Non-holonomic Planning

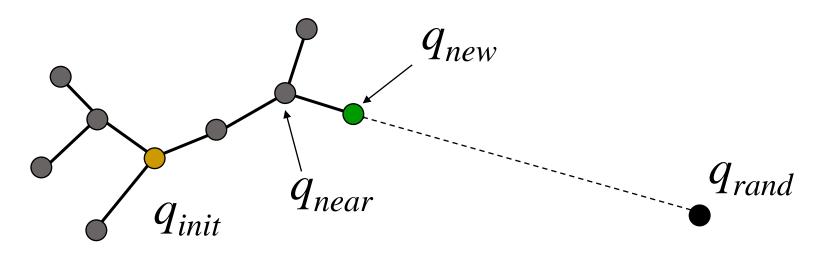
Jane Li

Assistant Professor

Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11

<u>Recap</u>

• We have learned about RRTs....



- But the standard version of sampling-based planners assume the robot <u>can move in any direction</u> at any time
- What about robots that **can't** do this?

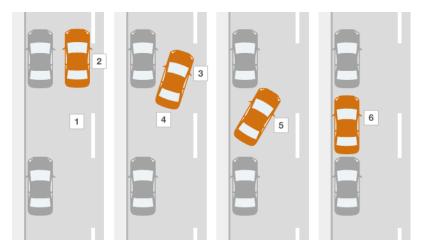
Outline

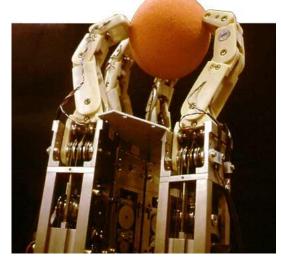
- Non-Holonomic definition and examples
- Discrete Non-Holonomic Planning
- Sampling-based Non-Holonomic Planning

Holonomic vs. Non-Holonomic Constraints

- Holonomic constraints depend only on configuration
 - F(q, t) = 0 (note they can be **time-varying**!)
 - Technically, these have to be **bilateral constraints** (no inequalities)
 - In robotics literature we ignore this so we can <u>consider collision</u> constraints as <u>holonomic</u>
- Non-holonomic constraints are constraints that cannot be written in this form

Example of Non-holonomic Constraint





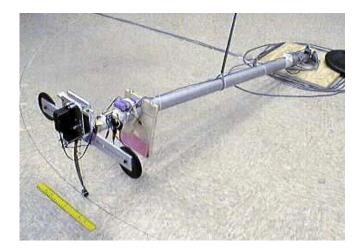
Parallel Parking

Manipulation with a robotic hand Multi-fingered hand from Nagoya University

Rolling without contact

Example of Non-holonomic Constraint

Hopping robots – RI's bow leg hopper (CMU)



AERcam, NASA - Untethered space robots

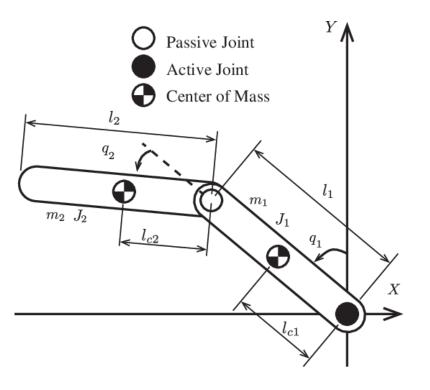
Conservation of angular momentum

Example of Non-holonomic Constraint

Underwater robot Forward propulsion is allowed only in the pointing direction

A Chosen actuation strategy

Robotic Manipulator with passive joints



RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE 550

550 How to Represent the Constraint Mathematically?

Constraint equation

 $\dot{y}\cos\theta - \dot{x}\sin\theta = 0$

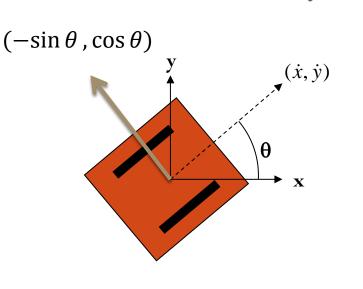
- What does this equation tell us?
 - The direction we can't move in
 - If $\theta = 0$, then the velocity in y = 0
 - If $\theta = 90$, then the velocity in x = 0
 - Write the constraint in matrix form

$$q = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}, \quad \dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$$

