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Quiz (10 pts)

(3 pts) Compare the testing methods for testing path segment
and finding first collision

Compare the non-holonomic RRT with holonomic RRT: given
a new node to connect to,

(3 pts) how to extend toward this node?
(3 pts) how to connect to this node for the last step?
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Testing Path Segment vs. Finding First Collision

PRM planning

Detect collision as quickly as possible = Bisection strategy

Physical simulation, haptic interaction
Find first collision = Sequential strategy
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RRTs for Non-Holonomic Systems

Apply motion primitives (i.e. simple actions) at g,,,

q'= f(q,u)---useactionufromqtoarriveatq” choseu. =argmin(d(d,,.4,9"))

Non-Holonomic RRT

Holonomic RRT

@) q’l

/ qnew

\

qinit qnear qrand

T
Qnear q rand

You probably won't reach q,,,4 by doing this
Key point: No problem, you're still exploring!

RBE 550 — Motion Planning — Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22/2018



BiDirectional Non-Holonomic RRT

How to bridge between the two points?
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Shooting Method

"Shoot” out trajectories in different directions until a
trajectory of the desired boundary value is found.

System
dy
— 4 f(x. =3
dx Hi(z,y)
Boundary condition | _{ﬂgfff;;
value

required

y(0)=0,y(1) =1 bfd} :
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Manipulation motion planning



Recap

We have learned the planning algorithms that can generalize
across many types of robots

Discrete planning
Sampling-based planning

Theoretically, we should be all set. However ...

When it comes to manipulator robots, we may have to handle an
application-specific problem



Bimanual humanoid robot
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Mobile manipulator robot

Recognition &
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Kinematically redundant manipulators

' .

Manipulation Point

, (a)
r Macro- | Micro-
Structure y Structure
= g \
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Research Questions

How to resolve the kinematic redundancy?

How to coordinate macro- and micro-structures?
Arm-hand structure
Body-arm structure

How to handle bimanual coordination?
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Overview

How to resolve the kinematic redundancy?
Solution to Inverse kinematics
Pseudo-inverse
Additional constraints and optimization criteria
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Forward and inverse kinematics

End Effector Pose

RBE 550 — Motion Planning — Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22/2018 14



Kinematic Redundancy

fiQ— R

joint space (dim Q = N) task space (dim R = M)

If N>M,

FK maps a continuum of configurations to one end-effector pose:

FK
T

|f N=M, C-space Task space

FK maps a finite number of configurations to one end-effector pose:

FK

If N<M,

C-space Task space

Target pose not reachable
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Kinematics at different levels

Direct kinematics
x = FK(q)
First-order differential kinematics — Jacobian
z = J(q)q
Second-order differential kinematics

i =J(q)dq+J(q,d)d
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C-space and Task Space

Our primary concern is the end-effector pose in task space

IK solver needs to compute a C-space motion that does the
right thing in task space
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Inverse Kinematics at position levels

Direct kinematics

x = FK(q)

IK solution
Analytical solution — robot geometry

Algebraic solution — homogeneous transformation matrices
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Analytical solution
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Algebraic Solution
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Algebraic Solution

¢ [caa(cacsCe — 8486) — 82385Cs) + 51(84C5C6 + C456),

Te1 = 81 [023(040506 — 848¢) — 32335C6] — ¢y (84C5C6 + C456),

7 I 7 r31 = —823(C4C5C6 — 5456) — C2355Cs;
s Px
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—893(—C4C58¢ — 84Cg) + C235556,

713 = —C1(C33C485 + 823C5) — $1848s,
To3 = —81(C23C485 + 823C5) + €184S5,

T'zg = 823C485 — Co3Cs,

Pz = C [a2c2 + Q3Cp3 — d4523] —d38,,
Py =8 lazcs +agcas — dysas] + dacy,
P, = —Q3893 — (985 — d4Co3.
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IK strategies

Do not care about the redundant DOFs motion
Standard IK solvers, using pseudo-inverse

Utilize redundant DOFs to handle additional constraints
Obstacle

Utilize redundant DOFs to optimize performance

What are the performance indices?
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Inverse Kinematics at velocity level

First-order differential kinematics
r=J(q)q

IK solution
Inverse the Jacobian (non-redundant manipulator)
Pseudo-inverse of Jacobian
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Jacobian

Start with Forward Kinematics function
X =FK(Q)

Take the derivative with respect to time:
dx d[FK(qg)] dFK(q)dqg

dd¢ dt  dgq dt
Now we get the standard Jacobian equation:
dx dFK(q)
=J(q)
dt 1 ) dq

RBE 550 — Motion Planning — Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22/2018 24



TF(91,92,93)::: C123 —S5123

Licy + Lacio + Lacios |
5123 C123

L1514+ LaS12 + L3s123]

" OJxr  Ox
df; db-
J -

Yy
_db

ox |
dBs

Jy

Oy
a0,

dos

RBE 550 — Motion Planning — Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

y A g
.
Yy
Dy e
& 4
Qﬁ\\ L, ;”z
‘\ s, ;j .
- ;’ /0,
'\'\."?'?'!l ; ‘T "AT
h\ $t L,/_,._z,jf; —
, et .
\\\A 'C_ //,.—-"2?:'
\) /%I
j; 7

ol 4

3/22/2018

25



Inverting the Jacobian

Iif N=M,

Jacobian is square = Standard matrix inverse

If N>M

Pseudo-Inverse
Weighted Pseudo-Inverse
Damped least squares
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Pseudo-lnverse

Pseudo-inverse matrix
The unique matrix satisfying the Moore—Penrose conditions

JJT I =1J (JINHT = JJT
JTJJT =J7 (JTHT =J1J

For redundant manipulator
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Pseudo-lnverse

Pseudo-Inverse specifies a unique solution for inverse
kinematics

Implicitly, it performs the following optimization

A X AX=y|

Minimize %QTQ ; given Q’; p— J(q)q \ - N(A)={z|Az=0}

>
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Weighted Pseudo-Inverse

Multiply weighting coefficient matrix to Pseudo-Inverse
Jacobian

qg=J(q)x where JT =W 1JTJWw-1J7)~1
Optimization?

