Advance Discrete Planning (1) A* variants

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- (2 pts) How to measure distance in Cspace? List at least two metrics.
- (2 pts) Why do we need anytime search algorithm?
- (2 pts) Describe an example of abstract goal?
- (4 pts) What are the pros and cons of inflating the heuristic of a best-first search algorithm (like A^*)?

Distance in C-space

Distance metrics

• L1-norm (Manhattan distance)

$$
d_1(\mathbf{p},\mathbf{q})=\|\mathbf{p}-\mathbf{q}\|_1=\sum_{i=1}^n|p_i-q_i|,
$$

• L2-norm (Euclidian distance)

$$
{\rm d}({\bf p},{\bf q})={\rm d}({\bf q},{\bf p})=\sqrt{\left(q_1-p_1\right)^2+\left(q_2-p_2\right)^2+\cdots+\left(q_n-p_n\right)^2}
$$

• L_∞-norm (chessboard distance)

$$
D_{\rm Chebyshev}(p,q):=\max_i (|p_i-q_i|).
$$

How to search

- More issues
	- Do you need to search again, and again?
	- What if you search within limited amount of time?
	- What if your search may terminate all of sudden?

- Goals are most commonly specific cells you want to get to
- But they can be more abstract, too!
- Example Goals?
	- A state where X is visible
	- A state where the robot is contacting X
	- Topological goals

Admissibility

- h(x) must *never overestimate* the true cost-to-come
	- h(x) < h*(x), where h*(x) is the true cost
	- $h(x) > o$ (so $h(G) = o$ for goals G)
- If h(x) is *admissible*, A* will find the least-cost path!

- "Inflating" the heuristic
	- Faster search
	- Least-cost path is not quaranteed

Advanced Discrete Motion Planning

Overview of Advance Discrete Motion Planning

- More on search algorithms
	- Toward optimal and quicker solutions
	- Variants of A*
- Practical issues
	- Case study Practical search techniques for autonomous driving
- Other advanced topics
	- Roadmaps for planning in dynamic environment
	- Learning search via imitation

A* Variants

Problem Statement

- Given a graph (G), find a path from start state to goal state.
- Parameters:
	- Optimal Path
	- Quicker Solution

Current state-of-the-arts: ANA*

Key idea:

- Quickly find a sub-optimal solution
- Improve it over time
- **Features**
	- Finds an initial solution faster
	- Spends less time in improving the solution
	- Improves solution sub-optimality bound in elegant way
	- Converges to optimal solution faster

Evolution of Search Algorithms

Greedy First

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 2/8/2018 14

Greedy Search Algorithm

- Cost function
	- $f(s) = h(s)$

Dijsktra Algorithm

- Cost function
	- $f(s)=g(s)$

A* Algorithm

- A*: Cost function
	- $f(s)=g(s)+h(s)$
- A* is Optimal, if and only if heuristic is **Admissible**!

Weighted A*

WA* Algorithm

- WA* cost function $f(s) = g(s) + \epsilon \cdot h(s)$
- WA* is optimal, if and only if $\epsilon \cdot h(s)$ is Admissible.
	- $\cdot \epsilon > 1$ may lead to sub-optimal, but faster solution
- Note: We have a parameter to set ϵ !!

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 2/8/2018 22

ARA* Algorithm

• ARA*

$$
f(s) = g(s) + \epsilon \cdot h(s)
$$

$$
\epsilon_{new} = \epsilon_{old} - \Delta \epsilon
$$

- **Benefit**
	- Can return anytime
	- No need to wait for Optimal Solution!
- **Guarantee**
	- ARA* Eventually Converges to Optimal Solution

Pseudo-Code Notation

- **Start state** = s_{start}
- Goal state = s_{goal}
- For each state *s*,
	- g(s) = minimal cost from start to **s**
	- $h(s)$ = heuristics

$$
g(s_{start}) = 0, \ g(s) = \infty
$$

• Global variable **G** = cost of the current best solution

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 2/8/2018 24

Pseudo-Code Notation

- *OPEN* queue = the open list
- Initially, OPEN only contains s_{start}
- Expend the node in **OPEN** with the minimal [something]

ARA* Algorithm

• Note: We have another parameter to set $\Delta \epsilon$!!

- Remove the node, if $g(s) + h(s) > G$
	- This node can never be a part of optimal path!

Ad-hoc Parameters!!

- We must select 2 parameters ϵ , $\Delta \epsilon$
- If ϵ is too large and $\Delta \epsilon$ is small enough?
	- Convergence is slow
- Example: ϵ = 1000, $\Delta \epsilon$ =1
	- $f(s)=g(s)+1000 \cdot h(s)$
	- $f(s)=g(s)+g g g \cdot h(s)$
	- No change in path!
- Path is modified **iff** order relationship between $f(s)$ changes!

- Objective 1:
	- Converge quickly to initial solution
- Recall:
	- Greedy-First Search ⇒ Only heuristic counts!

$$
f(s) = g(s) + \epsilon \cdot h(s)
$$

$$
\epsilon \to \infty
$$

• This offers a quick initial solution

ANA* Algorithm

- Objective 2
	- Automate selection of $\Delta \epsilon$

• Define:
$$
e(s) = \frac{G - g(s)}{h(s)}
$$

\n
$$
\epsilon_{new} = \max_{\{s \in OPEN\}} e(s)
$$

• G: is the best known cost of goal node.