Position & Velocity Vectors

$$w_{1}(q) = [-\sin\theta \ \cos\theta \ 0]$$

Constraint Vector



RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON'S RBE

$$w_1(q) \cdot \dot{q} = 0 = \left[-\sin\theta \ \cos\theta \ 0\right] \dot{y}$$

[i]

$$-\dot{x}\sin\theta + \dot{y}\cos\theta = 0$$

$$0]\begin{bmatrix} x\\ \dot{y}\\ \dot{\theta} \end{bmatrix} \longrightarrow -\dot{x}\sin\theta + \dot{y}\cos\theta =$$

Holonomic vs. Non-Holonomic Constraints

- Example: The kinematics of a unicycle
 - Can move forward and back
 - Can rotate about the wheel center
 - Can't move sideways

RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE

 $\dot{y}\cos\theta - \dot{x}\sin\theta = 0$

- Can we just integrate them to get a holonomic constraint?
 - Intermediate values of its trajectory matters
- Can we still reach any configuration (x,y,θ) ?
 - No constraint on configuration, but ...
 - May not be able to go to a (x,y,θ) directly

Holonomic vs. Non-Holonomic Constraints

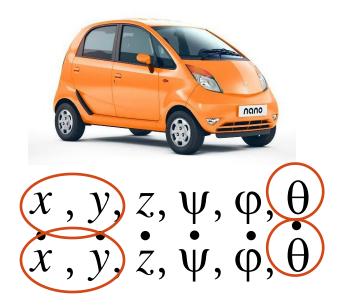
- Non-holonomic constraints are **non-integrable**, i.e. can't rewrite them as holonomic constraints
 - Thus non-holonomic constraints must contain **derivatives of configuration**
 - They are sometimes called non-integrable **differential** constraints
- Thus, we need to consider how to move between configurations (or states) when planning
 - Previously we assumed we can move between <u>arbitrary nearby</u> <u>configurations</u> using a straight line. But now ...

RBE 550 MOTION PLANNING Based on **DR. Dmitry Berenson**'s RBE

550

State space VS Control Space

• State Space



- Control space
 - Speed or Acceleration
 - Steering angle

<u>Example – Simple Car</u>

• Non-holonomic Constraint:

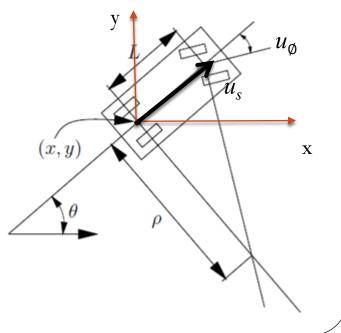
Dimension of configuration space?

• In a small time interval, the car must move approximately in the **direction**

that the rear wheels are pointing.

$$\Delta T \to 0, \quad \frac{dx}{dy} = \frac{\dot{x}}{\dot{y}} = \tan \theta \quad \Longrightarrow \quad \dot{y} \cos \theta - \dot{x} \sin \theta = 0$$

- Motion model
 - $u_s = \text{speed}$
 - u_{ϕ} = steering angle



<u>Example – Simple Car</u>

Dimension of configuration space?

