Advance Discrete Planning (2) Practical issues

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- A search-algorithm prioritizes and expands the nodes in its open list items by their key values. How to compute the key values for
 - (2 pts) Dijkstra algorithm
 - (2 pts) A* algorithm
 - (3 pts) ARA*
 - (3 pts) ANA*

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Advanced Discrete Motion Planning

Overview of Advance Discrete Motion Planning

- More on search algorithms
 - Toward optimal and quicker solutions
 - Variants of A*
- Practical issues
 - Case study Practical search techniques for autonomous driving
- Other advanced topics
 - Roadmaps for planning in dynamic environment
 - Learning search via imitation

Practical search techniques for autonomous driving

2007 DARPA Urban Challenge

- Task
 - Autonomous driving in unknown environment
 - Re-plan online while incrementally building an obstacle map

IBEO laser

SICK LDRS laser

Stanford Racing Team Junior in Urban Challenge (DARPA 2007)

2007 DARPA Urban Challenge

2007 DARPA Urban Challenge

- Capability complex general path-planning tasks
 - Navigating parking lots
 - Executing U-turns
 - Dealing with blocked roads and intersections
- Performance
 - Typical full-cycle re-planning times of 50–300ms on a modern PC

- Robot control and trajectories must be continuous
 - Continuous-variable optimization problem
- Existing search algorithms are fast in discrete state space
 - Produce non-smooth paths
 - Do not satisfy vehicle's non-holonomic constraints
- Other approaches?

Related work

- Forward search in continuous coordinates
 - Guarantees kinematic feasibility
 - Need an efficient heuristic to guide expansion
- Non-linear optimization in control space
 - Fast convergence is difficult due to local minima

Solution – Two-phase motion planning

Phase 1

- Heuristic search in continuous coordinates to find a kinematically feasible solution → do not care optimality
- Phase 2
 - Use gradient descent to find at least the locally optimal solution
 - Global optimal is possible

Hybrid-State A* Search

- Compared to A*
 - Search space (x, y, θ)
 - Associates with each grid cell a continuous 3D state of the vehicle

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Features

- Associates costs with cell centers
- Only visit states at cell centers

Field D*

Features

- Associate costs with cell corners
- Allow arbitrary linear paths from cell to cell

• [Ferguson and Stentz 2005]

Hybrid-State A* Search

Features

- Associate a continuous state with each cell
- Score of the cell = the cost of its associated continuous state

Performance

- Guaranteed to find the minimal-cost?
 - No
- Guarantee to be drivable?
 - Yes
- Sub-optimality w.r.t. global optimal solution?
 - In practice, hybrid-A* is close to global optimal solution → refine in Phase 2

- Can maneuver in tight spaces?
 - Like what?
- Plan forward and reverse motion?
 - Yes

Choice of Heuristic is Critical

- Which nodes to be expanded first
- Bad heuristics leads to wasted expansion

- h1(s) = Non-holonomic without obstacles
 - Ignores obstacles
 - Consider non-holonomic constraints
 - Admissible?
- Use the max of h1(s) and Euclidian distance Benefits?
 - Prune search branches that approach the goal with the wrong headings
 - Computed offline

- h2(s) = dual of h1(s)
 - Consider obstacles
 - Ignore non-holonomic constraints
 - Admissible?
- Benefit?
 - Discover all U-shaped obstacles dead-ends in 2D
 - Guide the more expensive 3D search away from these areas

Analytic Node Expansions

Analytic Node Expansions

- Driving motion primitives
 - A node in the tree is expanded by **simulating a kinematic model** of the car (using a particular control action) for a small period of time
 - The resulting Reed-Shepp path is then checked for collision against the current obstacle map

Analytic Node Expansions

- Yellow-green path
 - Search tree branches (i.e., short incremental expansions)
- Pink path
 - Reed-Shepp path leading towards the goal

Cost function is Critical

- Design a cost function that yields the desired driving behavior
- Criteria??
 - Penalizing proximity to obstacles → Potential field
 - Create high-potential areas in narrow passages → cannot pass

Voronoi field

Rescale the field based on the workspace geometry

$$\rho_V(x,y) = \left(\frac{\alpha}{\alpha + d_{\mathcal{O}}(x,y)}\right) \left(\frac{d_{\mathcal{V}}(x,y)}{d_{\mathcal{O}}(x,y) + d_{\mathcal{V}}(x,y)}\right) \frac{(d_{\mathcal{O}} - d_{\mathcal{O}}^{max})^2}{(d_{\mathcal{O}}^{max})^2} , \qquad d_{\mathcal{O}} \leq d_{\mathcal{O}}^{max}$$

• Otherwise, $\rho_V(x,y) = 0$

Voronoi field

• Rescale the field based on the workspace geometry

Voronoi Field

Phase 2 – Local Optimization and Smoothing

Improve path length and solution smoothness

Phase 2 – Local Optimization and Smoothing

Improve path resolution by interpolation

 [1] Dolgov, Dmitri, Sebastian Thrun, Michael Montemerlo, and James Diebel. "Practical search techniques in path planning for autonomous driving." Ann Arbor 1001, no. 48105 (2008): 18-80.

Student talk – Baskaran Prakash

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

End