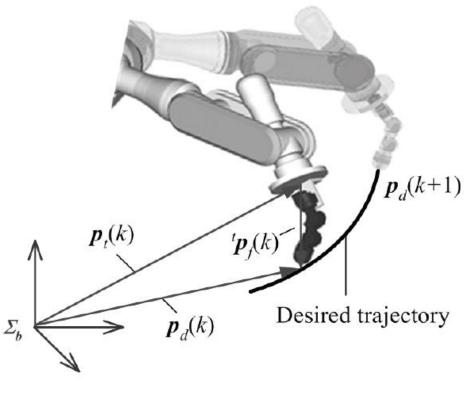


• Given that
$${}^t \dot{p}_f = J_f \cdot \dot{\theta}_f$$

$$\Delta \boldsymbol{p}_{d}(k) = \boldsymbol{s}_{1} \Delta \boldsymbol{p}_{t}(k) + \boldsymbol{R}_{t} T \cdot \boldsymbol{\dot{p}}_{f}(k)$$
$$= \boldsymbol{s}_{1} \Delta \boldsymbol{p}_{t}(k) + T \boldsymbol{R}_{t} \boldsymbol{J}_{f} \boldsymbol{\dot{\theta}}_{f}(k)$$

No need to move arm

$$\Delta \boldsymbol{p}_t(k) = 0$$
$$\Delta \boldsymbol{p}_d(k) = T\boldsymbol{R}_t \boldsymbol{J}_f \boldsymbol{\dot{\theta}}_f(k)$$


- When it is necessary to move the arm $\Delta p_d(k) = s_1 \Delta p_t(k)$
- Finger remains motion less

 $\dot{\boldsymbol{\theta}}_{f}(k) = 0$

Finger manipulability unchanged

 $\Delta W_f = 0$

- Moving the arm instead of moving the finger can theoretically prevent any further decrease
- However, switching control between the arm results in a sudden change in velocity

• To achieve smooth motion,

$$p_{td}(k) = p_t(k-1) + \Delta p_{td}(k)$$
• Where $\Delta p_{td}(k) = A(W_f) s_1^T \Delta \vec{p}_d(k)$ an unit motion vector in the direction of the desired trajectory
• $A(W_f) = \begin{cases} 0 & W_f(k) \ge W_{fr} \\ K_a(W_{fr} - W_f(k)) & W_f(k) < W_{fr} \end{cases}$ How to increase the finger manipulability?

Steepest Ascent Method

- When the finger manipulability is under the defined threshold,
 - Computer the finger joint angles needed for increase manipulability

$$\boldsymbol{\theta}_{fd}(k) = \boldsymbol{\theta}_{fd}(k-1) + \lambda \frac{\partial W_f}{\partial \boldsymbol{\theta}_f}$$

- Computer desired frame transform of finger w.r.t. to the EE of arm ${}^{t}p_{f}(k) = A_{f}(\theta)$
- Given the desired finger EE position, compute the desired the EE of arm $p_{td}(k) = s_1^T (p_d(k) - R_t \cdot {}^t p_f(k))$

Reference

- [1] Yoshikawa, T., Harada, K., & Matsumoto, A. (1996). Hybrid position/force control of flexible-macro/rigid-micro manipulator systems. IEEE Transactions on Robotics and Automation, 12(4), 633-640.
- [2] Entsfellner, K., Schuermann, J., Coy, J. A., Strauss, G., & Lueth, T. C. (2015, December). A modular micro-macro robot system for instrument guiding in middle ear surgery. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), (pp. 374-379).
- [3] Lew, Jae Y., et al. "Micro manipulator motion control to suppress macro manipulator structural vibrations." *Robotics and Automation*, 1995. *Proceedings.*, 1995 IEEE International Conference on. Vol. 3. IEEE, 1995.
- [4] Lew, Jae Young, and S-M. Moon. "A simple active damping control for compliant base manipulators." *IEEE/ASME Transactions on Mechatronics* 6.3 (2001): 305-310.

Reference

- [5] Kumar, Rajesh, et al. "An augmentation system for fine manipulation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2000.
- [6] Kwon, SangJoo, Wan Kyun Chung, and Youngil Youm. "On the coarse/fine dual-stage manipulators with robust perturbation compensator." *Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on*. Vol. 1. IEEE, 2001.
- [7] Dong, Wei, Lining Sun, and Zhijiang Du. "Stiffness research on a high-precision, largeworkspace parallel mechanism with compliant joints." *Precision Engineering* 32.3 (2008): 222-231.
- [8] Quan, Bui Trong, et al. "Control of a macro-micro robot system using manipulability of the micro robot." *JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing* 49.3 (2006): 897-904.

Reference

- [9] Huang, Jian, et al. "Emulating the Motion of a Human Upper Limb: Controlling a Finger-arm Robot by using the Manipulability of its Finger." *Robotics and Biomimetics, 2006. ROBIO'06. IEEE International Conference on*. IEEE, 2006.
- [10] Huang, Jian, Masayuki Hara, and Tetsuro Yabuta.
 "Controlling a finger-arm robot to emulate the motion of the human upper limb by regulating finger manipulability." *Motion Control*. InTech, 2010.