- Motion model
 - $u_s = \text{speed}$

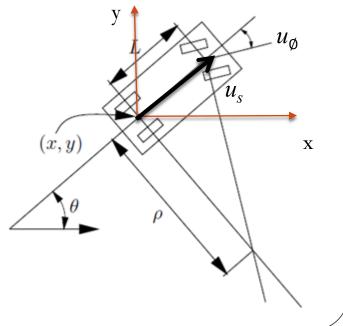
$$\dot{x} = u_s \cos \theta, \quad \dot{y} = u_s \sin \theta$$

- u_{ϕ} = steering angle
 - If the steering angle is fixed, the car travels in a circular motion \rightarrow radius $\rho_{\rm x}$

• Let $\boldsymbol{\omega}$ denote the distance traveled by the car

$$\frac{d\omega = \rho d\theta}{\frac{L}{\rho} = \tan u_{\phi}} \quad d\theta = \frac{\tan u_{\phi}}{\frac{L}{\omega}} d\omega$$
$$\dot{\omega} = u_s$$

$$\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$$



Moving Between States (with No Obstacles)

• Two-Point Boundary Value Problem (BVP):

X_I

 Find a control sequence to take system from state X_I to state X_G while obeying kinematic constraints.

RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE 550

 X_{G}

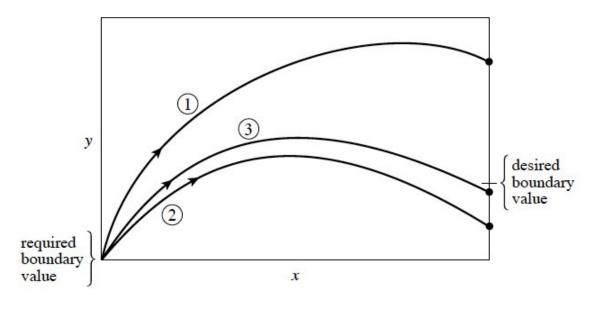
Shooting Method

• Basically, we 'shoot' out trajectories in different directions until we

find a trajectory that has the desired boundary value.

• System
$$\frac{d\mathbf{y}}{dx} + \mathbf{f}(x, \mathbf{y}) = 0$$

• Boundary condition y(0) = 0, y(1) = 1

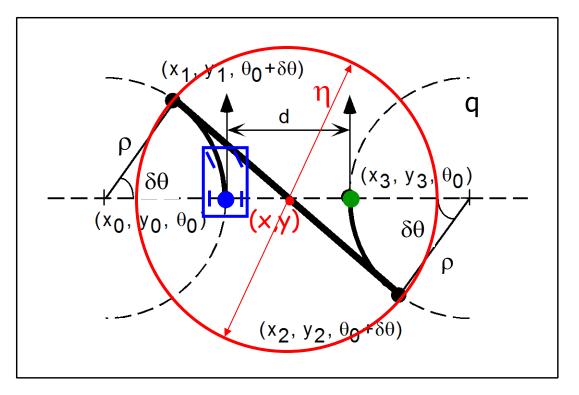


Alternative Method

- Due to non-holonomic constraint
 - Direct (sideway) motion is prohibited, but can be approximated by a series of forward/backward and turning maneuvers
- Therefore, what we can do ...
 - Plan a path ignoring the car constraints
 - Apply sequence of allowed maneuvers

