Sampling-based Planning 01

Jane Li

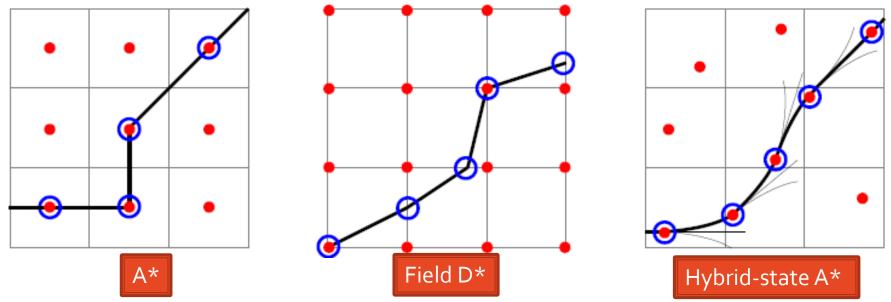
Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- Compare A*, Field D* and Hybrid state A* search by
 - (3 pts) How they associate cost to a cell?
 - (3 pts) How they connect path between states?
- (4 pts) How does Voronoi field differ from potential field?

Hybrid-State A* Search

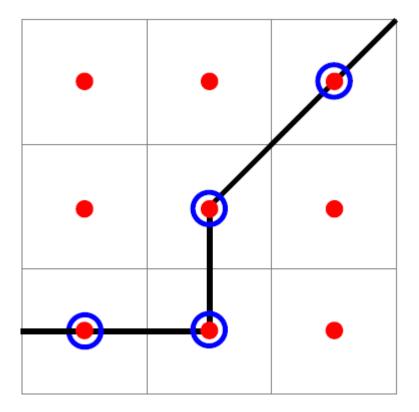
- Compared to A*
 - Search space (x, y, θ)
 - Associates with each grid cell a continuous 3D state of the vehicle



RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Features

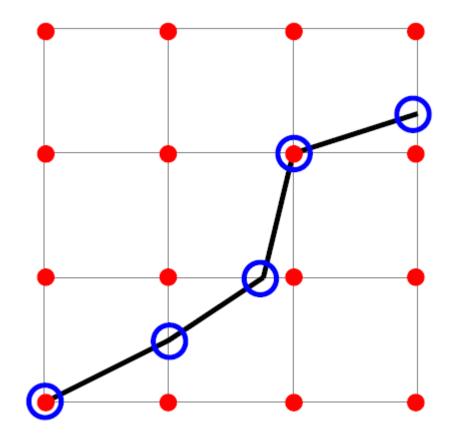
- Associates costs with cell centers
- Only visit states at cell centers



Field D*

Features

- Associate costs with cell corners
- Allow arbitrary linear paths from cell to cell

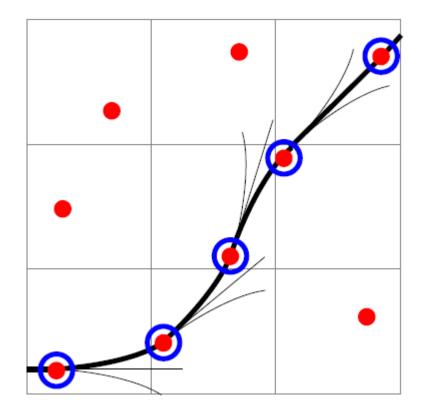


• [Ferguson and Stentz 2005]

Hybrid-State A* Search

Features

- Associate a continuous state with each cell
- Score of the cell = the cost of its associated continuous state



Voronoi field

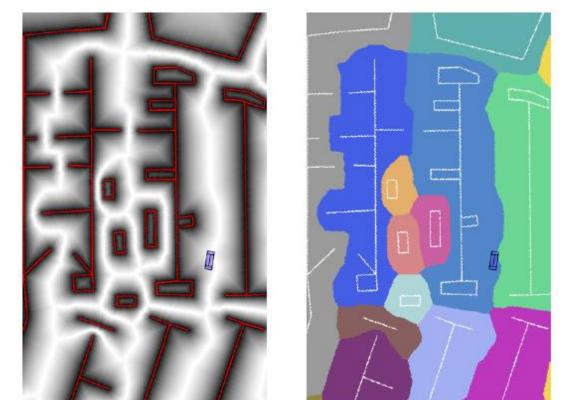
Rescale the field based on the workspace geometry

$$\rho_{\mathcal{V}}(x,y) = \left(\frac{\alpha}{\alpha + d_{\mathcal{O}}(x,y)}\right) \left(\frac{d_{\mathcal{V}}(x,y)}{d_{\mathcal{O}}(x,y) + d_{\mathcal{V}}(x,y)}\right) \frac{(d_{\mathcal{O}} - d_{\mathcal{O}}^{max})^2}{(d_{\mathcal{O}}^{max})^2} , \qquad d_{\mathcal{O}} \leq d_{\mathcal{O}}^{max}$$

• Otherwise, $\rho_V(x,y) = 0$

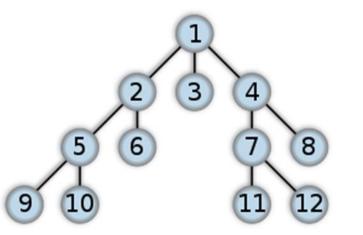
Voronoi field

Rescale the field based on the workspace geometry



Sampling-based Planning

- Discrete planning is best suited for
 - Low-dimensional motion planning problems
 - Problems where the **control set** can be **easily discretized**



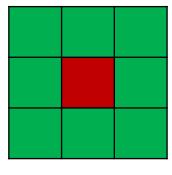
• What if we need to plan in **high-dimensional** spaces?