ANA* Algorithm

• What does ϵ_{new} represent?

$$
e(s) = \frac{G - g(s)}{h(s)}
$$

- Intuitively We explore the node with following properties
	- It has a large scope of optimality-improvement
	- It has a low heuristic value

ANA* Algorithm

$ANA^*()$

- 15: $G \leftarrow \infty$; $E \leftarrow \infty$; OPEN $\leftarrow \emptyset$; $\forall s : g(s) \leftarrow \infty$; $g(s_{start}) \leftarrow 0$
- 16: Insert s_{start} into *OPEN* with key $e(s_{start})$
- 17: while *OPEN* $\neq \emptyset$ do
- 18: IMPROVESOLUTION()
- 19: Report current E -suboptimal solution
- Update keys $e(s)$ in *OPEN* and prune if $g(s) + h(s) \ge G$ 20:

Note: No parameters!

IMPROVESOLUTION()

- 1: while *OPEN* $\neq \emptyset$ do
- 2: $s \leftarrow \arg \max_{s \in OPEN} \{e(\n3: \text{OPEN} \leftarrow \text{OPEN} \setminus \{s\})$ $s \leftarrow \arg \max_{s \in OPEN} \{e(s)\}\$
-
- if $e(s) < E$ then 4:

$$
\vdots \qquad \qquad E \leftarrow e(s)
$$

6: if ISGOAL(s) then
7:
$$
G \leftarrow g(s)
$$

$$
G \leftarrow g(s)
$$

- 8: return
- for each successor s' of s do $Q₁$

10: if
$$
g(s) + c(s, s') < g(s')
$$
 then

11:
$$
g(s') \leftarrow g(s) + c(s, s')
$$

- $12:$ $pred(s') \leftarrow s$
- if $g(s') + h(s') < G$ then $13:$
- Insert or update s' in *OPEN* with key $e(s')$ $14:$

Epsilon-Convergence

Benchmark Test 1: Robot Arm

- **Experiment Setup**
	- 6-DOF (and 20-DOF)Arms, fixed base
	- Changing Joint angle closer to base cost more energy
	- Heuristic = Euclidean 2-norm to goal

Benchmark Test 1: Robot Arm

Benchmark Test 2: Gridworld

- **Experiment Setup**
	- 5000 x 5000 4-connected grid
	- Start at top-left corner
	- Goal at right-bottom
	- Obstacles are static

Benchmark Test 2: Gridworld

Conclusion

- ANA* has superior properties among Anytime-Heuristic Search Algorithms
- ANA* uses dynamic ϵ -choosing mechanism, that removes need for ad-hoc parameter selection

Conclusion

- Advantages:
	- No parameters
	- Maximally greedy for Initial Solution
	- Maximally greedy to Improve Solution
	- Sub-optimality is reduced dynamically
- What ANA* can't do:
	- Not suitable for dynamic environments

Assignment Due Feb 16

Implement ANA^* and test on a grid search problem

$ANA^*()$

- 15: $G \leftarrow \infty$; $E \leftarrow \infty$; *OPEN* $\leftarrow \emptyset$; $\forall s : g(s) \leftarrow \infty$; $g(s_{start}) \leftarrow 0$
- 16: Insert s_{start} into *OPEN* with key $e(s_{start})$
- 17: while *OPEN* \neq 0 do
- IMPROVESOLUTION() 18:
- Report current E -suboptimal solution 19:
- Update keys $e(s)$ in *OPEN* and prune if $g(s) + h(s) \ge G$ 20:

IMPROVESOLUTION()

- 1: while *OPEN* \neq 0 do
- $2:$ $s \leftarrow \arg \max_{s \in OPEN} \{e(s)\}\$
- $3:$ $OPEN \leftarrow OPEN \setminus \{s\}$
- $4:$ if $e(s) < E$ then $5:$

$$
E \leftarrow e(s)
$$

6: if $ISGOAL(s)$ then

$$
7: \qquad G \leftarrow g(s)
$$

8: return for each successor s' of s do Q

$$
P: \text{ for each success of } s \text{ of } s \text{ to}
$$
\n
$$
P: \text{ if } a(s) + c(s, s') < a(s') \text{ that}
$$

10: if
$$
g(s) + c(s, s') < g(s')
$$
 then

1:
$$
g(s') \leftarrow g(s) + c(s, s')
$$

12:
$$
\text{pred}(s') \leftarrow s
$$

12: $\text{if } s(A) + b(A) \leq C \text{ then}$

- $13:$ if $g(s') + h(s') < G$ then Insert or update s' in *OPEN* with key $e(s')$ $14:$
- **RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 2/8/2018 41**

Assignment Due Feb 16

- **Experiment Setup**
	- 5000 x 5000, 4-connected grid
	- Start = top-left corner, Goal = right-bottom
	- Set your own static obstacles

Assignment Due Feb 16 by noon

- Submission include
	- Python code with problem setup and search using ANA*
	- Pdf report with the figure of solution cost vs Time

Assignment Due Feb 16 by noon

- Refer to the paper on $ANA*$ for more details
	- Van Den Berg, Jur, et al. "ANA*: anytime nonparametric A*." *Proceedings of Twenty-fifth AAAI Conference on Artificial Intelligence (AAAI-11)*. 2011.

- Acknowledgement to **Abhishek Kulkarni**
	- Current WPI graduate student
	- Best literature review presentation in RBE 550, 2017

- If the assignment description is not clear to you, **please** ask me and/or TA
	- After class
	- During office hour
	- On piazza
- We are willing to help as long as you ask!
	- If you don't ask, we could only assume everything is okay

Student talk Spatiotemporal state lattice

