Redundancy resolution based on optimization

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

• (6 pts) Explain the optimization/tradeoff underlying the damped least square method

$$
\min_{\dot{q}} \frac{\mu^2}{2} ||\dot{q}||^2 + \frac{1}{2} ||\dot{x} - \dot{y}||^2 = H(\dot{q})
$$

- (2 pts) List two metrics that measure the distance from singularity
- (2 pts) How to guarantee the secondary task will not interfere the primary task

Singularity avoidance - Damped Least Squares

ompromise between large joint velocity and task accuracy

SOLUTION
$$
\dot{q} = J_{DLS}(q)\dot{x} = J^{T}(JJ^{T} + \mu^{2}I_{M})^{-1}\dot{x}
$$

• To render robust behavior when crossing the singularity, we can add a small constant along the diagonal of $(J(q)^TJ(q))$ to make it invertible when it is singular

• Manipulability index – Jacobian matrix determinant

$$
\mu=\sqrt{|\mathbf{J}\mathbf{J}^T|}
$$

Which is indeed

$$
\mu = \prod_{i=1}^M \sigma_i
$$

• Is it a good measurement?

• Manipulability index – condition number

$$
\kappa = \frac{\sigma_{\max}}{\sigma_{\min}}
$$

• Alternatively, can use isotropy

$$
Isotropy = \frac{\sigma_{\min}}{\sigma_{\max}}
$$

• Is it good enough?

• Manipulability index – the smallest singular value

$\sigma_{\rm min}$

- Direction of velocity disadvantage
- Is it good enough?

Manipulability index

$$
\mu^{'}=\textstyle\sum_{i=1}^M\sqrt{|\mathbf{J}_i\mathbf{J}_i^T|}
$$

- What does it imply?
	- Manipulability of every sub-manipulator (non-redundant)

The Null-space of Jacobian

- Secondary tasks is satisfied in the *null-space* of the Jacobian pseudo-inverse
	- In linear algebra, the *null-space* of a matrix A is the set of vectors V such that, for any v in V , $o = A^Tv$.
	- **V** is orthogonal to the range of A

•

The Null-space of Jacobian

- Given the null space of Jacobian, the secondary task will not disturb the primary task
- The null-space projection matrix for the Jacobian pseudoinverse is:

$$
N(q) = I - J(q)^{\dagger} J(q)
$$

•

The Null-space of Jacobian

• Project a task space velocity vector into the null-space

Redundancy resolution based on optimization

Still a problem ...

- Methods for redundancy resolution has been studied for decades, yet there are still unsolved problems
- Multi-objective Optimization
	- What are the optimization criteria?
	- How to assign weighting coefficients?

Robot manipulator - Performance to optimize

- **Manipulability**
- Force/velocity transmission efficiency
- **Energy**
- Motion smoothness
- Task accuracy

Common Objectives for Redundant Resolution

- Tracking end-effector trajectory \rightarrow primary task
- Obstacle avoidance
	- Pseudoinverse Incorporate obstacle as secondary constraints
	- Artificial potential field repulsive obstacle + attractive target
- **Motion limits**
	- Position, velocity, acceleration
	- Avoid vibration, improve motion smoothness

Consistent and predictable robot behavior

- To be consistent and predictable, robot motion needs to be repetitive in both task and configuration space
	- Close path in task space \rightarrow close path in configuration space
- Unpredictable robot behavior
	- Joint angle drift
	- Readjusting the manipulators' configuration with self-motion at every cycle \rightarrow inefficient

Methods

- Baseline = Closed-loop pseudo-inverse
- Define a cost function to optimize for motion repetition, and solve it using
	- Genetic Algorithm [1]
	- Dynamical quadratic programming [2]
- Continuous pseudo-inverse and global redundancy resolution [3]

Closed-loop pseudo-inverse

• Compute the joint position through time integration pseudo-inverse

$$
\Delta q = \mathbf{J}^\dagger \Delta x
$$

Unpredictable, not repeatable arm configurations

Closed-loop pseudo-inverse + Genetic Algorithm

Cost function for GA

Simulation Result

Multi-objective optimization

• Formulation of Optimization Problem

Formulation of Optimization Problem

$$
\begin{array}{ll}\n\text{minimize} & \frac{\left((\dot{\theta} + \mathbf{p})^T(\dot{\theta} + \mathbf{p})\right)}{2} \\
\text{subject to} & J_e(\theta)\dot{\theta} = \dot{\mathbf{r}}_d \\
& J_o \dot{\theta} \leqslant \mathbf{b}_o \\
& \zeta^- \leqslant \dot{\theta} \leqslant \zeta^+ \\
\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{Repetitive motion} \\
\mathbf{p} = \eta(\theta(t) - \theta(0)) \\
\text{Repetitive motion} \\
\mathbf{p} = \eta(\theta(t) - \theta(0))\n\end{array}
$$

