
RBE 550 MOTION PLANNING 
BASED ON DR. DMITRY BERENSON’S RBE 

550 

Jane Li 

Assistant Professor 

Mechanical Engineering & Robotics Engineering 

http://users.wpi.edu/~zli11 

 

Collision Detection 



RBE 550 MOTION PLANNING 
BASED ON DR. DMITRY BERENSON’S RBE 

550 

Euler Angle  

 Euler angle – Change the orientation of a rigid body to by  

 Applying sequential rotations about moving axes 
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No Gimbal Lock 

 Start 

Yaw Pitch Roll 

End 
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Euler Angle and Gimbal 

 Applying Euler angle rotation behaves as if  

 Changing the orientation of an object using real gimbal set – a mechanism  

 As a mechanism, gimbal set can have singularity  

 Gimbal lock 

 At this configuration, gimbal set can change the roll in many ways, but 

 Cannot change the yaw of the plane, without changing the pitch at the same time  

  Lose the control of one DOF for yaw  
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Gimbal Lock – Singularity Problem 

 Singularities 
 Why does the ring for yaw and ring for roll do the same thing?  

 Let’s say this is our convention: 

 

 

 Lets set β = 0 

 

 

 Multiplying through, we get: 

 

 

 Simplify: 

 
α and γ  do the same thing! 
We have lost a degree  
of freedom! 
 



RBE 550 MOTION PLANNING 
BASED ON DR. DMITRY BERENSON’S RBE 

550 

Gimbal Lock is a Singularity Problem  

 

Lose the control of  Yaw 
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Get out of gimbal lock? 

 

To Pitch, First need to get out of gimbal lock 
Rotate ring for yaw back and forth, while 
rotate the ring for pitch  
Unexpected curved Motion 
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Why Rotation Matrix and Quaternion 

 Why rotation matrix and quaternion do not have gimbal lock?  

 3D Rotation  quaternion, rotation matrix --- one to one 

 3D Rotation  Euler angles --- not one-to-one 

 Sometimes, the dimension of the Euler angle space drops to 2 

 

 

 

 

 

 

 

 

 

 



Motivation 

 Find a path in C-space 

 

 

 Compute Cobs – Hard 

 Check if a configuration is collision – Easy 

 Collision detection 

 For a single configuration 

 Along a path/trajectory 



Collision Detection 

 Speed is very important 

 Need to check collision for large number of configurations 

 For most planners, runtime for real-world task depends heavily on the 

speed of collision checking 

 Tradeoff 

 Speed 

 Accuracy  

 Memory usage 

 Increase speed  more memory, less accuracy 

 

 

 



Crowd Simulation 

 

Figure from Kanyuk, Paul. "Brain Springs: Fast Physics for Large Crowds 
in WALLdr E." IEEE Computer Graphics and Applications 29.4 (2009). 



Self-Collision Checking for Articulated Robot  

 Self-collision is typically not an issue for mobile robots 

 Articulated robots must avoid self-collision 

 Parent-child link – set proper joint angle limits 

 With root or other branches – e.g. Humanoid robot? 

 



Self-Collision Checking For Humanoid Robot  

 

(J. Kuffner et al. Self-Collision and Prevention for Humanoid Robots. Proc. IEEE Int. 
Conf. on Robotics and Automation, 2002) 
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Outline 

 Representing Geometry 

 Methods 

 Bounding volumes 

 Bounding volume Hierarchy  

 Dynamic collision detection 

 Collision detection for Moving Objects 

 Feature tracking, swept-volume intersection, etc.  
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2D Representation 

 2D robots and obstacles are usually represented as  

 Polygons 

 Composites of discs 
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3D Representation 

 Many representations - most popular for motion planning are 

 Triangle meshes 

 Composites of primitives (box, cylinder, sphere) 

 Voxel grids 

 

Triangle meshes Composite of primitives Voxel grid 
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3D Representation: Triangle Meshes 

 Triangle mesh 

 A set of triangles in 3D that share common vertices and/or edges 

 Most real-world shapes and be represented as triangle meshes 

 

 

 

 

 

 Delaunay Triangulation 

 A good way to generate such meshes (there are several algorithms) 

 



Delaunay Triangulation 

 Method 

 Sample on the terrain 

 Connect Sample points 

 Which triangulation? 

