Redundancy resolution based on optimization

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

 (6 pts) Explain the optimization/tradeoff underlying the damped least square method

$$\min_{q} \frac{\mu^{2}}{2} \|\dot{q}\|^{2} + \frac{1}{2} \|\dot{x} - J\dot{q}\|^{2} = H(\dot{q})$$

- (2 pts) List two metrics that measure the distance from singularity
- (2 pts) How to guarantee the secondary task will not interfere the primary task

Singularity avoidance – Damped Least Squares

unconstrained
minimization of a suitable objective function
$$\lim_{\dot{q}} \frac{\mu^2}{2} \left\| \dot{q} \right\|^2 + \frac{1}{2} \left\| \dot{x} - J\dot{q} \right\|^2 = H(\dot{q})^2$$

compromise between large joint velocity and task accuracy

SOLUTION
$$\dot{\mathbf{q}} = \mathbf{J}_{\text{DLS}}(\mathbf{q})\dot{\mathbf{X}} = \mathbf{J}^{\mathsf{T}}(\mathbf{J}\mathbf{J}^{\mathsf{T}} + \mu^{2}\mathbf{I}_{\mathsf{M}})^{-1}\dot{\mathbf{X}}$$

To render robust behavior when crossing the singularity, we can add a small constant along the diagonal of (J(q)^TJ(q)) to make it invertible when it is singular

Manipulability index – Jacobian matrix determinant

$$u = \sqrt{|\mathbf{J}\mathbf{J}^T|}$$

Which is indeed

$$\mu = \prod_{i=1}^{M} \sigma_i$$

• Is it a good measurement?

Manipulability index – condition number

$$\kappa = \frac{\sigma_{\max}}{\sigma_{\min}}$$

Alternatively, can use isotropy

$$Isotropy = \frac{\sigma_{\min}}{\sigma_{\max}}$$

• Is it good enough?

Manipulability index – the smallest singular value

σ_{\min}

- Direction of velocity disadvantage
- Is it good enough?

Manipulability index

$$\mu' = \sum_{i=1}^{M} \sqrt{|\mathbf{J}_i \mathbf{J}_i^T|}$$

- What does it imply?
 - Manipulability of every sub-manipulator (non-redundant)

The Null-space of Jacobian

- Secondary tasks is satisfied in the *null-space* of the Jacobian pseudo-inverse
 - In linear algebra, the *null-space* of a matrix A is the set of vectors V such that, for any v in V, o = A^Tv.
 - V is orthogonal to the range of A

The Null-space of Jacobian

- Given the null space of Jacobian, the secondary task will not disturb the primary task
- The null-space projection matrix for the Jacobian pseudoinverse is:

$$N(q) = I - J(q)^{\dagger} J(q)$$

The Null-space of Jacobian

Project a task space velocity vector into the null-space

Redundancy resolution based on optimization

Still a problem ...

- Methods for redundancy resolution has been studied for decades, yet there are still unsolved problems
- Multi-objective Optimization
 - What are the optimization criteria?
 - How to assign weighting coefficients?

Robot manipulator – Performance to optimize

- Manipulability
- Force/velocity transmission efficiency
- Energy
- Motion smoothness
- Task accuracy

Performance indices	Formula	Comments		
Determinant of Jacobian	$w_n = \sqrt{JJ^T}$	Uniformity of the torque-velocity		
(1984)		gain		
Condition number (1982)	$\kappa = \frac{\sigma_{max}}{\sigma_{min}}$	Variance in velocity/force trans- mission		
Isotropy (1987)	$Iso = \frac{\sigma_{min}}{\sigma_{max}}$	same as condition number		
Min eigen-value of Jaco- bian (1987)	$Iso = \frac{\sigma_{min}}{\sigma_{max}}$	Efficiency of force/velocity trans- mission		
Dynamic Manipulability (1985)	$G = J^{-T}MJ^{-1}$	Uniformity of this torque- acceleration gain		
Distance from singularity (1987)	$H = \left \prod_{i}^{p} \Delta_{i}\right ^{1/p}$	Related to manipulability by $w_n = \sqrt{\sum_{i=1}^{p} \Delta_i}$		
Acceleration radius (1988)	$\tau = M(\ddot{\theta}) + C(\theta, \dot{\theta})\dot{\theta}$	acceleration capability of the end-effector		
Force transmission ratio (1988)	$\alpha = [(u^T (JJ^T)u]^{1/2}]$	Force gain along task- compatibility direction		
Velocity transmission ra- tio (1988)	$\beta = [u^T (JJ^T)^{-1}u]^{1/2}$	Velocity along task- compatibility direction		
Min Jerk model (1984)	$\min(\frac{\partial^3 x}{\partial t^3})$	Motion smoothness		
Min (commanded) torque- change (1985,1989)	$\min(\frac{\partial \dot{\tau}}{\partial x})$	Motion smoothness		
Min work model (1983)	$\min(W)$	Energy		
Min variance model (1989)	$\min[var(x-x_d)]$	Task accuracy		