$$
\mathbf{z}(t) = \theta(t) - \theta(0)
$$
\n
$$
\mathbf{z}(t) = -\eta \mathbf{z}(t) \implies \mathbf{k}(t) = -\eta \mathbf{z}(t) \implies ||\mathbf{z}(t)||_2 = \exp(-\eta t) ||\mathbf{z}(0)||_2 \to 0
$$

$$
\theta(t) = \theta(0), \ t \to \infty
$$

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/25/2018 22

Dynamical quadratic programming

- Dynamical quadratic program (DQP) with equality, inequality, and bound constraints
	- Can be solved by piecewise-linear projection equation (PLPE) neural network

Simulation Result [1]

Simulation Result

Experiment

Practical needs in robot control

Continuous, globally consistent redundancy resolution

Continuity and global consistency

- Continuity of redundancy resolution
	- Starting joint configuration was chosen "badly", then the robot tracking a simple path could get stuck when it hits joint limits.
- Globally consistent redundancy resolution
	- When tracking a cyclic path (forward and backward), the robot should return to the same joint configuration that it started from

Pathwise Redundancy Resolution

Algorithm 2 PRM-Path-Resolution (y, N) 1: Initialize empty roadmap $\mathcal{R} = (V, E)$ 2: if $q(0)$ and $q(1)$ are given then Add $(0, q(0))$ and $(1, q(1))$ to V $3:$ $4:$ else $5:$ Sample $O(N)$ start configurations using Sample $F(y(0))$ Sample $O(N)$ goal configurations using Sample $F(y(1))$ 6: 7: for $i = 1, ..., N$ do **Sampling in the time domain – every node added** Sample $t_{sample} \sim U([0,1])$ 8: **subject to the manifold constraints**Sample $q_{sample} \leftarrow$ Sample $F(y(t_{sample}))$ $9:$ if $q_{sample} \neq nil$ then add (t_{sample}, q) to V $10:$ 11: for all nearby pairs of vertices (t_u, q_u) , (t_v, q_v) with $t_u < t_v$ do if Visible (y, t_u, t_v, q_u, q_v) then $12:$ $13:$ Add the (directed) edge to E 14: Search R for a path from $t = 0$ to $t = 1$

Algorithm 2 PRM-Path-Resolution (y, N)

- 1: Initialize empty roadmap $\mathcal{R} = (V, E)$
- 2: if $q(0)$ and $q(1)$ are given then
- Add $(0, q(0))$ and $(1, q(1))$ to V $3:$

 $4:$ else

- $5:$ Sample $O(N)$ start configurations using Sample $F(y(0))$
- Sample $O(N)$ goal configurations using Sample $F(y(1))$ 6:

7: for $i = 1, ..., N$ do

- Sample $t_{sample} \sim U([0,1])$ 8:
- Sample $q_{sample} \leftarrow$ Sample $F(y(t_{sample}))$ $9:$
- $10:$ if $q_{sample} \neq nil$ then add (t_{sample}, q) to V

11: for all nearby pairs of vertices (t_u, q_u) , (t_v, q_v) with $t_u < t_v$ do

- if Visible (y, t_u, t_v, q_u, q_v) then $12:$
- $13:$ Add the (directed) edge to E

14: Search R for a path from $t = 0$ to $t = 1$

Local planner – directed edges restrict forward progress along the time domain

• Local planner

Algorithm 1 Visible (y, t_s, t_q, q_s, q_q)

1: if $d(q_s, q_g) \leq \epsilon$ then return "true"

2: Let
$$
y_m \leftarrow y((t_s + t_q)/2)
$$
 and $q_m \leftarrow (q_s + q_g)/2$

3: Let
$$
q \leftarrow [Solve(y_m, q_m)]
$$

4: if $q = n\tilde{d}$ or $q \notin \mathcal{F}$ then return "false"

5: if $max(d(q, q_s), d(q, q_g)) > c$ and (q_s, q_g) then return "false"

6: if Visible (y, t_s, t_m, q_s, q_m) and Visible (y, t_m, t_q, q_m, q_g) then return "true"

7: return "false"

Solve(y, q_{init}) solves a root-finding problem $f(q) = y$ numerically using q_{init} as the initial point. If it fails, it returns *nil*. It is assumed that the result q lies close to q_{init} .