 



Delaunay Triangulation 

 Goal – Avoid sliver triangle  

 Find the dual graph of Voronoi graph 

Delaunay Graph Voronoi Graph 
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Collision Checking: Intersecting Triangle Meshes 

 The brute-force way 

 Check for intersection between every pair of triangles 
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Collision Checking for Triangles 

 Check if a point in a triangle 

 

 

 

 Check if two triangles intersect 
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Collision Checking: Intersecting Triangle Meshes 

 Triangle-Triangle intersection checks have a lot of corner cases; 

checking many intersections is slow 

 See “O'Rourke, Joseph. Computational geometry in C. Cambridge university 

press, 1994.” for algorithms. 

 Can we do better than all-pairs checking? – talk about it later …  
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3D Representation: Triangle Meshes 

 Triangle Meshes are hollow! 

 Be careful if you use them to represent solid bodies 

 

One mesh inside another; no intersection 
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3D Representation: Triangle Meshes 

 Complexity of collision checking increases with the number of triangles 

 Try to keep the number of triangles low 

 

 

 

 

 

 

 

 Algorithms to simplify meshes exist but performance depends on shape 
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3D Representation: Composites of Primitives 

 Advantages:  

 Can usually define these by hand 

 Collision checking is much faster/easier 

 Much better for simulation 

 Disadvantages 

 Hard to represent complex shapes 

 Usually conservative (i.e. overestimate 

true geometry) 
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3D Representations: Voxel Grids 

 Voxel –  

 Short for "volume pixel" 

 A single cube in a 3D lattice 

 Not hollow like triangle meshes 

 Good for 'deep' physical 

simulations such as heat diffusion, 

fracture, and soft physics 
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3D Representations: Voxel Grids 

 How to make a voxel model from triangle mesh?  

 Grid the space 

 Grid resolution – without losing important details 

 Grid dimension – just enough to cover the model – efficiency 

 Solidify a shell representing the surface 

 Fill it in using a scanline fill algorithm 

 



Bounding Volume 

 Bounding Volume 

 A closed volume that completely contains the object (set). 

 If we don’t care about getting the true collision,  

 Bounding volumes represents the geometry (conservatively)  

 Various Bounding Volumes 

 Sphere 

 Axis-Aligned Bounding Boxes (AABBs) 

 Oriented Bound Boxes (OBBs) 
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Spheres 

 Invariant to rotation and translations,  

 Do not require being updated 

 Efficient 

 constructions and interference tests 

 Tight? 
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AABBs 

 Axis-Aligned Bounding Boxes (AABBs) 

 Bound object with one or more boxes oriented along the same axis 
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AABBs 

 How can you check for intersection of AABBs? 
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AABBs 

 Not invariant 

 Efficient 

 Not tight 
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OBBs 

 Oriented Bound Boxes (OBBs) are the same as AABBs except  

 The orientation of the box is not fixed 

 

 

 

 

 

 

 OBBs can give you a tighter fit with fewer boxes 
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OBBs 

 How do you check for intersection of OBBs? 

 Hyperplane separation theorem 

 

 
In 2D? In 3D? 
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Compute OBBs 
• N points ai = (xi, yi, zi)T, i = 1,…, N 

 
• SVD of A = (a1 a2 ... aN) 

   A = UDVT where  
• D = diag(s1,s2,s3) such  

that s1 ≥ s2 ≥ s3 ≥ 0  
• U is a 3x3 rotation matrix  

that defines the principal  
axes of variance of the ai’s  
 OBB’s directions  
 

• The OBB is defined by max and min  
coordinates of the ai’s along these directions 
 

• Possible improvements: use vertices of convex hull of the ai’s or 
dense uniform sampling of convex hull 

 

x 

y 

X 

Y 
rotation  
described by 
matrix U 
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OBBs 

 Invariant 

 Less efficient to test 

 Tight 
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Comparison of BVs 

 

Sphere AABB OBB 

Tightness - -- + 
Testing + + o 

Invariance yes no yes 

No type of BV is optimal for all situations 
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Bounding Volume Hierarchy (BVH) 

