<u>Sampling-based Planning 1</u>

Jane Li

Assistant Professor

Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11

<u>Recap</u>

- **Discrete planning** is best suited for
 - Low-dimensional motion planning problems
 - Problems where the **control set** can be **easily discretized**

• What if we need to plan in **high-dimensional** spaces?

Discrete Planning – Limitation

- Discrete search
 - Run-time and memory requirements are very sensitive to branching factor (number of successors)
 - Number of successors depend on **dimension**
 - For a 3-dimensional 8-connected space, how many successors?
 - For an n-dimensional 8-connected space, how many successors?

8-connected

Motivation

- Need a path planning method not so sensitive to dimensionality
- Challenges:
 - Path planning is PSPACE-hard [Reif 79, Hopcroft et al. 84, 86]
 - Complexity is exponential in dimension of the C-space [Canny 86]

What if we weaken **completeness** and **optimality** requirements?

Real robots can have 20+ DOF!

Weakening Requirements

- Probabilistic completeness
 - Given a solvable problem, the probability that the planner solves the problem goes to 1 as time goes to infinity
- Feasibility
 - Path obeys all constraints (usually obstacles)
 - A feasible path can be optimized *locally* after it is found

Sampling-based Planning

• Main idea

• Instead of systematically-discretizing the C-space, take **samples** in the C-

space and use them to construct a path

Discrete planning

Sampling-based planning

<u>Comparison</u>

Advantages

- Don't need to **discretize** C-space
- Don't need to **explicitly represent** C-space
- Not sensitive to C-space dimension

<u>Disadvantages</u>

- Probability of sampling an area depends on the area's size
 - Hard to sample *narrow passages*
- No strict completeness/optimality

<u>Outline</u>

- Randomized Path Planner (RPP)
- Probabilistic Roadmap (PRM)
 - Construct and Search in PRM
 - Performance
 - Coverage, connectivity and completeness

Randomized Path Planner (RPP)

- Main idea:
 - Follow a potential function, occasionally introduce random motion
 - **Potential field** biases search toward goal
 - Random motion avoids getting stuck in local minima

Barraquand and Latombe in 1991 at Stanford

Randomized Path Planner (RPP)

- Advantage:
 - Doesn't get stuck in local minima
- Disadvantage Parameters needed to
 - Define potential field
 - Decide when to apply random motion
 - How much random motion to apply

Probabilistic Roadmap (PRM)

- Main idea:
 - **Build** a roadmap of the space from sampled points
 - **Search** the roadmap to find a path
- Roadmap should capture the **connectivity** of the free space

Kavraki, Lydia E., Petr Svestka, J-C. Latombe, and Mark H. Overmars. "Probabilistic roadmaps for path planning in high-dimensional configuration spaces." Robotics and Automation, IEEE Transactions on 12, no. 4, 1996.

Probabilistic Roadmap (PRM)

- PRM Two steps
 - "Learning" Phase
 - Construction Step
 - Expansion Step
 - Query Phase
 - Answer a given path planning query
- PRMs are known as **multi-query** algorithms,
 - Roadmap can be re-used if environment and robot/envrionment remain unchanged between queries.

550

<u>Example</u>

"Learning" Phase

- Construction step:
 - Build the roadmap by sampling (random) free configurations
 - Connect them using a fast *local planner* collision checking
 - Store these configurations as nodes in a **graph**
 - In PRM literature, **nodes** are sometimes called **"milestones"**
 - Edges of the graph are the paths between nodes found by the local planner

Construction Step

Sampling Collision-free Configurations

- Uniform random sampling in C-space
 - Easiest and most common
 - AKA "(Acceptance)-Rejection Sampling"
- Steps
 - Draw random value in allowable range for each DOF, combine into a vector
 - Place robot at the configuration and check collision
 - Repeat above until you get a collision-free configuration
- MANY other ways to sample ...

Construction Step

Finding Nearest Neighbors (NN)

- Need to decide a **distance metric** D(q₁,q₂) to define "**nearest**"
 - D should reflect **likelihood of success** of local planner connection (roughly)
 - $D(q_1,q_2)$ is **small** \rightarrow success should be **likely**
 - $D(q_1,q_2)$ is **large** \rightarrow success should be **less likely**
- By default, use Euclidian distance:

 $D(q_1,q_2) = ||q_1 - q_2||$

- Can weigh different dimensions of C-space differently
 - Often used to weigh translation vs. rotation

Finding Nearest Neighbors (NN)

- Two popular ways to do NN in PRM
 - Find k nearest neighbors (even if they are distant)
 - Find all nearest neighbors within a certain distance
 - Naïve NN computation can be slow with thousands of nodes
 - use *kd-tree* to store nodes and do NN queries

KD-trees

- A kd-tree
 - a data-structure that recursively divides the space into bins that contain points (like Oct-tree and Quad-tree)
 - NN searches through bins (not individual points) to find nearest point

Search in KD-Tree for Nearest Neighbor

• Goal – Find the closest point to the query point, in a 2D tree

RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE 550

- Check the distance from the node point to query point
- Recursively search if a subtree contains a closer point

<u>KD-tree</u>

- Performance
 - Much **faster** to use kd-tree for **large** numbers of nodes
 - **Cost** of constructing a kd-tree is **significant**
 - Only regenerate tree once in a while (not for every new node!)
- Implementation
 - kd-tree code is easy to find online

Construction Step

Local Planner

- In general, local planner can be **anything** that attempts to find a path between points,
 - Even another PRM!
- Local planner needs to be **fast**
 - It's called many times by the algorithm
- Easiest and most common:
 - Connect the two configurations with a straight line in C-space,
 - Check that line is collision-free
 - Advantages:
 - Fast
 - Don't need to store local paths

Expansion Step

- Problem Disconnected components that should be connected
 - i.e., you haven't captured the true connectivity of the space

- Expansion step uses **heuristics** to sample more nodes in an effort to connect disconnected components

 - Unclear how to do this the "right" way, very **environment-dependent**

Possible ways to measure the connection difficulty?

