# Advance Discrete Planning (1) A\* variants

#### Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute



## Quiz (10 pts)

- (2 pts) How to measure distance in Cspace? List at least two metrics.
- (2 pts) Why do we need anytime search algorithm?
- (2 pts) Describe an example of abstract goal?
- (4 pts) What are the pros and cons of inflating the heuristic of a best-first search algorithm (like A\*)?

#### **Distance in C-space**



#### **Distance metrics**

L1-norm (Manhattan distance)

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|,$$

L2-norm (Euclidian distance)

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$$

•  $L_{\infty}$ -norm (chessboard distance)

$$D_{ ext{Chebyshev}}(p,q) := \max_i (|p_i - q_i|).$$

#### How to search

- More issues
  - Do you need to search again, and again?
  - What if you search within limited amount of time?
  - What if your search may terminate all of sudden?



- Goals are most commonly specific cells you want to get to
- But they can be more abstract, too!
- Example Goals?
  - A state where X is visible
  - A state where the robot is contacting X
  - Topological goals



## Admissibility

- h(x) must never overestimate the true cost-to-come
  - h(x) < h\*(x), where h\*(x) is the true cost
  - h(x) > o (so h(G) = o for goals G)
- If h(x) is admissible, A\* will find the least-cost path!

- "Inflating" the heuristic
  - Faster search
  - Least-cost path is not guaranteed

#### **Advanced Discrete Motion Planning**

#### **Overview of Advance Discrete Motion Planning**

- More on search algorithms
  - Toward optimal and quicker solutions
  - Variants of A\*
- Practical issues
  - Case study Practical search techniques for autonomous driving
- Other advanced topics
  - Roadmaps for planning in dynamic environment
  - Learning search via imitation

#### A\* Variants

#### **Problem Statement**

- Given a graph (G), find a path from start state to goal state.
- Parameters:
  - Optimal Path
  - Quicker Solution



#### Current state-of-the-arts: ANA\*

#### • Key idea:

- Quickly find a sub-optimal solution
- Improve it over time
- Features
  - Finds an initial solution faster
  - Spends less time in improving the solution
  - Improves solution sub-optimality bound in elegant way
  - Converges to optimal solution faster

## **Evolution of Search Algorithms**



## **Greedy First**

٠



## **Greedy Search Algorithm**

- Cost function
  - f(s) = h(s)







# Dijsktra Algorithm

- Cost function
  - f(s)=g(s)







# A\* Algorithm

- A\*: Cost function
  - f(s)=g(s)+h(s)
- A\* is Optimal, if and only if heuristic is Admissible!



# Weighted A\*



## WA\* Algorithm

- WA\* cost function  $f(s) = g(s) + \epsilon \cdot h(s)$ 
  - WA\* is optimal, if and only if  $\epsilon \cdot h(s)$  is Admissible.
    - $\epsilon > 1$  may lead to sub-optimal, but faster solution
- Note: We have a parameter to set  $\epsilon$ !!





RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

### **ARA\*** Algorithm

#### ARA\*

$$f(s) = g(s) + \epsilon \cdot h(s)$$
$$\epsilon_{new} = \epsilon_{old} - \Delta \epsilon$$

- Benefit
  - Can return anytime
  - No need to wait for Optimal Solution!
- Guarantee
  - ARA\* Eventually Converges to Optimal Solution

#### **Pseudo-Code Notation**

- Start state =  $s_{start}$
- Goal state =  $S_{goal}$
- For each state *s*,
  - g(s) = minimal cost from start to s
  - h(s) = heuristics

$$g(s_{start}) = 0, \ g(s) = \infty$$

Global variable G = cost of the current best solution

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

#### **Pseudo-Code Notation**

- **OPEN** queue = the open list
- Initially, **OPEN** only contains  $s_{start}$
- Expend the node in OPEN with the minimal [something]

## **ARA\* Algorithm**



#### • Note: We have another parameter to set $\Delta \epsilon$ !!



- Remove the node, if g(s) + h(s) > G
  - This node can never be a part of optimal path!

#### Ad-hoc Parameters!!

- We must select 2 parameters  $\epsilon$ ,  $\Delta \epsilon$
- If  $\epsilon$  is too large and  $\Delta \epsilon$  is small enough?
  - Convergence is slow
- Example:  $\epsilon$  = 1000,  $\Delta \epsilon$ =1
  - $f(s)=g(s)+1000 \cdot h(s)$
  - $f(s)=g(s)+999 \cdot h(s)$
  - No change in path!
- Path is modified **iff** order relationship between *f*(*s*) changes!







- Objective 1:
  - Converge quickly to initial solution
- Recall:
  - Greedy-First Search ⇒ Only heuristic counts!

$$f(s) = g(s) + \epsilon \cdot h(s)$$
$$\epsilon \to \infty$$

• This offers a quick initial solution

### ANA\* Algorithm

- Objective 2
  - Automate selection of  $\Delta \epsilon$

• Define: 
$$e(s) = \frac{G-g(s)}{h(s)}$$
  
 $\epsilon_{new} = \max_{\{s \in OPEN\}} e(s)$ 

• G: is the best known cost of goal node.