 Bounding Volume Hierarchy method  

 Enclose objects into bounding volumes (spheres or boxes)  

 Check the bounding volumes first 

 Decompose an object into two 
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Bounding Volume Hierarchy (BVH) 

 Bounding Volume Hierarchy method  

 Enclose objects into bounding volumes (spheres or boxes)  

 Check the bounding volumes first 

 Decompose an object into two 

 Proceed hierarchically 
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Bounding Volume Hierarchy (BVH) 

 Construction 

 Not all levels of hierarchy need to have 

the same type of bounding volume 

 Highest level could be a sphere 

 Lowest level could be a triangle mesh 

 Ideal BVH 

 Separation 

 Balanced tree  
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Construction of a BVH  

 Strategy 

 Top-down construction  

 At each step, create the two children of a BV 

 Example 

 For OBB, split longest side at midpoint 
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Collision Detection using BVH 

 

Two objects described by their  
precomputed BVHs 

A 

B C 

D E F G 

A 

B C 

D E F G 
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Collision Detection using BVH 

 

AA 

CC CB BC BB 

Search tree 

A 
A 

A 

B C 

D E F G 
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Collision Detection with BVH 

 

If two leaves of the BVH’s overlap 
(here, G and D) check their content 
for collision 

CC CB BC BB 

AA 
Search tree 

GE GD FE FD 

A 

B C 

D E F G 

G D 
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Search Strategy 

 If there is collision 

 It is desirable to detect it as quickly as possible  

 Greedy best-first search strategy with  

 Expand the node XY with largest relative overlap (most likely to contain a 

collision) 

 Many ways to compute distance d  

 

 rX 

rY d 

X 

Y f(N) = d/(rX+rY)   
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Static vs. Dynamic VS Collision Detection 

 Static checks Dynamic checks 
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Usual Approach to Dynamic Checking 

1) Discretize path at some fine resolution ε 

2) Test statically each intermediate configuration 

 

< ε 
•  ε too large  collisions are missed 
•  ε too small  slow test of local paths 

1 

2 

3 
2 

3 

3 

3 
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Testing Path Segment vs. Finding First Collision 

 PRM planning  

 Detect collision as quickly as possible  Bisection strategy 

 

 

 

 

 Physical simulation, haptic interaction 

 Find first collision  Sequential strategy 
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Collision Checking for Moving Objects 

 Feature Tracking 

 Swept-volume intersection 
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Feature Tracking 

 Compute the Euclidian distance of two polyhedra 

 Problem setup 

 Each object is represented as a convex polyhedron (or a set of polyhedra) 

 Each polyhedron has a field for its faces, edges, vertices, positions and 

orientations  features 

 The closest pair of features between two polyhedra 

 The pair of features which contains the closest points 

 Given two polyhedra, find and keep update their closest features (see [1])  

 

[1] M. Lin and J. Canny. A Fast Algorithm for Incremental Distance Calculation. Proc. IEEE 
Int. Conf. on Robotics and Automation, 1991 
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Feature Tracking 

 Strategy 
 The closest pair of features (vertex, edge, 

face) between two polyhedral objects are 

computed at the start configurations of 

the objects 

 During motion, at each small increment of the 

motion, they are updated 

 Efficiency derives from two observations 
 The pair of closest features changes relatively 

infrequently  

 When it changes the new closest features will 

usually be on a boundary of the previous 

closest features 
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Swept-volume Intersection 

 

 ε too large  collisions are missed 
 ε too small  slow test of local paths 
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Swept-volume Intersection 

 

 ε too large  collisions are missed 
 ε too small  slow test of local paths 
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Comparison 

 Bounding-volume (BV) hierarchies 

 Discretization issue 

 Feature-tracking methods 

 Geometric complexity issue with highly non-convex objects 

 Swept-volume intersection 

 Swept-volumes are expensive to compute. Too much data. 
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Readings 

 Principles CH7 

 Review of Probability Theory 

 https://drive.google.com/file/d/0B7SwE0PHMbzbU1FqcnNORTFZOW

M 
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