Discrete Planning – Limitation

- Discrete search
 - Run-time and memory requirements are sensitive to branching factor (number of successors)
 - Number of successors depend on dimension

How many successors

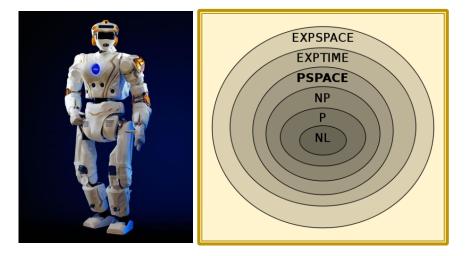
- For a 3-dimensional 8-connected space?
- For an n-dimensional 8-connected space?



Motivation

What if we weaken completeness and optimality requirements?

- Need
 - A path planning method not so sensitive to dimensionality
- Challenges
 - Path planning is PSPACE-hard [Reif 79, Hopcroft et al. 84, 86]
 - Complexity is exponential in dimension of the C-space [Canny 86]



Real robots can have 20+ DOF!

Weakening Requirements

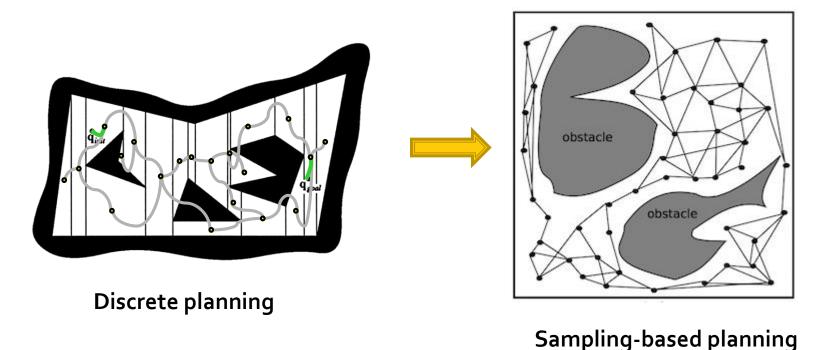
- Probabilistic completeness
 - Given a solvable problem, the probability that the planner solves the problem goes to 1 as time goes to infinity

Weakening Requirements

- Feasibility
 - Path obeys all constraints (usually obstacles)
 - A feasible path can be optimized *locally* after it is found

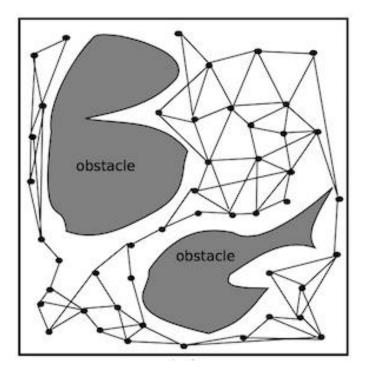
Sampling-based Planning

- Main idea
 - Take **samples** in the C-space and use them to construct a path

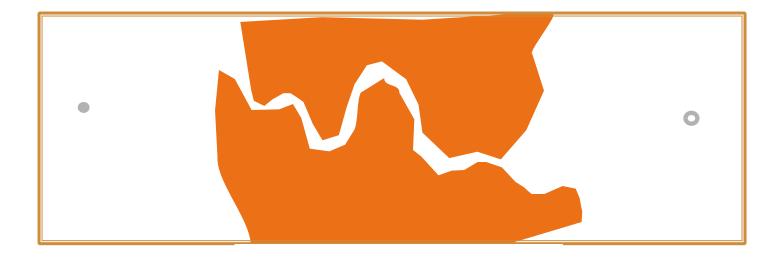


Comparison

- Advantages?
 - No need to discretize C-space
 - No need to explicitly represent C-space
 - Not sensitive to C-space dimension



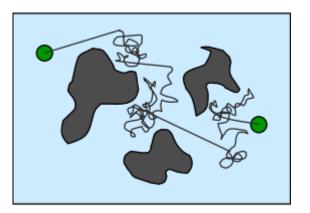
Disadvantages?