#### ANA\* Algorithm

• What does  $\epsilon_{new}$  represent?

$$e(s) = \frac{G - g(s)}{h(s)}$$

- Intuitively We explore the node with following properties
  - It has a large scope of optimality-improvement
  - It has a low heuristic value

### **ANA\*** Algorithm

#### $ANA^{*}()$

- 15:  $G \leftarrow \infty$ ;  $E \leftarrow \infty$ ;  $OPEN \leftarrow \emptyset$ ;  $\forall s : g(s) \leftarrow \infty$ ;  $g(s_{start}) \leftarrow 0$
- 16: Insert s<sub>start</sub> into *OPEN* with key  $e(s_{start})$
- 17: while  $OPEN \neq \emptyset$  do
- IMPROVESOLUTION() 18:
- 19: Report current E-suboptimal solution
- 20: Update keys e(s) in *OPEN* and prune if  $g(s) + h(s) \ge G$

#### **Note: No parameters!**

#### IMPROVESOLUTION()

- 1: while  $OPEN \neq \emptyset$  do
- 2: 3:  $s \leftarrow \arg \max_{s \in OPEN} \{e(s)\}$
- $OPEN \leftarrow OPEN \setminus \{s\}$
- if e(s) < E then 4:

$$E \leftarrow e(s)$$

5: 
$$E \leftarrow e(s)$$
  
6: **if** ISGOAL(s) **then**  
7:  $G \leftarrow g(s)$ 

$$G \leftarrow g(s)$$

- 8: return
- 9: for each successor s' of s do

10: **if** 
$$g(s) + c(s, s') < g(s')$$
 **then**

11: 
$$g(s') \leftarrow g(s) + c(s, s')$$

- 12:  $pred(s') \leftarrow s$
- if g(s') + h(s') < G then 13:
- Insert or update s' in *OPEN* with key e(s')14:

## **Epsilon-Convergence**



#### Benchmark Test 1: Robot Arm

- Experiment Setup
  - 6-DOF (and 20-DOF)Arms, fixed base
  - Changing Joint angle closer to base cost more energy
  - Heuristic = Euclidean 2-norm to goal



#### Benchmark Test 1: Robot Arm



#### Benchmark Test 2: Gridworld

- Experiment Setup
  - 5000 x 5000 4-connected grid
  - Start at top-left corner
  - Goal at right-bottom
  - Obstacles are static



#### Benchmark Test 2: Gridworld



#### Conclusion

- ANA\* has superior properties among Anytime-Heuristic Search Algorithms
- ANA\* uses dynamic *e*-choosing mechanism, that removes need for ad-hoc parameter selection

## Conclusion

- Advantages:
  - No parameters
  - Maximally greedy for Initial Solution
  - Maximally greedy to Improve Solution
  - Sub-optimality is reduced dynamically
- What ANA\* can't do:
  - Not suitable for dynamic environments

## Assignment Due Feb 16

#### Implement ANA\* and test on a grid search problem

#### $ANA^{*}()$

- 15:  $G \leftarrow \infty$ ;  $E \leftarrow \infty$ ;  $OPEN \leftarrow \emptyset$ ;  $\forall s : g(s) \leftarrow \infty$ ;  $g(s_{\text{start}}) \leftarrow 0$
- 16: Insert s<sub>start</sub> into *OPEN* with key  $e(s_{start})$
- 17: while  $OPEN \neq 0$  do
- IMPROVESOLUTION() 18:
- Report current *E*-suboptimal solution 19:
- Update keys e(s) in *OPEN* and prune if  $g(s) + h(s) \ge G$ 20:

IMPROVESOLUTION()

- 1: while  $OPEN \neq \emptyset$  do
- 2:  $s \leftarrow \arg \max_{s \in OPEN} \{e(s)\}$
- 3:  $OPEN \leftarrow OPEN \setminus \{s\}$
- if e(s) < E then 4: 5:

$$E \leftarrow e(s)$$

$$7: \qquad G \leftarrow g(s)$$

6:

8: return for each successor s' of s do Q٠

0: **if** 
$$g(s) + c(s, s') < g(s')$$
 **then**

1: 
$$g(s') \leftarrow g(s) + c(s, s')$$

12: 
$$\operatorname{pred}(s') \leftarrow s$$
  
12:  $\mathbf{if}_{s}(s') \leftarrow b(s') \leftarrow C(\mathbf{i})$ 

13: if g(s') + h(s') < G then Insert or update s' in *OPEN* with key e(s')14:

## Assignment Due Feb 16

- Experiment Setup
  - 5000 x 5000, 4-connected grid
  - Start = top-left corner, Goal = right-bottom
  - Set your own static obstacles



## Assignment Due Feb 16 by noon

- Submission include
  - Python code with problem setup and search using ANA\*
  - Pdf report with the figure of solution cost vs Time



## Assignment Due Feb 16 by noon

- Refer to the paper on ANA\* for more details
  - Van Den Berg, Jur, et al. "ANA\*: anytime nonparametric A\*." *Proceedings of Twenty-fifth AAAI Conference on Artificial Intelligence* (AAAI-11). 2011.

- Acknowledgement to Abhishek Kulkarni
  - Current WPI graduate student
  - Best literature review presentation in RBE 550, 2017



- If the assignment description is not clear to you, please ask me and/or TA
  - After class
  - During office hour
  - On piazza
- We are willing to help as long as you ask!
  - If you don't ask, we could only assume everything is okay

# Student talk Spatiotemporal state lattice

# End