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Quiz (10 pts)

(6 pts) What does it mean if the free space Fis (g a, )-
expansive?

(4 pts) Why is RRT probabilistically complete?
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Definition: Visibility Set

Visibility set of (
All configurations in F that can

be connected to q by a straight-
line pathin F

All configurations seen by
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Definition: €-good

Every free configuration sees at least € fraction of the free
space, €in (0,1].

Worst case Best case

0.5-good '\ /‘ 1-good

o

> | F is 0.5-good
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Definition: Lookout of a Subset S

Subset of points in S that can see at least 8 fraction of F\S,

0.4-lookout of S 0.3-lookout of S
S F\S S \/ F\S
This area is
about

This area is
about
40% of F\S

30% of F\S
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Definition: (g, ,B) - Expansive

The free space F is (& «, f)-expansive if
Free space Fis &-good
For each subset S of F, its 6-lookout is at least o fraction of

S F\S F is e-good - €=0.5
p-lookout - =0.4
Volume(B-lookout)
Volume(5S) > 2=0.2

F is (&, a, B)-expansive,
where €=0.5, «=0.2, =0.4.
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Proof of RRT Probabilistic Completeness

As the RRT reaches all of Qc.,,

The probability that g, immediately becomes a new vertex
approaches 1.

RRT probabilistically complete
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Collision Detection



Motivation

Find a path in C-space
— Hard
Check if a configuration is collision — Easy

Compute C

obs

Collision detection
For a single configuration
Along a path/trajectory




Fast collision detection

Speed is very important
Need to check collision for large number of configurations

For most planners, runtime for real-world task depends heavily on
the speed of collision checking
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Tradeoff

Increase speed = more memory, less accuracy

Accuracy
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Crowd simulation

Figure from Kanyuk, Paul. "Brain Springs: Fast Physics for Large Crowds in WALLdr E." IEEE Computer
Graphics and Applications 29.4 (2009).
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Interactive Large-scale Crowd Simulation

RBE 550 — Motion Planning — Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/14/2018



Self-Collision Checking for Articulated Robot

Self-collision is typically not an issue
for mobile robots

Articulated robots must avoid self-
collision

Parent-child link — set proper joint angle
limits

With root or other branches —e.g.
Humanoid robot?
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Self-Collision Checking For Humanoid Robot

(J. Kuffner et al. Self-Collision and Prevention
for Humanoid Robots. Proc. IEEE Int. Conf. on
Robotics and Automation, 2002)
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Outline

Representing Geometry

Methods

Bounding volumes
Bounding volume Hierarchy

Dynamic collision detection

Collision detection for Moving Objects
Feature tracking, swept-volume intersection, etc.
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2D Representation

2D robots and obstacles are usually represented as
Polygons
Composites of discs
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3D Representation

Many representations - most popular for motion planning are

Triangle meshes Composite of primitives Voxel grid
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3D Representation: Triangle Meshes

Triangle mesh

A set of triangles in 3D that share common vertices and/or edges
Most real-world shapes and be represented as triangle meshes

Delaunay Triangulation
A good way to generate such meshes (there are several algorithms)
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Delaunay Triangulation

Method
Sample on the terrain

Connect Sample points

Which triangulation?
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Delaunay Triangulation

Goal — Avoid sliver triangle
Find the dual graph of Voronoi graph

Voronoi Graph Delaunay Graph
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Collision Checking: Intersecting Triangle Meshes

The brute-force way
Check for intersection between every pair of triangles
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Collision Checking for Triangles

Check if a pointin a triangle

Check if two triangles intersect
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Object/Object Intersection

Real-Time
Rendering

ray plane sphere cylinder cone |_
Reference books '
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SoftSurfer; RTCD p.175; TGS; GTCG p.507; GTweb doc;
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http://www.realtimerendering.com/intersections.html

Triangle Meshes

Triangle Meshes are hollow!