Common Objectives for Redundant Resolution

- Tracking end-effector trajectory → primary task
- Obstacle avoidance
 - Pseudoinverse Incorporate obstacle as secondary constraints
 - Artificial potential field repulsive obstacle + attractive target
- Motion limits
 - Position, velocity, acceleration
 - Avoid vibration, improve motion smoothness

Consistent and predictable robot behavior

- To be consistent and predictable, robot motion needs to be repetitive in both task and configuration space
 - Close path in task space \rightarrow close path in configuration space
- Unpredictable robot behavior
 - Joint angle drift
 - Readjusting the manipulators' configuration with self-motion at every cycle → inefficient

Methods

- Baseline = Closed-loop pseudo-inverse
- Define a cost function to optimize for motion repetition, and solve it using
 - Genetic Algorithm [1]
 - Dynamical quadratic programming [2]
- Continuous pseudo-inverse and global redundancy resolution
 [3]

Closed-loop pseudo-inverse

 Compute the joint position through <u>time integration</u> pseudo-inverse

$$\Delta q = \mathbf{J}^{\dagger} \Delta x$$

Unpredictable, not repeatable arm configurations

Closed-loop pseudo-inverse + Genetic Algorithm

1		
-	Begin	
2	T = 0	
3	calculate $\Delta \mathbf{x} = \mathbf{x}_{ref} - \mathbf{x}_{ini}$, J	
4	initialize random population	
P(T)	$= \left[\left[\mathbf{J}^{\left(T,1\right)} : \Delta \mathbf{x}^{\left(T,1\right)} \right], \dots, \left[\mathbf{J}^{\left(T,N\right)} : \Delta \mathbf{x}^{\left(T,N\right)} \right] \right]$	
5	get $\Delta \mathbf{q} = \mathbf{J}^{*-1}(\mathbf{q})\Delta \mathbf{x}^*$ and $\mathbf{q} = \int \Delta \mathbf{q}$	
6	evaluate $P(T)$	
7	repeat	
8		
9	Use GA to update P(T)	
10	Cost function?	
10 11	Cost function?	
10 11 12	Cost function? get $\Delta \mathbf{q} = \mathbf{J}^{*-1}(\mathbf{q}) \Delta \mathbf{x}^*$ and $\mathbf{q} = \int \Delta \mathbf{q}$	
10 11 12 13	Cost function? get $\Delta \mathbf{q} = \mathbf{J}^{*-1}(\mathbf{q})\Delta \mathbf{x}^*$ and $\mathbf{q} = \int \Delta \mathbf{q}$ evaluate $P(T)$	
10 11 12 13 14	Cost function? get $\Delta \mathbf{q} = \mathbf{J}^{*-1}(\mathbf{q}) \Delta \mathbf{x}^*$ and $\mathbf{q} = \int \Delta \mathbf{q}$ evaluate $P(T)$ T = T + 1	
10 11 12 13 14 15	Cost function? $get \Delta \mathbf{q} = \mathbf{J}^{*-1}(\mathbf{q})\Delta \mathbf{x}^* \text{ and } \mathbf{q} = \int \Delta \mathbf{q}$ evaluate P(T) T = T + 1 until termination condition is TRUE	
10 11 12 13 14 15 16	Cost function? $get \Delta \mathbf{q} = \mathbf{J}^{*-1}(\mathbf{q})\Delta \mathbf{x}^* \text{ and } \mathbf{q} = \int \Delta \mathbf{q}$ evaluate P(T) T = T + 1 until termination condition is TRUE $get new \mathbf{q}$	

