Configuration Space

Jane Li

Assistant Professor

Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11

Potential field

550

Attractive & repulsive fields

$$
F_{\text{att}} = -\nabla \phi_{\text{att}} = -k_{\text{att}}(x - x_{\text{goal}})
$$

$$
F_{\text{rep}} = -\nabla \phi_{\text{rep}} = \begin{cases} k_{\text{rep}} \left(\frac{1}{\rho} - \frac{1}{\rho_0} \right) \frac{1}{\rho^2} \frac{\partial \rho}{\partial x} & \text{if } \rho \le \rho_0, \\ 0 & \text{if } \rho > \rho_0 \end{cases}
$$

-
- *x* : position of the robot
- ρ : distance to the obstacle
- ρ_0 : distance of influence

[Khatib, 1986]

Recap

We learned about how to plan paths for a point

RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE 550

- Real-world robots are **complex**, often **articulated** bodies
	- What if we invented a **space** where the robots could be treated as **points**?

Definition

- C**onfiguration** a specification of the position of **every** point on the object.
	- A configuration q is usually expressed as a vector of the **Degrees of Freedom (DOF)** of the robot

 $q = (q_1, q_2, \ldots, q_n)$

- **Configuration space C** the set of all possible configurations.
	- A configuration *q* is a point in *C*

Degree of Freedom – Examples

Dimension of Configuration Space

- Dimension of a Configuration Space
	- The **minimum** number of DOF needed to specify the configuration of the object completely.

Example – A Rigid 2D Mobile Robot

- 3-parameters: $q = (x, y, \theta)$ with $\theta \in [0, 2\pi)$.
	- 3D configuration space
	- Topology: $SE(2) = R^2 \times S^1$ (a 3D cylinder)

Configuration Space for Articulated Objects

- Articulated object $-A$ set of rigid bodies connected by joints
- For articulated robots (arms, humanoids, etc.), the DOF are **usually** the joints of the robot
- Exceptions?
- Topology of two-link manipulator?
	- With joint limits?

RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE 550

Paths and Trajectories in C-Space

• Path

• A continuous curve connecting two configurations q_{start} and q_{goal}

 $\tau : s \in [0,1] \rightarrow \tau(s) \in C$

Such that $\tau(0) = q_{start}$ and $\tau(1) = q_{goal}$.

- Trajectory
	- A path parameterized by time

 $\tau : t \in [0, T] \rightarrow \tau(t) \in C$

550

Obstacles in C-space

Obstacles in C-space

- (Collision)-free configuration *q*
	- Robot placed at *q* has no intersection with any obstacle in the workspace
- Free Space C_{free}
	- A subset of *C* that contains all free configurations
- Configuration space obstacle $-C_{obs}$
	- A subset of *C* that contains all configurations where the robot collides with **workspace obstacles** or with **itself** (self-collision)

- A simple example
	- 2D translating robot
	- Polygonal obstacle in task space

Example – Disc in 2D workspace

configuration space (2D)

Minkowski Sum

$A \oplus B = \{a+b \mid a \in A, b \in B\}$

Minkowski Sum

$A \oplus B = \{a+b \mid a \in A, b \in B\}$

Minkowski Sum

Minkowski Sum

Modified based on Slides by Prof. David Hsu, University of Singapore Example – 2D Robot with Rotation robot workspace θ reference directi reference point *x y*

Minkowski Sum

 Can Minkowski Sums be computed in higher dimensions efficiently?

Find a configuration that keeps the knot interlocked but without colliding with the cubic frame?

Computing the Minkowski sum of **non-convex** polyhedra – **Time Complexity**: $O(n^3m^3)$

Why need to study the topology of C-space?

Because in topology, a coffee mug can be equivalent to a donut

Two paths τ and τ' with the **same endpoints** is

Homotopic

If one path can be deformed into **continuously** deformed into the other

Homotopic paths

- A homotopic class of paths
	- All paths that are homotopic to one another.

Homotopic paths

- A cylinder without top and bottom
- τ_1 and τ_2 are homotopic
- τ_1 and τ_3 are not homotopic

Connectedness of C-Space

- *C* is **connected**
	- If every two configurations can be connected by a path.
- *C* is **simply-connected**
	- if any two paths connecting the **same** endpoints are **homotopic**.
	- Examples: R^2 or R^3
- Otherwise *C* is multiply-connected.
	- Can you think of an example?

Distance in C-space

A distance function *d* in configuration space **C** is a function

$$
d:(q,q')\in C^2\to d(q,q')\geq 0
$$

Such that

- $d(q, q') = 0$ if and only if $q = q'$,
- $d(q, q') = d(q', q)$,
- $d(q, q') \leq d(q, q'') + d(q'', q'')$

Discussion

 Do we need to have an explicit representation of C-obstacles to do path planning?

- Do we need a specialized distance metric in C-space to do path planning?
	- Can we use Euclidian distance between configurations?
	- Can we use Euclidian distance for all the problems?

Distance metric

L1-norm (Manhattan distance) – follow the grid, like a taxi driver

$$
d_1(\mathbf{p},\mathbf{q})=\|\mathbf{p}-\mathbf{q}\|_1=\sum_{i=1}^n|p_i-q_i|,
$$

L2-norm (Euclidian distance)

$$
\mathrm{d}(\mathbf{p},\mathbf{q})=\mathrm{d}(\mathbf{q},\mathbf{p})=\sqrt{(q_1-p_1)^2+(q_2-p_2)^2+\cdots+(q_n-p_n)^2}
$$

•
$$
L_{\infty}
$$
-norm (chessboard distance)

$$
D_{\mathrm{Chebyshev}}(p,q):=\max_i (|p_i-q_i|).
$$

Read

- $\bullet~$ Principles: Appendix H $-$ Graph representation and basic search
- HW1 is posted
	- Due 2/1 at 12 noon

Examples in $R^2 \times S^1$

- \bullet Consider R² x S¹
	- $q = (x, y, \theta), q' = (x', y', \theta')$ with $\theta, \theta' \in [0, 2\pi)$
	- $\bullet \ \alpha = \min \{ |\theta \theta' | , 2\pi |\theta \theta' | \}$

$$
d(q,q') = \max_{a \in A} ||a(q) - a(q')||
$$

\n
$$
= \max_{a \in A} \sqrt{(x-x')^2 + (y-y')^2 + \alpha r_a}
$$

\n
$$
= \sqrt{(x-x')^2 + (y-y')^2 + \alpha \max_{a \in A} r_a}
$$

\n
$$
= \sqrt{(x-x')^2 + (y-y')^2 + \alpha r_{\max}}
$$

\n
$$
= \sqrt{(x-x')^2 + (y-y')^2 + \alpha r_{\max}}
$$