Approximate global redundancy resolution

- Assign a single robot configuration to each target point
- Pointwise global resolution
- Constraint-satisfaction-based resolution

Pointwise global resolution

Algorithm 3 Pointwise-Global-Resolution (G_W, N_q)

- 1: Initialize empty roadmap $\mathcal{R}_C = (V_C, E_C)$
- 2: for each $y \in V_W$ do $N(y)$ is the neighborhood of a vertex y in the workspace graph
- Let $Q_{seed} \leftarrow \bigcup_{w \in N(y)} Q\overline{w}$ $3:$
- for each $q_s \in Q_{seed}$ do $4:$
- $5:$ Run $q \leftarrow$ Solve (y, q_s)
- if $q \neq nil$ then add q to V_C and go to Step 2, proceeding to the next y. $6:$
- T : Run SampleF(y) up to N_q times. If any sample q succeeds, add it to V_C .
- 8: for all edges $(y, y') \in E_W$ such that $|Q(y)| > 0$ and $|Q(y')| > 0$ do
- Let q be the only member of $Q(y)$ and q' the only member of $Q(y')$ $9:$
- if R $(y, y', q, q')=1$ then $10:$
- Add (q, q') to E_C $11:$ return \mathcal{R}_C

Pointwise global resolution

Algorithm 3 Pointwise-Global-Resolution(G_W, N_q)

- 1: Initialize empty roadmap $\mathcal{R}_C = (V_C, E_C)$
- 2: for each $y \in V_W$ do
- Let $Q_{seed} \leftarrow \bigcup_{w \in N(y)} Q[w]$ $3:$
- for each $q_s \in Q_{seed}$ do 4:
- $5:$ Run $q \leftarrow$ Solve (y, q_s)
- $6:$ if $q \neq nil$ then add q to V_C and go to Step 2, proceeding to the next y.

Keep only one

configuration

 T : Run SampleF(y) up to N_q times. If any sample q succeeds, add it to V_C .

8: for all edges $(y, y') \in E_W$ such that $|Q(y)| > 0$ and $|Q(y')| \geq 0$ do

- Let q be the only member of $Q(y)$ and q' the only member of $Q(y')$ $9:$
- if R $(y, y', q, \overline{q'}) = 1$ then $10:$

 $11:$

Add (q, q') to E_C return \mathcal{R}_C

Pointwise global resolution

Limitation of pointwise method

- Pointwise method can yield poor results
	- Several edges unnecessarily unresolved
- Constraint-satisfaction problem
	- Sample many configurations in the preimage of each workspace point
	- Connect them with feasible edges
	- Seek a "sheet" in the C-space roadmap that satisfies the constraints

Constraint-satisfaction-based resolution

- Primary error metric
	- Measures the number of unresolved edges
- Secondary error metric
	- Maximize smoothness in the redundant dimensions

Minimize the number of unsolvable edges

• Let $G_W = (V_W, E_W)$ be the workspace roadmap

• Seek the mapping *g* from task space vertices to C-space vertices

Maximize pseudo-inverse smoothness

- Distance is a good proxy for smoothness.
	- Use total C-space path length to measure smoothness

$$
L(g) = \sum_{(y,y') \in E_W} d(g[y], g[y']) R(y, y', g[y], g[y'])
$$

Ensure connection in C-space and task space

Given the C-space roadmap $R=(V_c,E_c)$, make sure

$E_C = \{(q, q') \mid (Y[q], Y[q']) \in E_W \text{ and } R(Y[q], Y[q'], q, q') = 1\}$

Discontinuity boundary for 3-DOF arm

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/25/2018 45

Discontinuity boundary for 3-DOF arm

Reference

- [1] da Graça Marcos, M., Machado, J. T., & Azevedo-Perdicoúlis, T. P. (2010). An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators. *Nonlinear Dynamics*, *60*(1-2), 115-129.
- [2] Chen, D., & Zhang, Y. (2017). A hybrid multi-objective scheme applied to redundant robot manipulators. IEEE Transactions on Automation Science and Engineering, 14(3), 1337-1350.
- [3] Hauser, K. (2017). Continuous pseudoinversion of a multivariate function: Application to global redundancy resolution.
- <http://motion.pratt.duke.edu/redundancyresolution/>