- Narrow passages?
 - Probability of sampling an area depends on the area's size
- No strict completeness/optimality

Randomized Path Planner (RPP)

- Main idea
 - Follow a potential function
 - Occasionally introduce random motion



Barraquand and Latombe in 1991 at Stanford

Pros and Cons

- Advantage
 - Doesn't get stuck in local minima
- Disadvantage? Many parameters to set
 - Define potential field
 - Decide when to apply random motion
 - How much random motion to apply

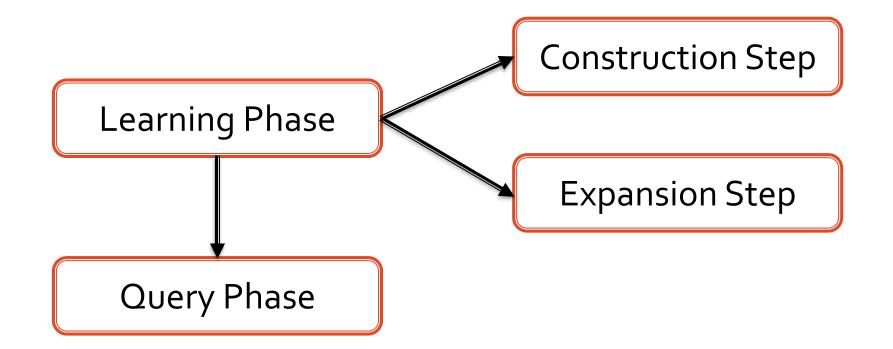
Probabilistic Roadmap (PRM)

- Main idea:
 - Build a roadmap of the space from sampled points
 - Search the roadmap to find a path

Roadmap should capture the **connectivity** of the free space

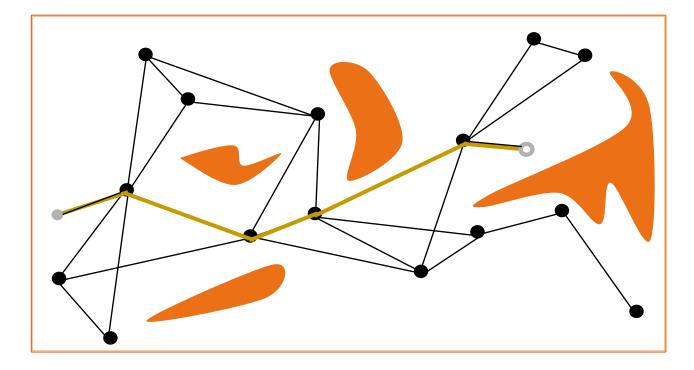
Kavraki, Lydia E., Petr Svestka, J-C. Latombe, and Mark H. Overmars. "Probabilistic roadmaps for path planning in high-dimensional configuration spaces." Robotics and Automation, IEEE Transactions on 12, no. 4, 1996.

Two-phase solution



- Environment remains unchanged
- Reuse roadmap for multi-query

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

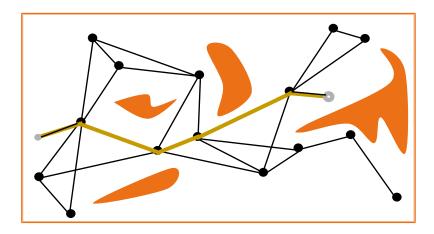


Learning Phase

- Construction step:
 - Build the roadmap by **sampling** (random) free configurations
 - Connect them using a fast **local planner** collision checking
 - Store these configurations as nodes in a **graph**

Learning Phase

- Notes
 - Graph nodes are sometimes called "milestones"
 - Graph **Edges** are the paths between nodes found by the local planner
 - Doesn't have to be linear segments



Map Construction

Algorithm 6 Roadmap Construction Algorithm

Input:

n: number of nodes to put in the roadmap

k: number of closest neighbors to examine for each configuration

Output:

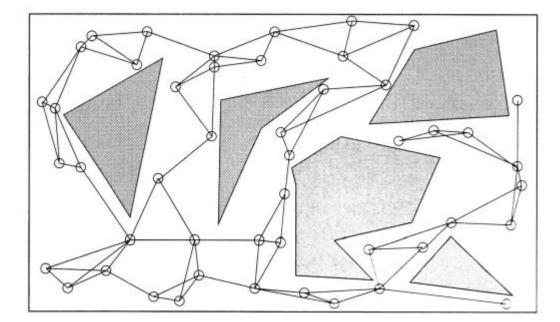
A roadmap G = (V, E)

- 1: $V \leftarrow \emptyset$
- 2: $E \leftarrow \emptyset$
- 3: while |V| < n do
- 4: repeat
- 5: $q \leftarrow a random configuration in Q$
- 6: **until** q is collision-free
- 7: $V \leftarrow V \cup \{q\}$
- 8: end while
- 9: for all $q \in V$ do
- 10: $N_q \leftarrow$ the k closest neighbors of q chosen from V according to dist
- 11: for all $q' \in N_q$ do

12: **if**
$$(q, q') \notin E$$
 and $\Delta(q, q') \neq \text{NIL}$ then

- 13: $E \leftarrow E \cup \{(q, q')\}$
- 14: end if
- 15: end for

```
16: end for
```



Map Construction – Sampling

Algorithm 6 Roadmap Construction Algorithm

Input:

n : number of nodes to put in the roadmap

k: number of closest neighbors to examine for each configuration

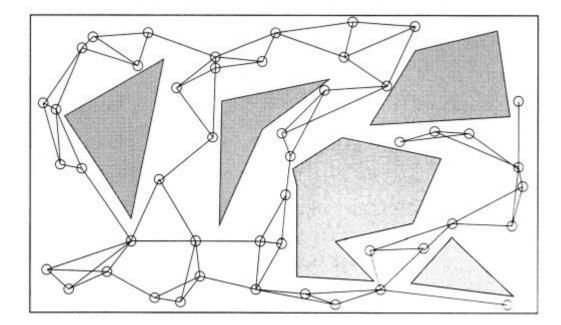
Output:

