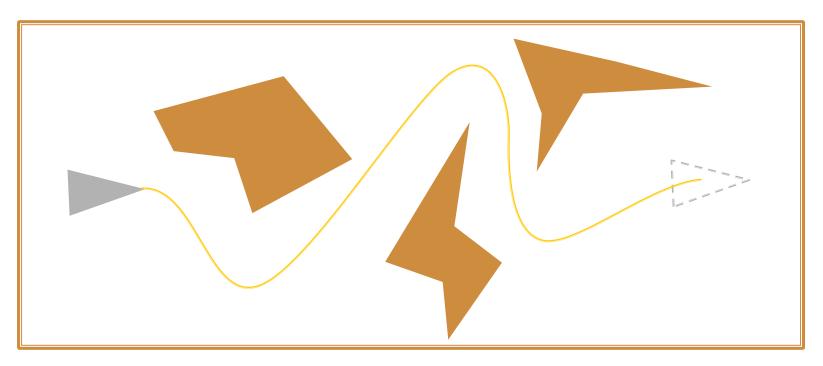
Motion Planning

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute



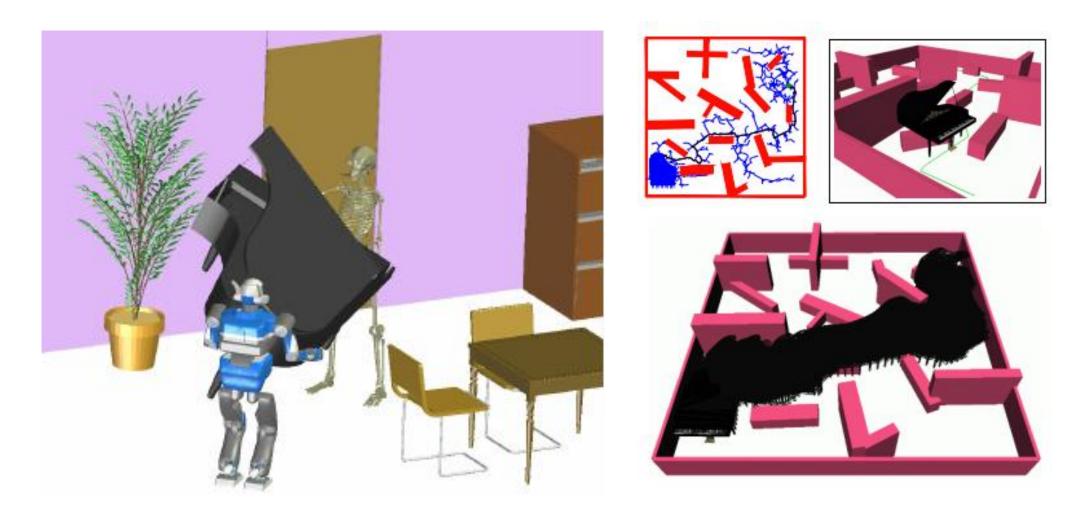
- Introduction
- Course logistics

What is motion planning?

- The automatic generation of motion
 - Path + velocity and acceleration along the path

More than Obstacle Avoidance

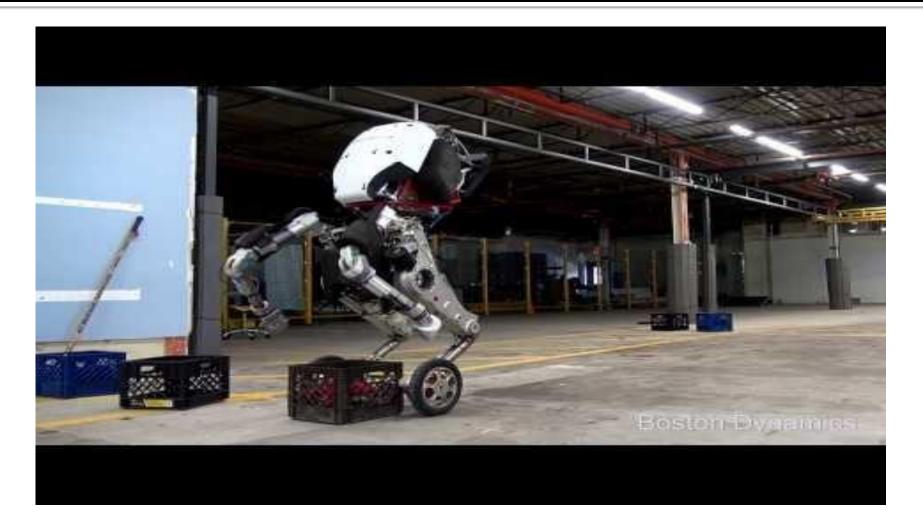
- Path planning
 - Low-frequency, time-intensive search method for global finding of a (optimal) path to a goal
- Obstacle avoidance (aka "local navigation")
 - Fast, reactive method with local time and space horizon