Minimize %éTWé ,given & =J(q)q
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Weighted Pseudo-Inverse

How to choose the weighting coefficient matrix?
W>0 and symmetric

Large weight = small joint velocity

Weights ~ inverse of the joint angle range
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Singularity

SingularValue Decomposition (S5VD)
Jvsxn =UpsmZmsNnViasn

o2

a
g, =z0,=...=20 }0, a =...=0, —_O
Mx(N-M) 1 2 o p+H [

5 singular values of ]
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Singularity

q VT4 >V Uzv'g=Jq

A/
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Singularity

2]
(_72

J = UZVT where X =

Mx(N-M)

Om

q |~

JT — VETUT where ZT - \

[}[N— M
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Distance to singularity

Manipulability index — Jacobian matrix determinant

po=/|JI7]
Which is indeed
Y= qu,\il T4

s it a good measurement?
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Distance to singularity

Manipulability index — condition number

— Omax
K = === ?
O rmin Range

Alternatively, can use isotropy

O' .
Isotropy = FH1L-
max

s it good enough?
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Distance to singularity

Manipulability index —the smallest sinqular value

O min

Direction of velocity disadvantage

s it good enough?
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Distance to singularity

Manipulability index
o= VAT

What does it imply?

Manipulability of every sub-manipulator (non-redundant)
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Singularity avoidance — Damped Least Squares

unconstrained ) uz w2 1.. 2 ~ compromise between
minimization of a min '?“qu + EH}( — JCIH = H(q) large joint velocity
g

suitable objective function and task accuracy

_1.

soLuTioN | = Jp, ()X = JT(JJT + !fl-zlm) X

To render robust behavior when crossing the singularity, we
can add a small constant along the diagonal of (J(g)'J(q)) to
make it invertible when it is singular
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Damped Least Squares

The matrix will be invertible but this technique introduces a
small inaccuracy

0.6 - DDl _ 06k DOl '
- [ 6.046, 33455] S [ 6046 :3455] S
U-4": , e SRR R g_4_..:~.. U U

o6f oel ]

| | | | | | | | : : : : :
-0.6-04-0.2 00 0.2 04 06 —[Il.ﬁ —[IJ.4 —[IJ.2 D.IU U.IE U.I4 U.Iﬁ
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Damped Least Squares

Induced error by damped least squares

= U (JJT + ] )_1 (as in N=M case)

Idiag{

CFi }
D'i2+|{{2
using SVD of J=USVT = J . =VZ, . U" with ZDLS= PXp diag{%}

0 0

(N-Mxp (N-Mx(N-2) |

Choice of the damping factor v*(q) = 0,

As a function the minimum singular value = measure of distance to
singularity
Induce the damping only/mostly in the non-feasible direction of the task
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Augmented Jacobian

Project a task space velocity vector into the null-space
Primary task

= J(q)q Ta)
» . q
Additional constraint J =
a(Q) _Jc(Q)_
Le = FKC(q) Full rank square Jacobian
Secondary task

: . FK,.
Lo = JC(Q)Q where JC(C_]) — aaq
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The Null-space of Jacobian

Secondary tasks is satisfied in the null-space of the Jacobian
pseudo-inverse

In linear algebra, the null-space of a matrix A is the set of vectors V such
that, foranyvinV, o=Av. v
range of A

>

range of A

N
\

2D example

Vis orthogonal to the range of A

3D example
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The Null-space of Jacobian

Given the null space of Jacobian, the secondary task will not
disturb the primary task

The null-space projection matrix for the Jacobian pseudo-
Inverse Is:

N(q)=1-J(q)"J(q)

Jt33t = J
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The Null-space of Jacobian

Project a task space velocity vector into the null-space

Q=@+ (1= J(@) J@) ) lde oo |
1 il

. N(@)v
Secondary task

Primary task
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The Null-space of Jacobian

The null-space is often used to “push” IK solvers away from
Joint limits, obstacles

How to define the secondary task for the constraints in both task and
joint space?

q=J(q)'%+ (I —J(q)"I(q) JC(Q)TfiS" qe

Secondary task
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The Null-space of Jacobian

For non-linear systems, magnitude differences in primary and
secondary can cause numerical problems

One can overwhelm the other when you normalize later
Introduce a normalization factor

0= J)'s {241 T )i
l
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Recursive Null-space Projection

What if you have three or more tasks?

The i-th task is: ;
T; = J; (q);

The i-th null-space is:

Ni(q) =1 — J}(q)Ji(q)

The recursive null-space formula is then:

q — Tl -+ Nl(T2 —+ NQ(TS + NS(T4 + - Nn—lTn)))
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Inverse Kinematics at acceleration level

Second-order differential kinematics
i=J(q)dq+J(q,dq)q

IK solution

§=J(q)(@—Jg) + (I—JI'T)do

do = 0 is an arbitrary joint-space acceleration
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Inverse Kinematics at acceleration level

Choose gop =0

wehave = Ji(a) - 39

Minimum-norm acceleration solution
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Reference

Chapter 10 Redundant Robots in Handbook of Robotics, 2™ ed
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