A roadmap G = (V, E)

- 1: $V \leftarrow \emptyset$
- 2: $E \leftarrow \emptyset$
- 3: while |V| < n do
- 4: repeat
- 5: $q \leftarrow$ a random configuration in Q
- 6: **until** q is collision-free
- 7: $V \leftarrow V \cup \{q\}$
- 8: end while
- 9: for all $q \in V$ do
- 10: $N_q \leftarrow$ the k closest neighbors of q chosen from V according to dist
- 11: for all $q' \in N_q$ do

12: **if**
$$(q, q') \notin E$$
 and $\Delta(q, q') \neq \text{NIL}$ then

- 13: $E \leftarrow E \cup \{(q, q')\}$
- 14: end if
- 15: end for
- 16: end for



Sampling Collision-free Configurations

- Uniform random sampling in C-space
 - Easiest and most common
 - AKA "(Acceptance)-Rejection Sampling"
- Steps
 - Draw random value in allowable range for each DOF, and combine into a vector
 - Place robot at the configuration and check collision
 - Repeat above until you get a collision-free configuration
- MANY other ways to sample ...

Map Construction – Nearest Neighbor

Algorithm 6 Roadmap Construction Algorithm

Input:

n: number of nodes to put in the roadmap

k: number of closest neighbors to examine for each configuration

Output:

A roadmap G = (V, E)

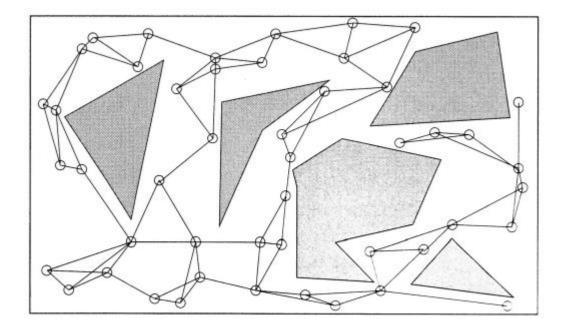
- 1: $V \leftarrow \emptyset$
- 2: $E \leftarrow \emptyset$
- 3: while |V| < n do
- 4: repeat
- 5: $q \leftarrow a random configuration in Q$
- 6: **until** q is collision-free
- 7: $V \leftarrow V \cup \{q\}$
- 8: end while

9: for all $q \in V$ do

- 10: $N_q \leftarrow$ the k closest neighbors of q chosen from V according to dist
- 11: for all $q' \in N_q$ do

12: **if**
$$(q, q') \notin E$$
 and $\Delta(q, q') \neq \text{NIL}$ then

- 13: $E \leftarrow E \cup \{(q, q')\}$
- 14: end if
- 15: end for
- 16: end for



Finding Nearest Neighbors (NN)

- Need to decide a **distance metric** D(q₁,q₂) to define "**nearest**"
 - D should reflect likelihood of success of local planner connection
- Distance metrics?

 $D(q_1, q_2) = ||q_1 - q_2||$

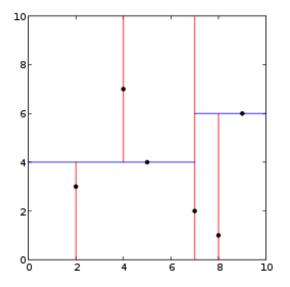
• Can we weigh different dimensions of C-space differently?

Finding Nearest Neighbors (NN)

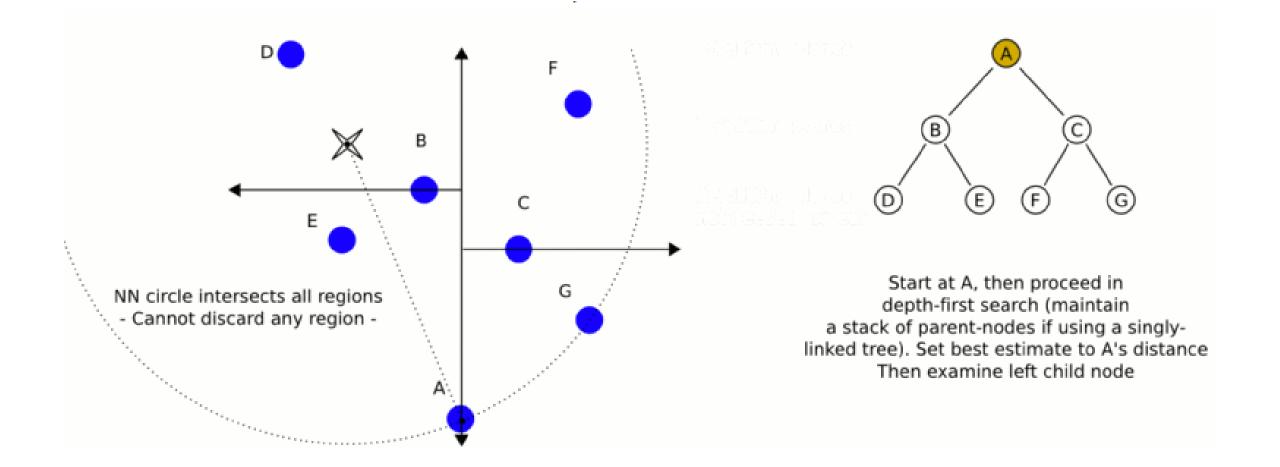
- Two popular ways to do NN in PRM
 - Find k nearest neighbors (even if they are distant)
 - Find all nearest neighbors within a certain distance
- Computational complexity?
 - Naive NN computation can be slow with thousands of nodes
 - use *kd-tree* to store nodes and do NN queries

