Configuration Space

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

 (5 pts) Describe one challenge that novice user faces in the teleoperation of TRINA?

• (5 pts) Explain one method to help with this problem

Motion

- Many DOFs to control
- Coordinated dexterous manipulation
- User interface are not intuitive

Perception

- Hard to perceive spatial relationship through multiple 2D images
- Lack of tactile sensing

Configuration space

- Plan paths for a point in 2D \rightarrow simple
- Real-world robots are complex, often articulated bodies

A space where the robots could be treated as points?

Configuration space

Configuration q

- A specification of the position of **every** point on the object.
- Expressed as a vector of the DOF of the robot

$$q = (q_1, q_2, ..., q_n)$$

- Configuration space C
 - The set of all possible configurations

A configuration q is a point in C

Dimension of Configuration Space

• The **minimum** number of DOF needed to specify the configuration of the object completely. q_n

Example – A Rigid 2D Mobile Robot

- 3-parameters: $q = (x, y, \theta)$ with $\theta \in [0, 2\pi)$.
- C-space dimension = 3
- Topology?
 - $SE(2) = R^2 \times S^1$
- Shape of C-space?
 - Cylinder

Example – Rigid Robot in 3D workspace

- q = (position, rotation) = (x, y, z, ???)
- Representations for rotation?
 - Euler Angles yaw, pitch roll
 - 3X3 Transform Matrices
 - Unit quaternion
- Regardless of the representation, rotation in 3D is 3 DOF

Example – Rigid Robot in 3D workspace

- C-space dimension = 6
- Topology?
 - $SE(3) = R^3 \times SO(3)$

Configuration Space for Articulated Objects

- Articulated object
 - A set of rigid bodies connected by joints
- For articulated robots (arms, humanoids, etc.), the DOF are usually the joints of the robot
 - Exceptions?

Configuration Space for Articulated Objects

• Topology of two-link manipulator?

With joint limits?

Path and Trajectory in C-Space

Path

• A continuous curve connecting two configurations q_{start} and q_{goal}

$$\tau: s \in [0,1] \to \tau(s) \in C$$

- Trajectory
 - A path parameterized by time

$$\tau: t \in [0,T] \to \tau(t) \in C$$

Obstacles in C-space

Configuration space obstacle

- (Collision)-free configuration q
 - Robot placed at *q* has no intersection with any obstacle in the workspace
- Free Space C_{free}
 - A subset of C that contains all free configurations
- Configuration space obstacle C_{obs}
 - A subset of C that contains all configurations where the robot collides with workspace obstacles or with itself

How to compute C_{obs} ?

Example – 2D Robot without Rotation

- A simple setup
 - Disc in 2D space → not a point anymore
 - Polygonal obstacle in task space

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Example – 2D Robot without Rotation

Minkowski Sum

Minkowski Sum

- Dip B into paint
- Put B's origin on A's border
- Translate it along A's edge
- Sum = the painted area

Example – 2D Robot with Rotation

- C-space?
- Minkowski Sum?

Example – 2D Robot with Rotation

High-dimensional space

- Do we need to have an explicit representation of C-obstacles to do path planning?
 - Exact method?
 - Approximate method?
 - Sampling-based method?

Topology of C-Space

• Why topology matters?

Because coffee mug is indeed a donut!

Topological properties are very useful

Homotopic paths

 Two paths with the same endpoints is homotopic if one path can be deformed into continuously deformed into the other

Homotopic class of paths

• On a cylinder surface without ends

Which paths are homotopic?

Topology and homeomorphism

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Connectedness of C-Space

• *C* is **connected**

• If every two configurations can be connected by a path.

• *C* is **simply-connected**

- if any two paths connecting the **same** endpoints are **homotopic**.
- Examples: R² or R³
- Otherwise *C* is multiply-connected.
 - Example?

Distance in C-space

A distance function *d* in configuration space C is a function

$$d:(q,q')\in C^2\to d(q,q')\geq 0$$

- d(q, q') = 0 if and only if q = q',
- d(q, q') = d(q', q),
- $d(q, q') \le d(q, q'') + d(q'', q')$

- Do we need a specialized distance metric in C-space to do path planning?
- Metrics for distance?
 - Euclidian distance
 - Other metrics?

Distance in C-space

Distance metrics

L1-norm (Manhattan distance)

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|,$$

L2-norm (Euclidian distance)

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$$

• L_{∞} -norm (chessboard distance)

$$D_{ ext{Chebyshev}}(p,q) := \max_i (|p_i - q_i|).$$

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Reading Assignment

 Once specified a C-space and its obstacle, we should be able to discretize it and search for a path

How about the C-space of a self-driving car?

- Discretization
 - Exact method, approximate method?
- Search
 - Can we get from one cell to another, directly? Why?
- How does the C-space look like?

State lattice

How to handle moving obstacles?

Assignment – individual paper review

Paper

 Ziegler, J., & Stiller, C. (2009, October). Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009. (pp. 1879-1884)

Topic

- Spatiotemporal state lattice → Due on Friday (Feb 2) at noon
- Present student talk on Friday? → Submit by Thursday (Feb 1) by mid-night

Student talk – James Kuszmaul Complexity of sweeping-line algorithm

End