550

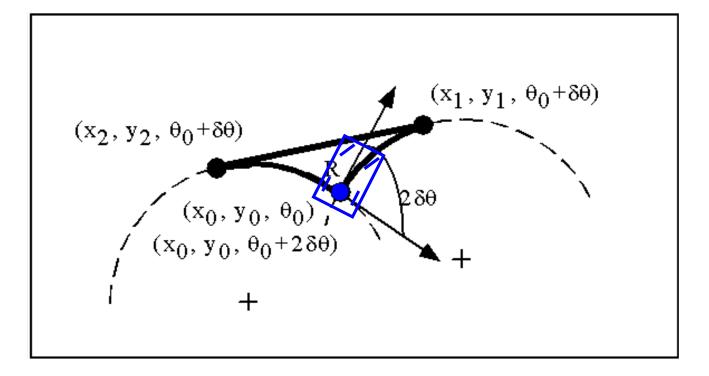
<u>Type 1 Maneuver</u>



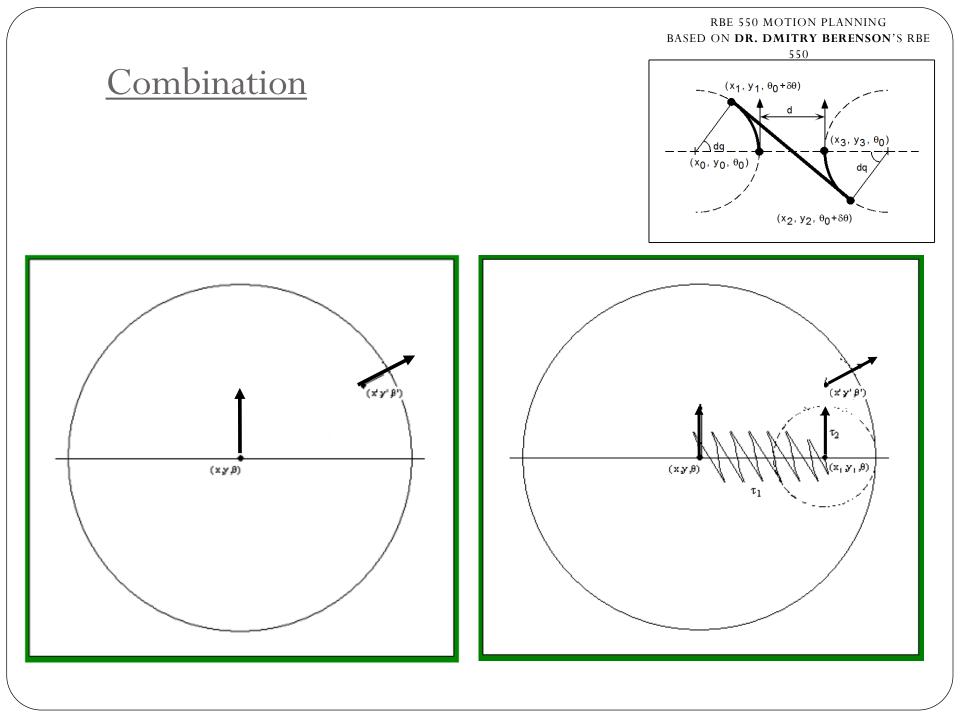
\rightarrow Allows sidewise motion

RBE 550 MOTION PLANNING Based on **Dr. Dmitry Berenson**'s RBE

550



\rightarrow Allows pure rotation

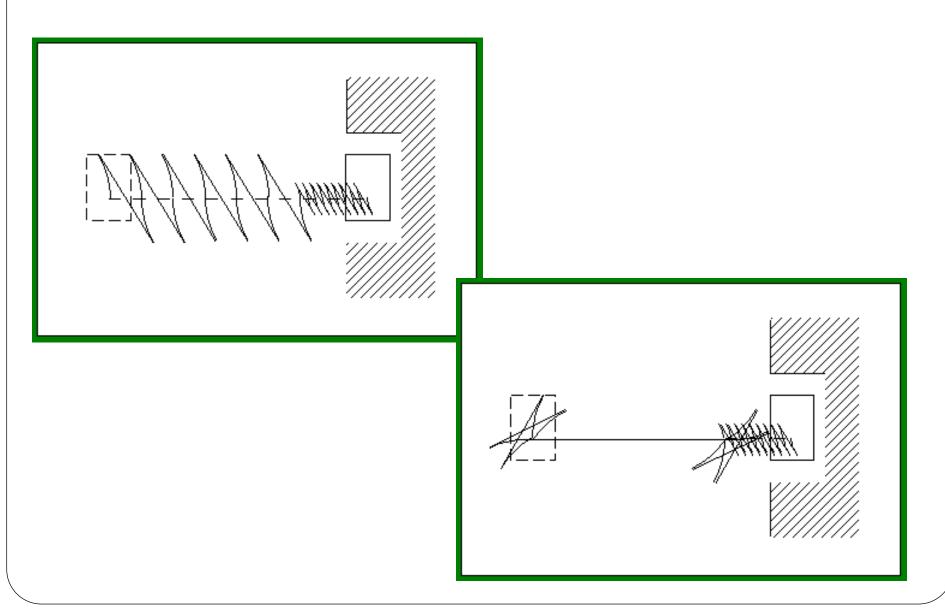


RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON'S RBE 550 Combination $(x_1, y_1, \theta_0 + \delta \theta)$ $(x_2, y_2, \theta_0 + \delta \theta)$ 80 $(x_0,\,y_0,\,\theta_0)$ $(x_0, y_0, \theta_0 + 2\delta\theta)$ + + (x'y'9) (x,y,0) (x,y,0) у. - **A**1 τ_1

RBE 550 MOTION PLANNING Based on **Dr. Dmitry Berenson**'s RBE

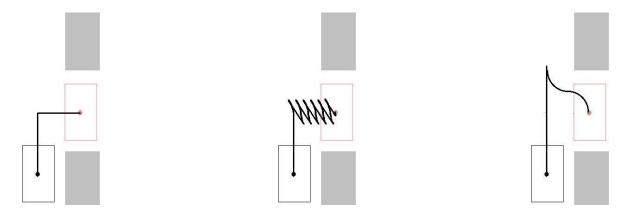
550

Path Examples



Drawbacks

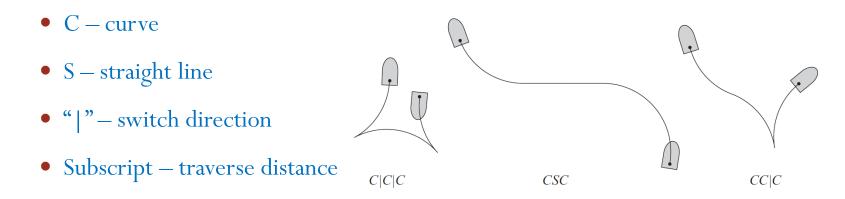
• Final path can be far from optimal



- Not applicable to car that can only move forward
 - e.g., think of an airplane

Optimal Solution?

- Reed and Shepp (RS) Path