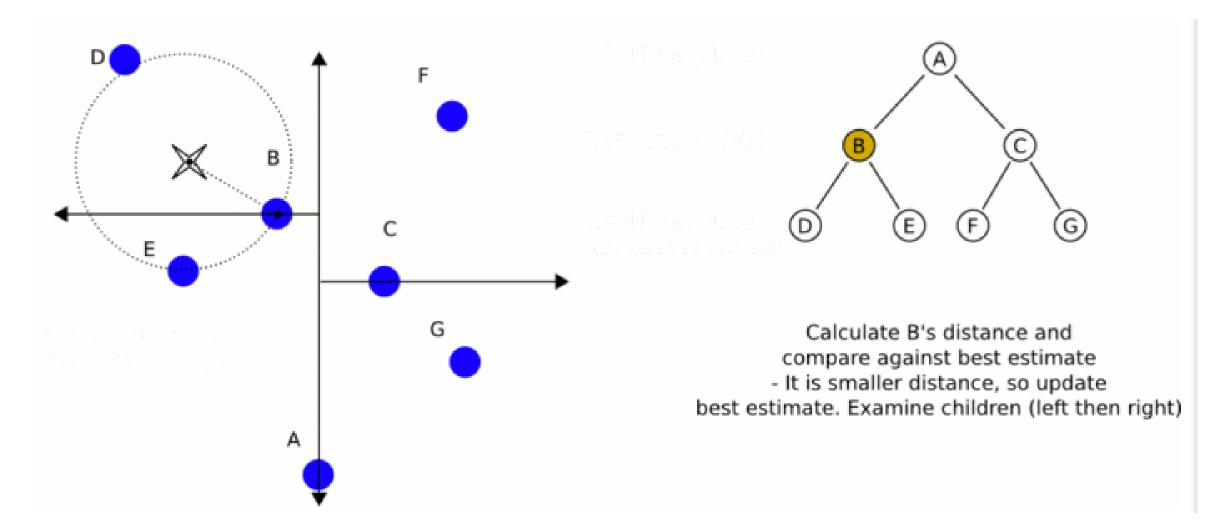
Kd-tree (k-dimensional tree)

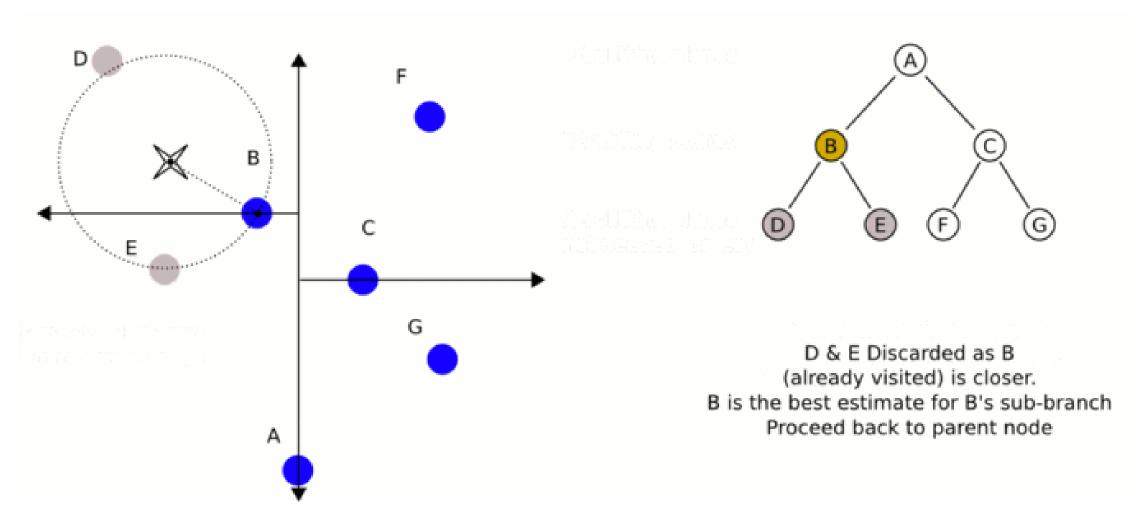
- Organize points in a space with k dimensions
 - Each level of a k-d tree splits all children along a specific dimension
 - Each level down in the tree divides on the next dimension