Cost function for GA

Simulation Result

				2.5	Cycle 1	2.5	Cycle 50
CLGA	r = 0.7	r = 1.0	r = 2.0	2- 1.5-		2-	
3 <i>R</i>	9.96E-04	8.84E-04	1.08E-03	1. 27		× ¹	
4R	7.12E-04	7.38E-04	5.70E-04	0.5		0.5	
5 <i>R</i>	6.73E-04	5.42E-04	6.15E-04	-0.5-	ν w	-0.5	Ý V
6 <i>R</i>	5.98E-04	4.81E-04	8.57E-04	-1		-1	0 1 2
7 <i>R</i>	1.26E-03	5.44E-04	5.39E-04	-1	x_1	-1	x_1
CLP	r = 0.7	<i>r</i> = 1.0	r = 2.0	2.5	Cycle 1	2.5	Cycle 50
3 <i>R</i>	1.35E+01	6.41E+00	5.80E-01	1.5-	(\mathbf{r})	1.5-	
4R	8.2E+00	4.4E + 00	5.8E-01	r r		1 2 2 2	
5 <i>R</i>	7.2E+00	2.2E+00	4.4E-01	0.5	AV	0.5	
6 <i>R</i>	5.4E+00	4.9E+00	3.0E-01	-0.5		-0.5	
7 <i>R</i>	4.2E+00	2.4E+00	2.0E-01	-11	0 1 2	1	0 1 2
PBE cro - Mo	tion Planning – Instructo	or: Jane Li Mechanical Fi	ngineering Department	& Robotic En	x ₁ gineering Program - WI	PI	x ₁ 2/25/2018

Multi-objective optimization

Formulation of Optimization Problem

Formulation of Optimization Problem

$$\begin{array}{ll} \text{minimize} & \underbrace{(\dot{\theta} + \mathbf{p})^{\mathrm{T}}(\dot{\theta} + \mathbf{p})}{2} & \text{Repetitive motion} \\ \text{subject to} & J_{\mathrm{e}}(\theta)\dot{\theta} = \dot{\mathbf{r}}_{\mathrm{d}} \\ & J_{\mathrm{o}}\dot{\theta} \leqslant \mathbf{b}_{\mathrm{o}} \\ & \zeta^{-} \leqslant \dot{\theta} \leqslant \zeta^{+} & \underbrace{\|\dot{\theta}(t) + \eta(\theta(t) - \theta(0))\|_{2}^{2}}{2} \end{array}$$

$$\mathbf{z}(t) = \theta(t) - \theta(0)$$

$$\eta > 0 \in R$$

$$\mathbf{\dot{z}}(t) = -\eta \mathbf{z}(t) \implies \|\mathbf{z}(t)\|_2 = \exp(-\eta t) \|\mathbf{z}(0)\|_2 \to 0$$

$$\theta(t) = \theta(0), \ t \to \infty$$

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Dynamical quadratic programming

- <u>Dynamical quadratic program (DQP)</u> with equality, inequality, and bound constraints
 - Can be solved by <u>piecewise-linear projection equation (PLPE)</u> neural network

Simulation Result [1]

Simulation Result

Experiment

Practical needs in robot control

Continuous, globally consistent redundancy resolution

Continuity and global consistency

- Continuity of redundancy resolution
 - Starting joint configuration was chosen "badly", then the robot tracking a simple path could get stuck when it hits joint limits.
- Globally consistent redundancy resolution
 - When tracking a cyclic path (forward and backward), the robot should return to the same joint configuration that it started from

Pathwise Redundancy Resolution

Algorithm 2 PRM-Path-Resolution (y, N)		
1: Initialize empty roadmap $\mathcal{R} = (V, E)$		
2:if $q(0)$ and $q(1)$ are given then3:Add $(0, q(0))$ and $(1, q(1))$ to VAdd $(0, q(0))$ and $(1, q(1))$ to V	ation space	
4: else		
5: Sample $O(N)$ start configurations using SampleF $(y(0))$		
6: Sample $O(N)$ goal configurations using SampleF $(y(1))$		
7: for $i = 1,, N$ do		
8: Sample $t_{sample} \sim U([0,1])$		
9: Sample $q_{sample} \leftarrow \text{SampleF}(y(t_{sample}))$		
10: if $q_{sample} \neq nil$ then add (t_{sample}, q) to V		
11: for all nearby pairs of vertices $(t_u, q_u), (t_v, q_v)$ with $t_u < t_v$ do		
12: if $Visible(y, t_u, t_v, q_u, q_v)$ then		
13: Add the (directed) edge to E		
14: Search \mathcal{R} for a path from $t = 0$ to $t = 1$		