 - Optimal path must be one of a discreet and computable set of curves
 - Each member of this set consists of sequential straight-line segments and circular arcs at the car's **minimum turning radius**
- Notation



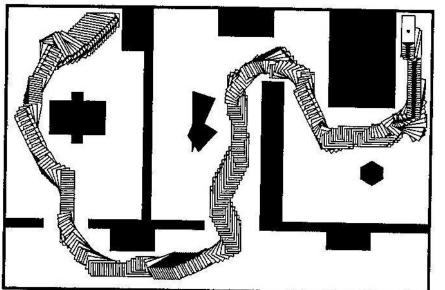
Reeds and Shepp Paths

- Given any two configurations
 - The shortest RS paths between them is also the **shortest** path
 - The optimal path is guaranteed to be contained in the following set of path types

 $\{C \mid C \mid C, \quad CC \mid C, \quad C \mid CC, \quad CC_a \mid C_aC, \quad C \mid C_aC_a \mid C, \\ C \mid C_{\pi/2}SC, \quad CSC_{\pi/2} \mid C, \quad C \mid C_{\pi/2}SC_{\pi/2} \mid C, \quad CSC \}$

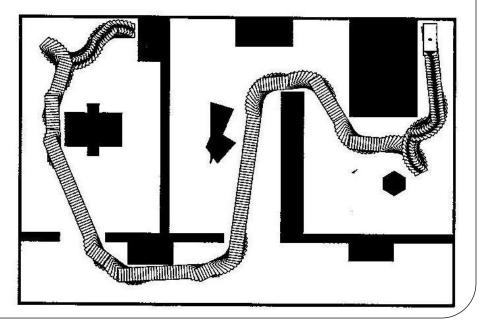
- Strategy
 - In the absence of obstacles, look up the optimal path from the above set using a map indexed by the goal configuration relative to the initial configuration
 - Shortest path may not be unique