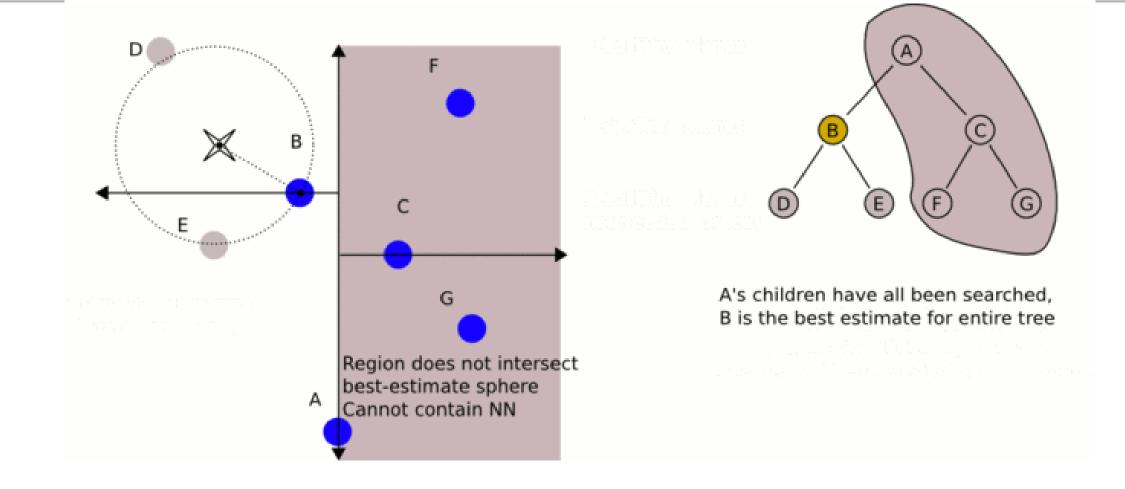


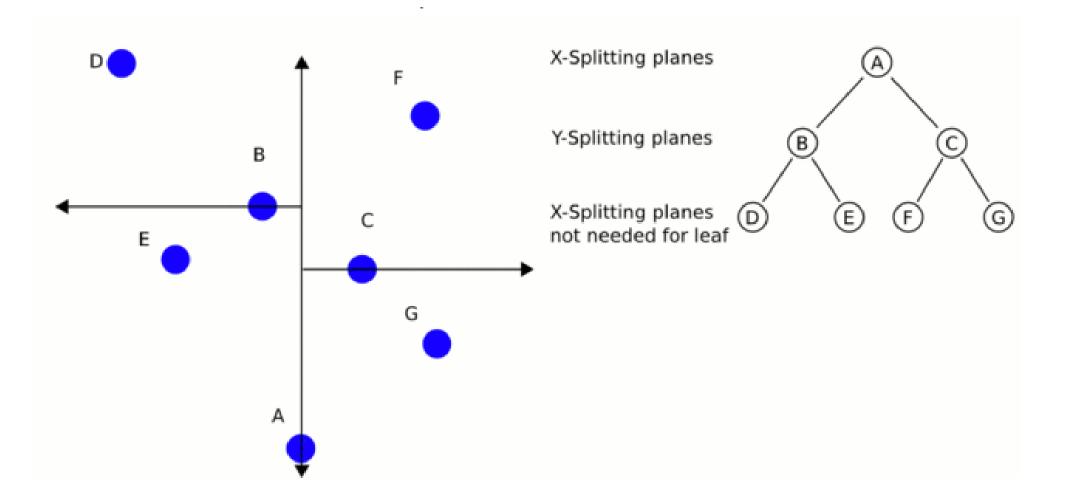
Partition the tree to place the median point at the root











Performance

- Speed
 - Much faster to use kd-tree for large numbers of nodes
- Cost
 - Cost of constructing a kd-tree is **significant**
 - Only regenerate tree once in a while (not for every new node!)

Map Construction – Local planner

Algorithm 6 Roadmap Construction Algorithm

Input:

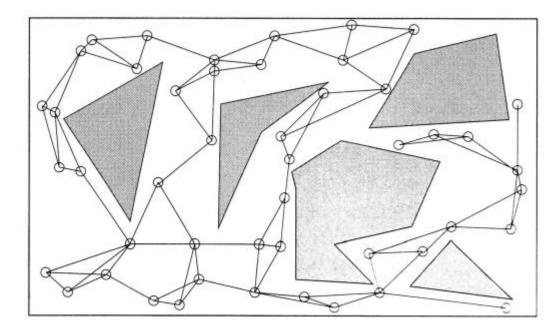
n: number of nodes to put in the roadmap

k: number of closest neighbors to examine for each configuration

Output:

A roadmap G = (V, E)