Algorithm 2 PRM-Path-Resolution (y, N)
1: Initialize empty roadmap $\mathcal{R} = (V, E)$
2: if $q(0)$ and $q(1)$ are given then
3: Add $(0, q(0))$ and $(1, q(1))$ to V
4: else
5: Sample $O(N)$ start configurations using SampleF $(y(0))$
6: Sample $O(N)$ goal configurations using SampleF($y(1)$)
7: for $i = 1,, N$ do $- \frac{\text{SampleF}(y)}{\text{first samples a random configuration } q_{rand} \in \mathcal{C}$ and then uses
8: Sample $t_{sample} \sim U([0,1])$ Solve (y, q_{rand}) . If the result is <i>nil</i> or infeasible, then <i>nil</i> is returned.
9: Sample $q_{sample} \leftarrow \text{SampleF}(y(t_{sample}))$
10: if $q_{sample} \neq nil$ then add $(t_{and a})$ to V
11: for all nearby pairs of vertices $\begin{pmatrix} - \text{Solve}(y, q_{init}) \text{ solves a root-finding problem } f(q) = y \text{ numerically using } q_{init} \end{pmatrix}$
12: if Visible (y, t_u, t_v, q_u, q_v) the lies along to $q_{v,v}$
13: Add the (directed) edge to E
14: Search \mathcal{R} for a path from $t = 0$ to $t = 1$

Algorithm 2 PRM-Path-Resolution (y, N))		
1: Initialize empty roadmap $\mathcal{R} = (V, E)$			
2: if $q(0)$ and $q(1)$ are given then			
3: Add $(0, q(0))$ and $(1, q(1))$ to V			
4: else			
5: Sample $O(N)$ start configurations using	g SampleF $(y(0))$		
6: Sample $O(N)$ goal configurations using	g SampleF(y(1))		
7: for $i = 1,, N$ do	Compling in the time domain avery node added		
8: Sample $t_{sample} \sim U([0,1])$	Sampling in the time domain – every hode added		
9: Sample $q_{sample} \leftarrow \text{SampleF}(y(t_{sample}))$	subject to the mannold constraints		
10: if $q_{sample} \neq nil$ then add (t_{sample}, q) to V			
11: for all nearby pairs of vertices $(t_u, q_u), (t_v)$	(q_v) with $t_u < t_v$ do		
12: if $Visible(y, t_u, t_v, q_u, q_v)$ then			
13: Add the (directed) edge to E			
14: Search \mathcal{R} for a path from $t = 0$ to $t = 1$			

Algorithm 2 PRM-Path-Resolution(y, N)

- 1: Initialize empty roadmap $\mathcal{R} = (V, E)$
- 2: if q(0) and q(1) are given then
- 3: Add (0, q(0)) and (1, q(1)) to V

4: else

- 5: Sample O(N) start configurations using SampleF(y(0))
- 6: Sample O(N) goal configurations using SampleF(y(1))

7: for i=1,...,N do

- 8: Sample $t_{sample} \sim U([0,1])$
- 9: Sample $q_{sample} \leftarrow \text{SampleF}(y(t_{sample}))$
- 10: if $q_{sample} \neq nil$ then add (t_{sample}, q) to V

11: for all nearby pairs of vertices $(t_u, q_u), (t_v, q_v)$ with $t_u < t_v$ do

- 12: **if** $Visible(y, t_u, t_v, q_u, q_v)$ then
- 13: Add the (directed) edge to E

14: Search \mathcal{R} for a path from t = 0 to t = 1

Local planner – directed edges restrict forward progress along the time domain

Local planner

Algorithm 1 Visible (y, t_s, t_g, q_s, q_g)

1: if $d(q_s, q_g) \leq \epsilon$ then return "true"

2: Let
$$y_m \leftarrow y((t_s + t_g)/2)$$
 and $q_m \leftarrow (q_s + q_g)/2$

3: Let
$$q \leftarrow Solve(y_m, q_m)$$

4: if q = nil or $q \notin \mathcal{F}$ then return "false"

5: if $max(d(q,q_s), d(q,q_g)) > c \cdot d(q_s,q_g)$ then return "false"

6: if $Visible(y, t_s, t_m, q_s, q_m)$ and $Visible(y, t_m, t_g, q_m, q_g)$ then return "true"

7: return "false"

Solve (y, q_{init}) solves a root-finding problem f(q) = y numerically using q_{init} as the initial point. If it fails, it returns *nil*. It is assumed that the result q lies close to q_{init} .