Example of Generated Path



Nonholonomic

Holonomic



Discrete Planning

- Strategies
 - Search for **sequence of primitives** to get to a goal state
 - Compute **State Lattice**, search for sequence of states in lattice
 - By construction of state lattice, can always get between these states

Sequencing of Primitives

- Discretize control space
 - Barraquand & Latombe, 1993
 - 3 arcs (+ reverse) at κ_{max}
 - Discontinuous curvature
 - Cost = number of reversals
 - Dijkstra's Algorithm

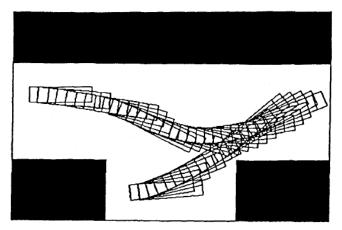
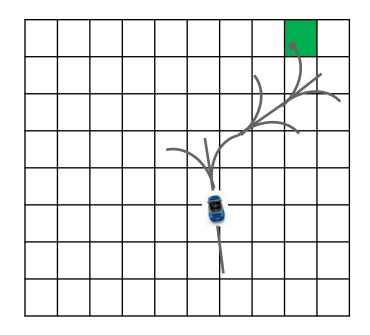


Fig. 4. Parking a car.



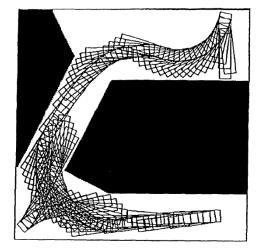
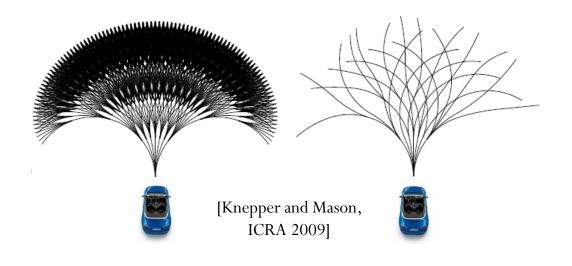


Fig. 5. Car maneuvering in a cluttered workspace.

Sequencing of Primitives

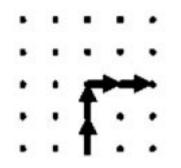
- Choice of set of primitives affects
 - Completeness
 - Optimality
 - Speed
- Seeks to build good (small) sets of primitives



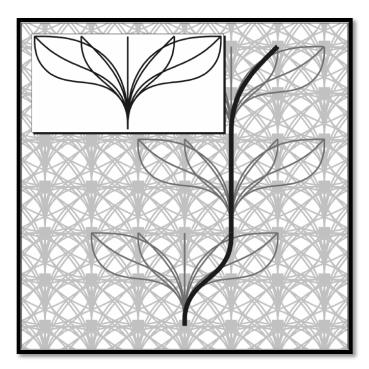
State Lattice

- Pre-compute state lattice
- Two methods to get lattice
 - Forward For certain systems, can sequence primitives to make lattice
 - Inverse Discretize space, use BVP solvers to find trajectories between

states

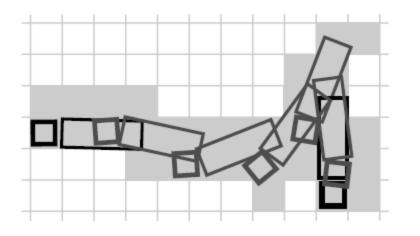


Traditional lattice yields discontinuous motion



State Lattice

- Impose continuity constraints at graph vertices
- Search state lattice like any graph (i.e. A*)
- Pre-compute swept volume of robot for each primitive for faster collision check