- 1: $V \leftarrow \emptyset$
- 2: $E \leftarrow \emptyset$
- 3: while |V| < n do
- 4: repeat
- 5: $q \leftarrow a random configuration in Q$
- 6: **until** q is collision-free
- 7: $V \leftarrow V \cup \{q\}$
- 8: end while
- 9: for all $q \in V$ do
- 10: $N_q \leftarrow$ the k closest neighbors of q chosen from V according to dist
- 11: for all $q' \in N_q$ do
- 12: **i** $[(q, q') \notin E \text{ and } \Delta(q, q') \neq \text{NIL then}$
- 13: $E \leftarrow E \cup \{(q, q')\}$
- 14: end if
- 15: end for
- 16: end for



Local Planner

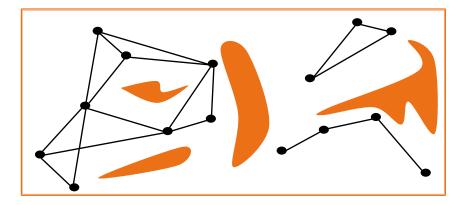
- In general, local planner can be **anything** that attempts to find a path between points
- Local planners you can think of?
 - Local discrete search
 - Potential field
 - Motion primitives
 - Another PRM!

Local planner

- Local planner needs to be ...
 - Fast It's called many times by the algorithm
- Easiest and most common implementation
 - Connect the two configurations with a straight line in C-space,
 - Check that line is collision-free
 - Fast
 - Don't need to store local paths

Expansion Step

- Disconnected components that should be connected
 - i.e., you haven't captured the true connectivity of the space
- Sample more nodes to connect disconnected components
 - Use **heuristics** to measure the connection difficulty
 - What heuristics?



Possible Heuristics

- # of Nodes nearby
 - For a node **c**, count the # of nodes **N** within a predefined distance
 - N is small

 obstacle region may occupy large portion of c's
 neighborhood
 - Use Heuristics = 1/N to guide random sampling

Possible Heuristics

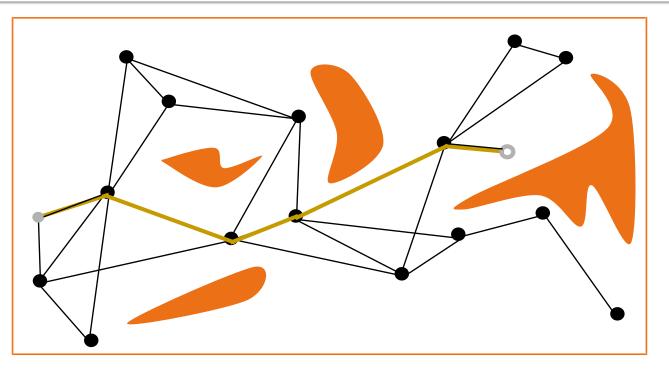
- Distance to nearest reacheable neighbor
 - For a node **c**, find the distance **d** to the nearest connected component that doesn't contains this node
 - d is small → c lies in the region where two components fail to connect
 - Heuristics = 1/d

Possible Heuristics

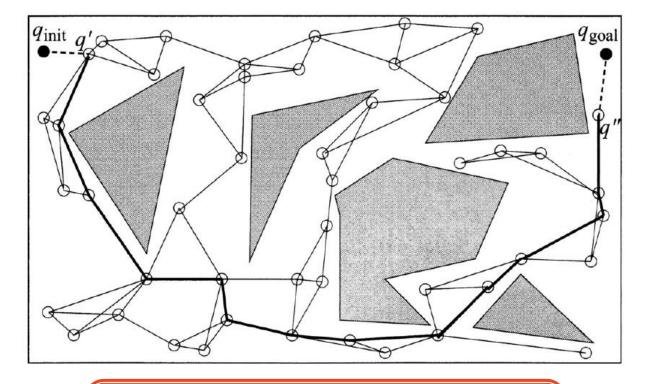
- Others?
- Behavior of local planner?
 - Always fail to connect \rightarrow difficult region

Query Phase

- Given a start q_s and goal q_q
 - Connect them to the roadmap using local planner
 - May need to try more than k nearest neighbors before connection is made
 - 2. Search G to find shortest path between q_s and q_g .



Path Query



How to search the shortest path in a graph?

Algorithm 7 Solve Query Algorithm

Input:

qinit: the initial configuration

 q_{goal} : the goal configuration

k: the number of closest neighbors to examine for each configuration

G = (V, E): the roadmap computed by algorithm 6

Output:

A path from q_{init} to q_{goal} or failure

- 1: $N_{q_{\text{init}}} \leftarrow \text{the } k \text{ closest neighbors of } q_{\text{init}} \text{ from } V \text{ according to } dist$
- 2: $N_{q_{\text{posl}}} \leftarrow$ the k closest neighbors of q_{goal} from V according to dist
- 3: $V \leftarrow \{q_{\text{init}}\} \cup \{q_{\text{goal}}\} \cup V$
- 4: set q' to be the closest neighbor of q_{init} in $N_{q_{\text{init}}}$

5: repeat

6: if $\Delta(q_{\text{init}}, q') \neq \text{NIL}$ then

7:
$$E \leftarrow (q_{\text{init}}, q') \cup E$$

8: else

set q' to be the next closest neighbor of q_{init} in N<sub>q_{mit}
</sub>

10: end if

11: until a connection was succesful or the set $N_{q_{min}}$ is empty

12: set q' to be the closest neighbor of q_{goal} in $N_{q_{\text{goal}}}$

13: repeat

- 14: if $\Delta(q_{\text{goal}}, q') \neq \text{NIL}$ then
- 15: $E \leftarrow (q_{\text{goal}}, q') \cup E$