Be careful if you use them to W7
represent solid bodies \ \ R
R
AN N

One mesh inside another; no intersection
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Triangle Meshes

Complexity of collision checking increases with the number of triangles
Try to keep the number of triangles low

Algorithms to simplify meshes exist but performance depends on shape
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Composites of Primitives

Advantages:
Can usually define these by hand
Collision checking is much faster/easier
Much better for simulation

Disadvantages
Hard to represent complex shapes
Usually conservative (i.e. overestimate true geometry)
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Voxel Grids

Voxel
Short for "volume pixel"
A single cube in a 3D lattice

Not hollow like triangle meshes
Good for 'deep’ physical simulations
E.g., heat diffusion, fracture, and soft physics
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How to make a voxel model from triangle mesh?

Step 1 - Grid the space

Grid resolution — without losing
important details

Grid dimension — just enough to
cover the model, but not bigger
(for efficiency)
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How to make a voxel model from triangle mesh?

Step 2 —Solidify a shell representing
the surface

For every triangle, check every voxel in
the triangle's bounding box to see if it
Intersects

If it does, the voxel is made solid.
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How to make a voxel model from triangle mesh?

Step 3 - Fill the shell using a scanline fill
algorithm

Casting a ray from your point in any
direction you want.

Count how many times the raycast ‘ g
intersects with your mesh.

Odd number count = inside of the mesh
Even number count 2 outside of the mesh
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Bounding Volume

Bounding Volume
A closed volume that completely contains the object (set).
If we don't care about getting the true collision,

Various Bounding Volumes

Sphere E |
Axis-Aligned Bounding Boxes (AABBs) I
Oriented Bound Boxes (OBBs) . g
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Spheres

Invariant to rotation and translations,
Do not require being updated

Efficient
Constructions and interference tests

Tight?
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AABBs

Axis-Aligned Bounding Boxes (AABBS)
Bound object with one or more boxes oriented along the same axis
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AABBs

How can you check for intersection of AABBs?
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AABBs

Not invariant

Efficient

Not tight
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OBBs

Oriented Bound Boxes (OBBs) are the same as AABBs except
The orientation of the box is not fixed

OBBs can give you a tighter fit with fewer boxes
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2D OBBs

How do you check for intersection of OBBs?
Hyperplane separation theorem

In 2D?
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2D OBBs
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2D OBBs

—

T P S —
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3D OBBs

Use cubical bounding box
OBBs have 6 faces (2 are parallel each) In3D?
3 normal per OBB X 2 bounding boxes =6

Additional Hyperplanes = 3x3 for the cross

products
/

Totally, 15 hyperplanes to project on for
testing

If the projections have no overlap, you have
no contact
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Compute OBBs

N pointsa. = (x, y,z),i=1,.., N ‘

y
SVDofA=(a,a,...a,) 3
A =UDVT where Y
Y
D = diag(s,,s,/s,) such thats, >s,>s.>0 rotation

described by
matrix U

/| X

Uisa % 3 rotation matrlx that defines the principal
axes of variance of the a's = OBB’s directions

»
»

The OBB is defined by max and min coordinates of the a's along these
directions
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OBBs

Invariant

Less efficient to test

Tight
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Comparison of BVs

Tightness |- -- +

Testing + + 0

Invariance |yes no yes

No type of BV is optimal for all situations
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Bounding Volume Hierarchy (BVH)

Bounding Volume Hierarchy method
Enclose objects into bounding volumes (spheres or boxes)

Check the bounding volumes first

Decompose an object into two
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Bounding Volume Hierarchy (BVH)

Bounding Volume Hierarchy method

Proceed hierarchically

4
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Bounding Volume Hierarchy (BVH)

Construction

Not all levels of hierarchy need to have
the same type of bounding volume

A
Id e al BV H / \
Separation //\
ANIVAN
Balanced tree WAVAWAN
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Construction of a BVH

Top-down construction

At each step, create the two
children of a BV

Example

For OBB, split longest side at
midpoint
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Collision Detection using BVH

Two objects described by their
precomputed BVHSs
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Collision Detection using BVH

Search tree

BB BC CB CC
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Collision Detection with BVH

AA A
Search tree \ B C
BB BC CB CC
\4 \4 N D E F G
FD FE GD GE

v v

If two leaves of the BVH's overlap @
(here, G and D) check their content

for collision
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Search Strategy

If there is collision

It is desirable to detect it as quickly as possible Ql

Greedy best-first search strategy with

Expand the node XY with largest relative

overlap (most likely to contain a collision)

Many ways to compute distance d f(N) = d/(ry+ry)
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End