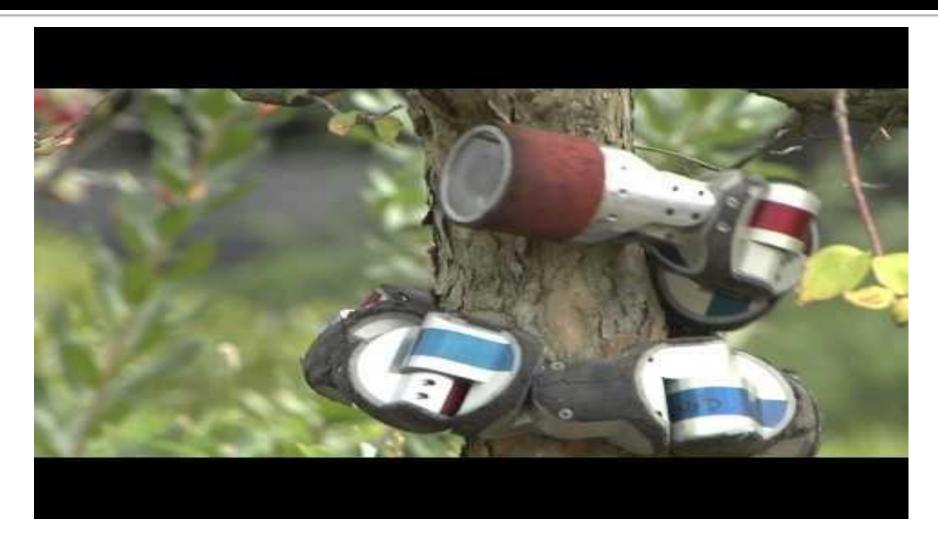


• Distinction: Global vs. local reasoning

Basic Problem Statement

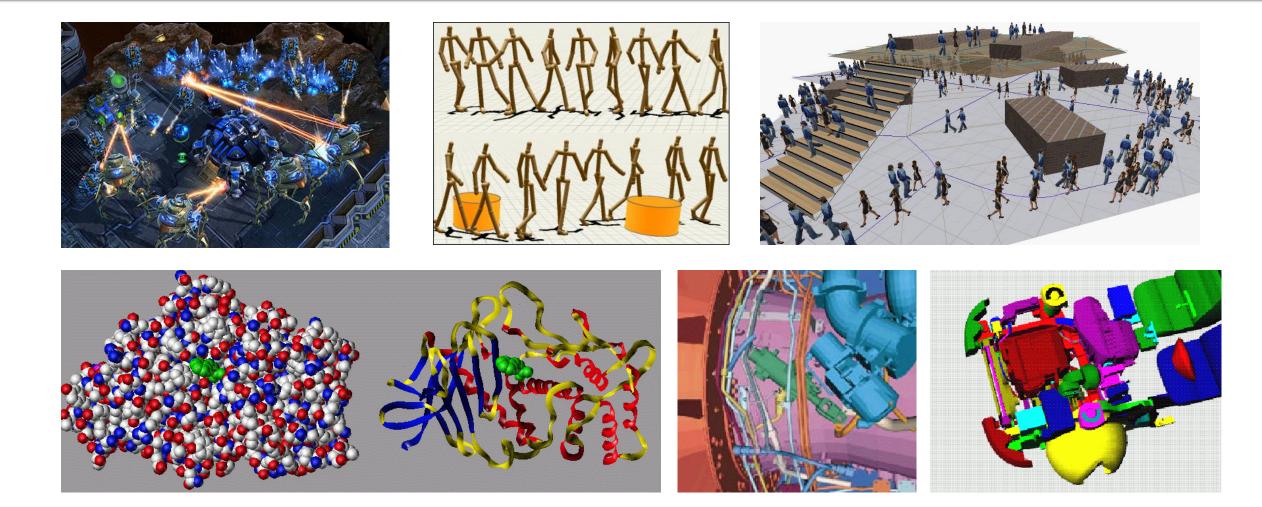
Basic Motion Planning Problem


Motion planning theory


- Motion planning algorithms
 - Intersection of Robotics, Control theory, AI
 - Planning in discrete and continuous space
 - Consideration for uncertainty, differential constraints, dynamic environments, human users ...