16: else

17: set q' to be the next closest neighbor of q_{goal} in $N_{q_{\text{goal}}}$

18: end if

- 19: until a connection was succesful or the set $N_{q_{goal}}$ is empty
- 20: $P \leftarrow \text{shortest path}(q_{\text{init}}, q_{\text{goal}}, G)$
- 21: if P is not empty then
- 22: return P
- 23: else
- 24: return failure
- 25: end if

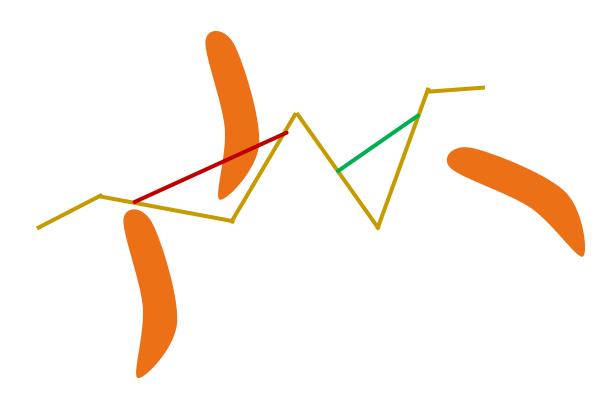
Path Shortening/Smoothing

- Never use a path generated by a sampling-based planner without smoothing it!!!
- "Shortcut" Smoothing

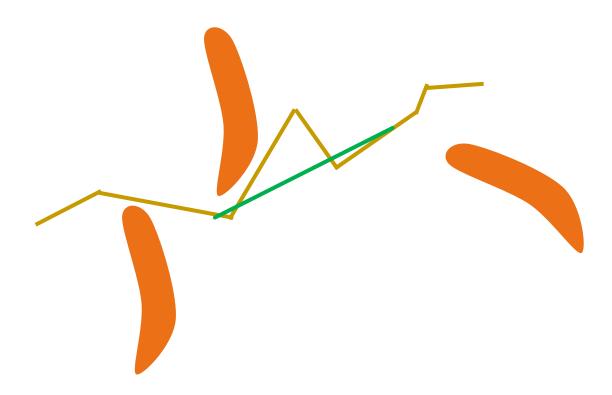
For i = o to MaxIterations

Pick two points, q1 and q2, on the path randomly Attempt to **connect** (q1, q2) with a line segment If successful, **replace** path between q1 and q2 with the line segment

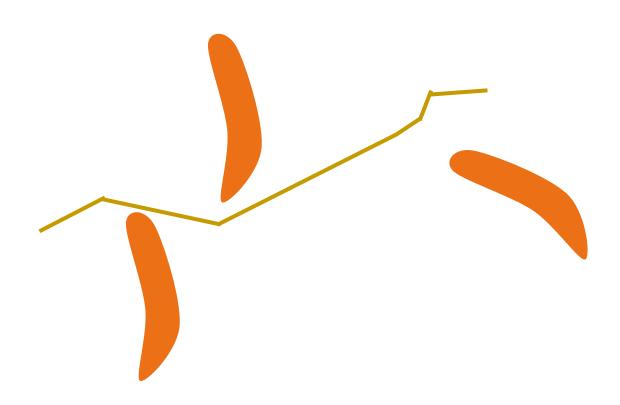
Shortcut Smoothing



Shortcut Smoothing

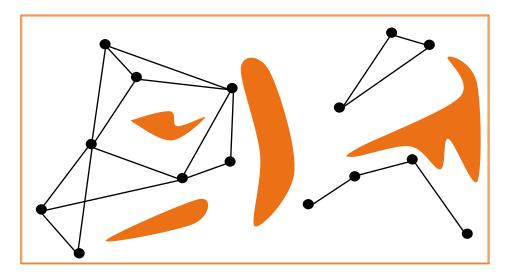


Shortcut Smoothing



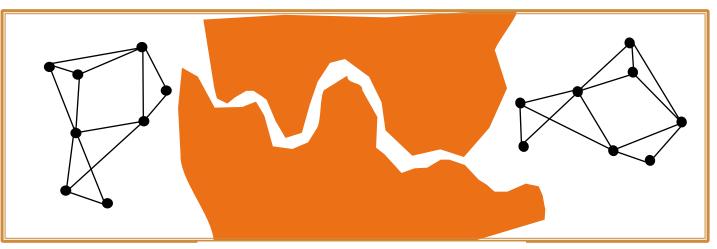
PRM Failure Modes

- Failure cases
 - Can't connect start and goal to any node in the graph
 - Can't find a path in the graph but a path is possible



How to fix?

- Local planner is too simple?
 - Can use more sophisticated local planner
- Roadmap doesn't capture connectivity of space
 - Can run the learning phase longer
 - Can change **sampling strategy** to focus on narrow passages



Student talk

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

End