Pivtoraiko et al. 2009

Sampling-Based Planning

- Forming a full state lattice is **impractical** for high dimensions, so sample instead.
- IMPORTANT: We are now sampling **state space** (position and velocity), not C-space (position only)
- Why is this hard?
 - **Dimension** of the space is **doubled** position and velocity
 - Moving between points is harder (can't go in a straight line)
 - **Distance metric** is unclear
 - We usually use Euclidian, even though it's not the right metric

RBE 550 MOTION PLANNING Based on **Dr. Dmitry Berenson**'s RBE

550

PRM-style Non-Holonomic Planning

- Same as regular PRM
 - Sampling, graph building, and query strategies
- Problem
 - Local planner needs to reach an **EXACT** state (i.e. a given node) while obeying non-holonomic constraints

 X_{G} X_I

PRM-style Non-Holonomic Planning

- In general BVP problem
 - use general solver (slow)
- In practice
 - Local planner specialized to system type
- Example
 - For Reeds-Shepp car, can compute optimal path

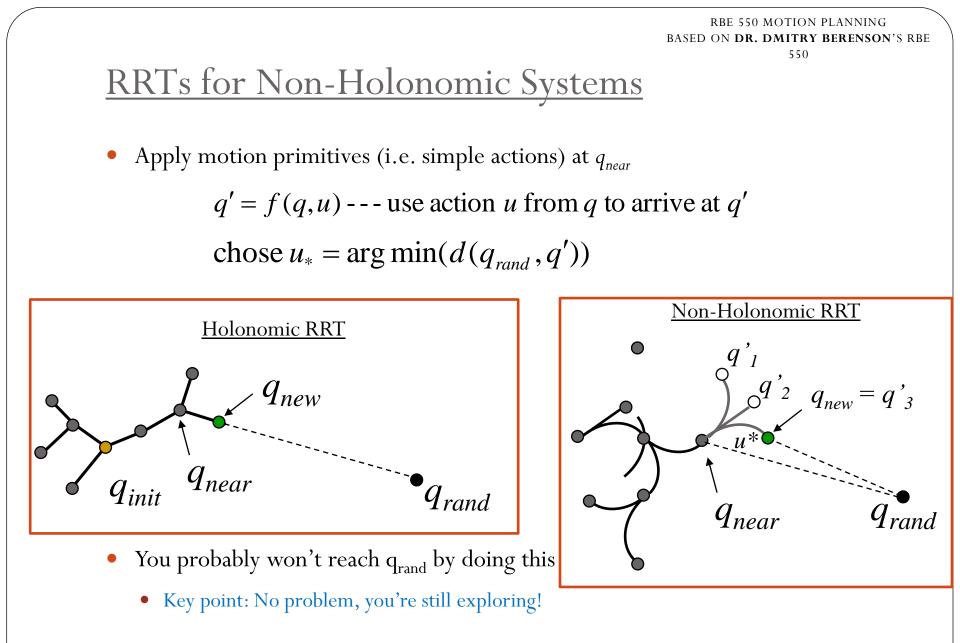
 X_{G} X_I

RRT-style Non-Holonomic Planning

• RRT was originally proposed as a method for non-holonomic planning

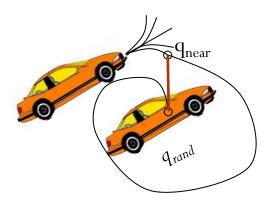
• Sampling and tree building is the same as regular RRT

- Problem?
 - Not all straight lines are valid, can't extend toward nodes
 - Use **motion primitives** to get as close to target node as possible

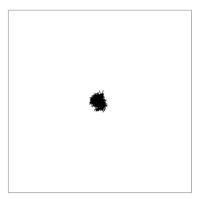


RRTs and Distance Metrics

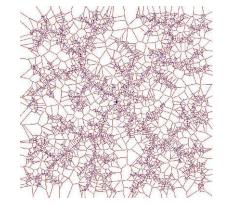
- Hard to define *d*, the distance metric
 - Mixing velocity, position, rotation ,etc.
- How do you pick a good q_{near} ?