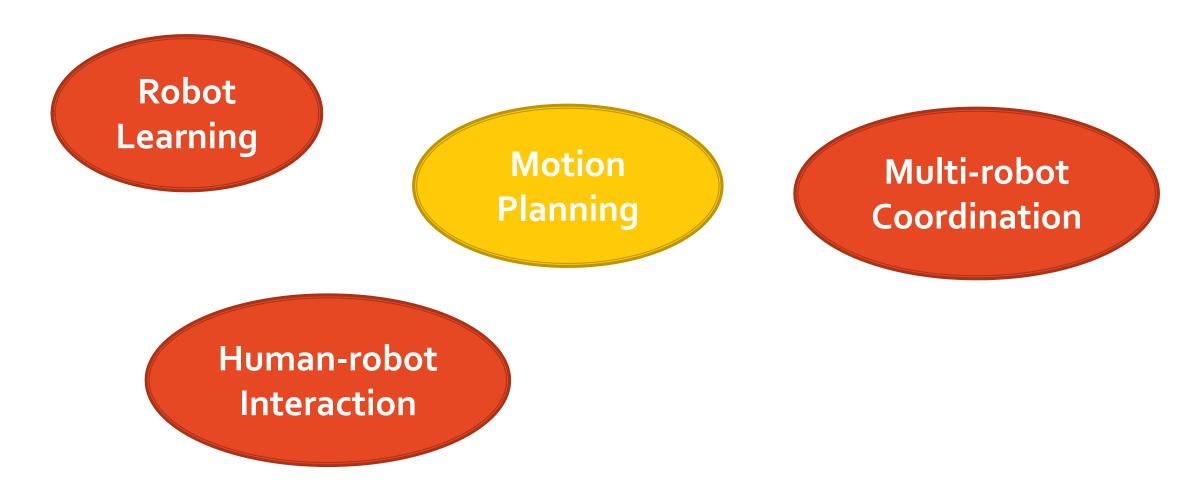
From theory to practice

In theory, *there is no difference between theory and practice*. But, in practice, there is.



RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Applications – Motion Generation



RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Related Areas

Course logistics

Instructor

- Research website
 - http://users.wpi.edu/~zli11/index.html
- Office hour
 - 85 Prescott 223C
 - 2:00-3:00pm, Wednesday
- Interested in lab research
 - Come to talk to me during office hour

Course website

- Course website
 - http://users.wpi.edu/~zli11/rbe550_2018.html
 - Course syllabus and schedule
 - Textbook & Reference resources
- Piazza Discussion forum
 - https://piazza.com/wpi/spring2018/rbe550/home
 - For course relevant discussion

Course website

- Canvas
 - Post course materials (slides, tutorials, assignments & solutions, reference papers coursework examples)
 - Coursework submission
 - Up-to-date grades

Our TA

- Gunnar Horve (<u>gchorve@wpi.edu</u>)
 - Grade assignments and quizzes
 - Record class participation

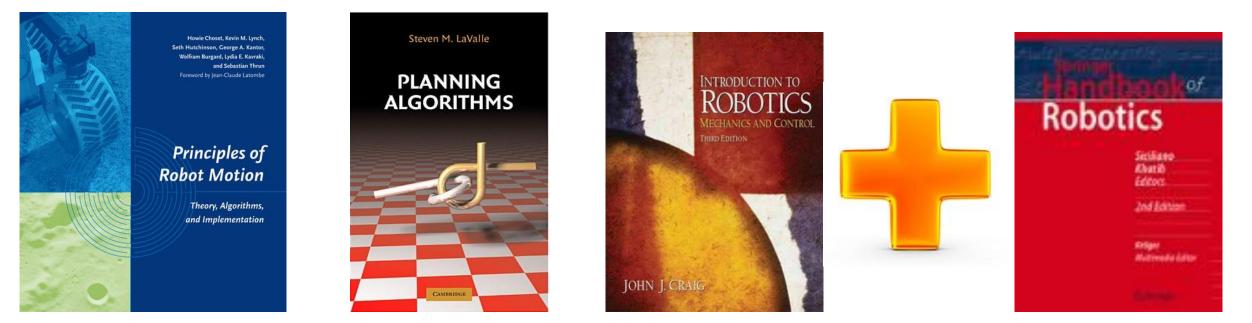
- Help with class management, project mentoring and evaluation
- TA Office hour: 2:00-3:00 pm every Wednesday
 - Answer your questions on course topics, grades
 - Help you with course projects