Approximate global redundancy resolution

- Assign a single robot configuration to each target point
- Pointwise global resolution
- Constraint-satisfaction-based resolution

Pointwise global resolution

Algorithm 3 Pointwise-Global-Resolution (G_W, N_q)

- 1: Initialize empty roadmap $\mathcal{R}_C = (V_C, E_C)$
- 2: for each $y \in V_W$ do N(y) is the neighborhood of a vertex y in the workspace graph
- 3: Let $Q_{seed} \leftarrow \bigcup_{w \in N(y)} Q[w]$
- 4: for each $q_s \in Q_{seed}$ do
- 5: Run $q \leftarrow \text{Solve}(y, q_s)$
- 6: if $q \neq nil$ then add q to V_C and go to Step 2, proceeding to the next y.
- 7: Run SampleF(y) up to N_q times. If any sample q succeeds, add it to V_C .
- 8: for all edges $(y, y') \in E_W$ such that |Q(y)| > 0 and |Q(y')| > 0 do
- 9: Let q be the only member of Q(y) and q' the only member of Q(y')
- 10: if R(y, y', q, q')=1 then
- 11: Add (q,q') to E_C return \mathcal{R}_C

Pointwise global resolution

Algorithm 3 Pointwise-Global-Resolution (G_W, N_q)

- 1: Initialize empty roadmap $\mathcal{R}_C = (V_C, E_C)$
- 2: for each $y \in V_W$ do
- 3: Let $Q_{seed} \leftarrow \cup_{w \in N(y)} Q[w]$
- 4: for each $q_s \in Q_{seed}$ do
- 5: Run $q \leftarrow \text{Solve}(y, q_s)$
- 6: if $q \neq nil$ then add q to V_C and go to Step 2, proceeding to the next y.
- 7: Run SampleF(y) up to N_q times. If any sample q succeeds, add it to V_C .

8: for all edges $(y, y') \in E_W$ such that |Q(y)| > 0 and |Q(y')| > 0 do

- 9: Let q be the only member of Q(y) and q' the only member of Q(y')
- 10: if $R(y, y', q, \overline{q'})=1$ then

11:

Add (q, q') to E_C return \mathcal{R}_C Keep only one configuration

Pointwise global resolution

Limitation of pointwise method

- Pointwise method can yield poor results
 - Several edges unnecessarily unresolved
- Constraint-satisfaction problem
 - Sample many configurations in the preimage of each workspace point
 - Connect them with feasible edges
 - Seek a "sheet" in the C-space roadmap that satisfies the constraints

Constraint-satisfaction-based resolution

- Primary error metric
 - Measures the number of unresolved edges
- Secondary error metric
 - Maximize smoothness in the redundant dimensions

Minimize the number of unsolvable edges

• Let $G_W = (V_W, E_W)$ be the workspace roadmap

• Seek the mapping **g** from task space vertices to C-space vertices

Maximize pseudo-inverse smoothness

- Distance is a good proxy for smoothness.
 - Use total C-space path length to measure smoothness

$$L(g) = \sum_{(y,y')\in E_W} d(g[y], g[y'])R(y, y', g[y], g[y'])$$

Ensure connection in C-space and task space

• Given the C-space roadmap $R = (V_c, E_c)$, make sure

$$E_C = \{(q,q') \mid (Y[q], Y[q']) \in E_W \text{ and } R(Y[q], Y[q'], q, q') = 1\}$$

Discontinuity boundary for 3-DOF arm

Discontinuity boundary for 3-DOF arm

Reference

- [1] da Graça Marcos, M., Machado, J. T., & Azevedo-Perdicoúlis, T. P. (2010). An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators. Nonlinear Dynamics, 60(1-2), 115-129.
- [2] Chen, D., & Zhang, Y. (2017). A hybrid multi-objective scheme applied to redundant robot manipulators. IEEE Transactions on Automation Science and Engineering, 14(3), 1337-1350.
- [3] Hauser, K. (2017). Continuous pseudoinversion of a multivariate function: Application to global redundancy resolution.
 <u>http://motion.pratt.duke.edu/redundancyresolution/</u>