Possible Heuristics

- # of Nodes nearby
 - For a node **c**, count the # of nodes **N** within a predefined distance
 - Uniform random sampling,
 - N is small \rightarrow obstacle region may occupy large portion of **c**'s neighborhood
 - Heuristics = 1/N
- Distance to nearest reacheable neighbor
 - For a node **c**, find the distance **d** to the nearest connected component that doesn't contains this node
 - **d** is small \rightarrow **c** lies in the region where two components fail to connect
 - Heuristics = 1/d
- Others
 - Behavior of local planner?
 - Always fail to connect \rightarrow difficult region

Query Phase

- Given a start q_s and goal q_g
 - 1. **Connect** them to the roadmap using local planner
 - May need to try more than k nearest neighbors before connection is made
 - 2. Search G to find shortest path between q_s and q_g using A*/Dijkstra's/etc.

Path Shortening / Smoothing

- **Never** use a path generated by a sampling-based planner without smoothing it!!!
- "Shortcut" Smoothing

- For i = 0 to MaxIterations
- Pick two points, q1 and q2, on the path randomly
- Attempt to connect (q1, q2) with a line segment
- If successful, replace path between q1 and q2 with the line segment

550

Shortcut Smoothing

550

Shortcut Smoothing

550

Shortcut Smoothing

PRM Failure Modes

- 1. Can't connect q_s and q_g to any nodes in the graph
 - Come up with an example in the graph below
- 2. Can't find a path in the graph but a path is possible
 - Come up with in example in the graph below

Why do failures happen?

- Local planner is too simple
 - Can use more sophisticated local planner
- Roadmap doesn't capture connectivity of space
 - Can run the learning phase longer
 - Can change **sampling strategy** to focus on narrow passages

What happens in the limit?

- What if we ran the construction step of the PRM for infinite time...
 - What would the graph look like?
 - Would it capture the connectivity of the free space?
 - Would any start and goal be able to connect to the graph?
 - Is the PRM algorithm probabilistically complete?

Issues of Probabilistic Roadmaps

- Coverage
- Connectivity

Is the Coverage Adequate?

• Milestones should be distributed so that almost **any** point of the configuration space can be connected by a straight line segment to one milestone.

Connectivity

• There should be a **one-to-one correspondence** between the connected components of the roadmap and those of the field *F*.

Narrow Passages

- Connectivity is difficult to capture for narrow passages.
- Narrow passages are difficult to define.

• How to characterize coverage & connectivity?

Expansiveness

Definition: Visibility Set

- Visibility set of *q*
 - All configurations in F that can be connected to q by a straight-line path in F
 - All configurations seen by q

Definition: C-good

Every free configuration sees at least ε fraction of the free space,
ε in (0,1].

Definition: Lookout of a Subset S

Subset of points in S that can see at least β fraction of F\S, β is in (0,1].

Definition: $(\boldsymbol{\varepsilon}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ - Expansive

- The free space *F* is $(\mathcal{E}, \alpha, \beta)$ -expansive if
 - Free space *F* is *E*-good
 - For each subset S of F, its β-lookout is at least α fraction of S. ε, α, β are in (0,1]

F is ε -good $\rightarrow \varepsilon$ =0.5

 β -lookout $\rightarrow \beta = 0.4$

 $\frac{\text{Volume}(\beta\text{-lookout})}{\text{Volume}(S)} \rightarrow \alpha = 0.2$

F is $(\varepsilon, \alpha, \beta)$ -expansive, where $\varepsilon = 0.5$, $\alpha = 0.2$, $\beta = 0.4$.

Why Expansiveness?

- \mathcal{E} , α , and β measure the **expansiveness** of a free space.
 - Bigger ε , α , and $\beta \rightarrow$ easier to construct a roadmap with good connectivity and coverage.

Why Expansiveness?

- Connectivity
 - Probability of achieving good connectivity increases exponentially with the number of milestones (in an expansive space).
 - If ε , α , β decreases, then need to increase the number of milestones (to maintain good connectivity)
- Coverage
 - Probability of achieving good coverage, increases exponentially with the number of milestones (in an expansive space).

<u>Completeness</u>

- Complete algorithms are slow.
 - A **complete** algorithm finds a path if one exists and reports no otherwise.
- Heuristic algorithms are unreliable.
 - Example: potential field
- <u>Probabilistic completeness</u>
 - Intuition If there is a solution path, the algorithm will find it with high probability.
 - In an expansive space, the probability that a PRM planner fails to find a path when one exists goes to 0 exponentially in the number of milestones (~ running time).

Readings

• Read "How to Read a Paper" guide (link on website)

Lazy Collision Checking

• Eliminate the majority of collision checks using a lazy strategy