What you expect to get from this course

- Theory and practice of motion planning
 - Fundamental concepts and methods in motion planning
 - Applications on various robotic system
- Theoretical topics
 - Combinatorial & Sampled based motion planning
 - Robot Kinematics, Collision checking and avoidance, Trajectory planning
- Practical topics
 - Motion planning in the presence of constraints and uncertainty
 - Motion planning for arm, hand, mobile base, multi-robot system
 - Integration of motion planning with robot learning and human-robot interaction

Pre-requisites

Math


- Linear algebra
 - Matrix operations, dot products, cross products, etc.
 - A review of linear algebra: http://cs229.stanford.edu/section/cs229-linalg.pdf
- Linux OS, bash commands, Git
- Python Coding
 - Assignments can be done in Matlab
 - Project coding all in python!
- You may struggle if you don't know it well

Recommended skills

- Big plus if you know it well
 - Data structure and algorithm (e.g., how to search)
 - Robot kinematics
 - ROS, and ROS-based software (Movelt, Grasplt)
 - Motion planning software (Klampt)
 - Image processing (OpenCV)
 - Experience with real robots (Baxter, ReFlex SF hand, Mobile base)
 - Experience with RGDB cameras (Kinect, Realsense) and LIDAR

Reference Books

• Research Papers

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

- In-Class Participation and Preparation 10%
 - Attendance to lecture 3%
 - Active participation 7%
- Quizzes 15%
- Assignments 40%
- Course project 35%
 - Project proposal 10% + Project report 15% + Final presentation 10%

Course work submission

- Policies applied to all the submission for this course
 - Assignments, project proposal, paper preview, reports, etc.
- Submission on Canvas
 - File name = use [LastName] [FirstName] [submission content]
 - Multi-file submission: include all document in a Single zip file
 - Single-file submission: submit file directly
 - Team work submit only one copy, include the names of all teammates.

Naming protocol

- Assignments
 - [LastName]_[FirstName]_HW_[Assignment number]
- Reports
 - [LastName]_[FirstName]_Report_[Report_title]
- Paper Reviews
 - [LastName]_[FirstName]_Review_[Report_title]
 - In the post, include title and author of the reviewed paper, with a link to the paper file.

How to submit coursework on canvas?

- Go to Canvas and click on Assignments.
- Choose respective assignment and submit zip (if coding is part of the assignment) or pdf (paper review)
- You can update your post until the time of the deadline.

Submission format

- Code for assignments
 - In one sub-folder
 - Necessary documentation
- Documents in pdf formats
 - Math problem, paper review, report
 - 11pt, single-spaced, with 1-inch margins

- Submission in an incorrect format
 - First time warning
 - Second time deduct 20% from the grade
 - Third time and more Rejected without grading
- Late submission will not be accepted.

- Weekly Assignment
 - Math problems
 - Algorithm implementation
 - Individual paper review
- Semester assignment
 - Group paper review

Individual Paper Review

- Individual paper review assignment will be given every week
 - Assigned reading can be a paper or a short section from reference book
 - Prepare a 6-8 pages presentation slides
 - Express your in-depth understanding either in slide notes, or submit an additional paper review report
 - No more than 2 pages, may include figures
 - Guideline for paper review see course website

https://docs.google.com/document/d/1AipcpudCY48TmTwt2iOrt77LM gQnsHnmmNmMHOC2Nxg/pub

Group paper review

- Each project team should conduct a literature survey
 - Must be on motion planning
 - Need instructor approval
 - No need to be relevant to your project focus
 - Read 10+ papers in depth on this topic
 - Divide the task among teammates
 - Start early and continue weekly discussion
 - Compose a 10-page literature survey report
 - Deliver a 20-min presentation
 - See course schedule for the dates of **student talk on special topic**.

Presentation for individual paper review

- Select four best paper reviews from the class
 - Receive 100% for that paper review assignment
- Choose one to give a 5 min talk in every class
 - Reward for talk replace one quiz/assignment grade with 100% (any one you choose)

Presentation for group paper review

- In-depth understanding of the paper your reviewed
 - Tentatively 20 minutes long + 5 minutes of questions
 - Similar to a conference talk
- Evaluated on
 - Depth of understanding
 - Clarity of presentation
 - Presentation skill (don't run out of time!)