Configurations are close according to Euclidian metric, but actual distance is large

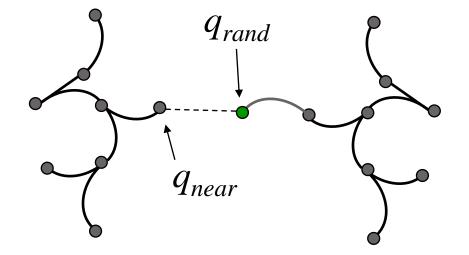


Random Node Choice (bad distance metric)



Voronoi Bias (good distance metric)

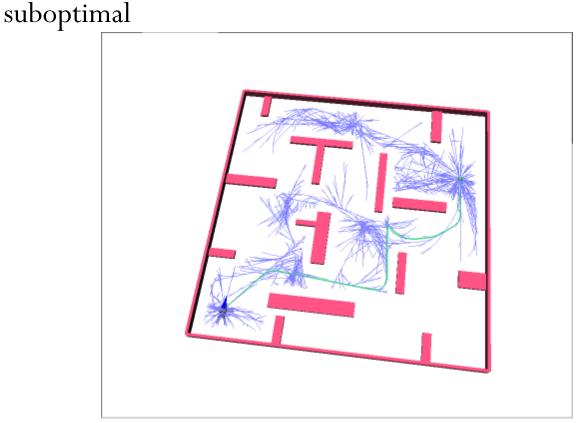
BiDirectional Non-Holonomic RRT



• How do we bridge these two points?

Non-holonomic Smoothing

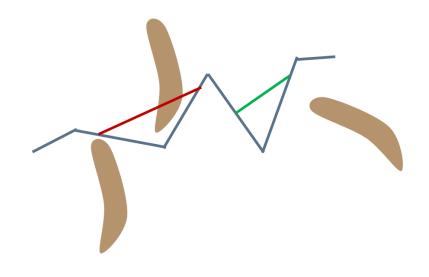
• Similar to holonomic case, paths produced can be highly



Hovercraft with 2 Thrusters in 2D

Non-Holonomic Smoothing

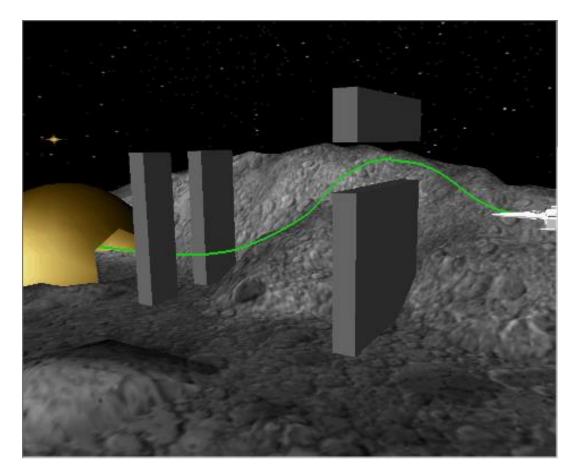
- Smoothing methods:
 - General trajectory optimization
 - Convert path to cubic B-spline
 - Be careful about collisions
- Can we use shortcut smoothing?



RBE 550 MOTION PLANNING Based on **DR. Dmitry Berenson**'s RBE

550

<u>RRTs can Handle High DOF</u>



12DOF Non-Holonomic Motion Planning

<u>Summary</u>

- Non-holonomic constraints are constraints that must involve derivatives of position variables
- Discrete Non-Holonomic Planning
 - Search for sequence of primitives to get to a goal state
 - Compute *State Lattice*, search for sequence of states in lattice
- Sampling-based Non-Holonomic Planning
 - Adapt PRM to use BVP solver
 - Adapt RRT to use motion primitives (+ BVP solver for BiDirectional case)

Homework

- Start reading papers from class website
 - Bring questions to class
- Make sure to read Presentation Guidelines
- Make sure to look at Presentation Grading Sheet
- Make sure to look at Review Guidelines