- Quiz every lecture!
 - The beginning of the course
- Study for quiz
 - Review previous lecture slides
 - Do assignments
- Make sure your hand-writing is readable

In-class Participation

- Participation matters!
- Attending lectures
 - Count your attendance by quiz submission
- Ask and answer valuable questions in class and on Piazza
 - TA will take notes in class and count Q&A on piazza
- Help each other in projects
 - Teammates will evaluate each other)

In-class participation

- To avoid miscalculation:
 - Check with TA for your participation records
 - Keep a log for your work
- Submit a note by the end of the course
 - A one-page description of how you have helped teams/classmates
 - Include a paragraph in project report to describe your contribution

Course project

- This course is <u>research-focused</u> and <u>project-orientated</u>.
- Prepare you for doing independent research
 - Choose a topic based on your research interest and background
 - Propose methodology (e.g. experimental protocol, algorithms)
 - Implementation is necessary

Choose your course project

- Select among the projects offered by the course
 - Introduction to course project Lecture on Jan 17
- Make your decision for course project
 - Fill project selection form
 - First, second and third choices
 - Justification for your choice
 - Previous course work, project experience
 - Preferred teammates
 - List three, with student's name, major, contact email

Project Team

- Instructor will assign project team based on
 - Student's choice & skills
 - Whether there are enough students to form a team
- Team size is proportional to project workload
 - 5-6 members per team

Project Team

- As a team you should ...
 - Elect a team leader
 - Meet with instructor weekly for project discussion
- Your project will be evaluated by ...
 - Mandatory Project proposal, report, presentation, demonstration Optional, but highly recommended: research log, project website
 - Show the project website to your future employer/graduate advisor

Project Peer-review

- Guideline for project peer-review
 - <u>https://docs.google.com/document/d/e/2PACX-1vT-</u> XeAn5aUwNF9JxYz8wfvKICHFaoNbhLDaKMjYj139xFEmiLSvYLK_g 2ITIVHKNuo3q-dScUoF3AAq/pub</u>
- Help you to structure and evaluate your own project proposal and final reports

- Submitted before <u>noon</u> of the due date.
 - Do not count late submission
- Check Course Schedule frequently for most up-to-date submission date
- Check your grade frequently. Before the end of the course, you can
 - Attend office hour if you need help
 - Ask for **extra work** if you want to make up for your low grade
- Keep in touch with instructor, TA, project team
 - Make sure you teammates know what you are working, because they will evaluate you in the end.

Academic integrity

- WPI policy
 - <u>https://www.wpi.edu/about/policies/academic-integrity</u>
 - Same penalty for all members involved.
- Do not risk your future

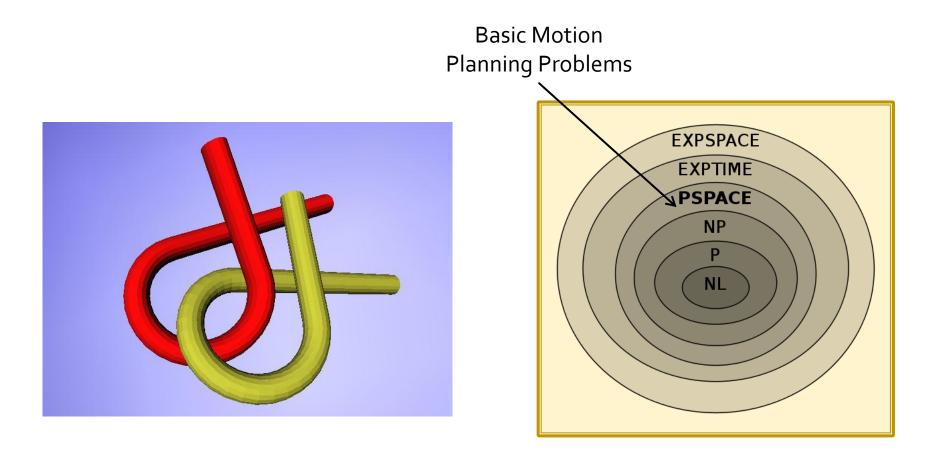
Welcome and enjoy!

Assignment 1 – Part 1 (Due on Jan 17)

- Introduce yourself to this course:
 - https://goo.gl/forms/8C7CGjZsplryl6xz1
- Make sure you can access this course on Piazza and Canvas
- Check the course syllabus and schedule
- Read Chapter 1 in the principles of robot motion (referred as "principles" in the future)

RBE 550 – Motion Planning – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Assignment 1 – Part 2 (Due on Jan 19)


 Choose your course project <u>https://goo.gl/forms/llocqbABTweAur1g1</u>

Announcement - RBE Colloquim

- Speaker:
 - Nathaniel Goldfarb (PhD)
- Date & Location
 - Jan 18, at GatePark 1002
- Title
 - Development of home-based stroke rehabilitation system of high customizability and adaptability
- RBE550 Project
 - Online motion planning in dynamic virtual environment

End

A hard problem

