/ RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

550

Motion Plannin for Articulated Robots 1

Jane Li
Assistant Professor
Mechanical Engineering & Robotics Engineering

http:/ /users.wpi.edu/~zlil1

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

550

Recap

® We learned about planning algorithrns that generalize across many types

of robots

® But many robots are articulated linkages

® Arms, humanoids, etc.

® (Can we take advantage of this structure in motion planning?

® Yes! But we have to learn how these robots are controlled

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Outline

* Computing the Jacobian
* Using the Jacobian for inverse kinematics
* Using the null space to satisty secondary tasks

® Recursive null—space projection

Definitions

® (C-space is sometimes called joint space for

articulated robots

® Let N be the number of joints (i.e. the dimension of C-

space)

® The end-effector space is called task space
® In 2D:Task space is SE(2) = R? X S!
® In 3D:Task space is SE(3) = R3 X RP?

® [et M be the number of DOF in task space

® A point in task space x is called a pose of the

end-effector

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE\

550

End-Effector pose*
(point is selected arbitrarily)

Joint

N

* Some people call this the Tool
Center Point (TCP)

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Forward Kinematics

® The Forward Kinematics function, given a configuration,

computes the pose of the end-effector:

X =FK(q)

® If N (number of joints) is greater than M (number of task space
DOF), the robot is called redundant
fiiQ— R

joint space (dim Q = N) task space (dim R = M)

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Redundancy
fiQ— R
joint space (dim Q = N) task space (dim R = M)

* If N>M, FK maps a continuum of configurations to one end-effector pose:

L
S

C-space Task space

* If N=M, FK maps a finite number of configurations to one end-effector pose:

FK

C-space Task space

* If N<M, you're in trouble (may not be able to reach a target pose)

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

C-space and Task Space

® For manipulation, we often don’t care about the configuration of the arm (as

long as it’s feasible), we care about what the end-effector is doing

° Controlling an articulated robot is all about computing a C-space motion that

does the right thing in task space

® Inverse Kinematics (IK) is the problem of computing a configuration that places

the end-effector at a given point in task space

° Analytical solutions exist for some robots if N=M

® No unique solution if N > M, Why?

For N > M, what can we do?

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

The Jacobian

® The Jacobian converts a velocity in C-space (dq/dt) to a velocity
in task space (dx/dt)
o Start with Forward Kinematics function

x=FK(q)

e Take the derivative with respect to time:

dx d[FK(g)] dFK(q) dg
dt dt dg dt

* Now we get the standard Jacobian equation:

dx (g) dq dFK(q)
dt dg

=J(q)

Example

c123 —s8123 | Liey + Lacia + Liegos
4 4
ol =g T(01,02,03) = | s123 123 | L1514+ Losio + L3sios

0 0

—Ly1s1 — Lasya — L3syaz

J =Jaxz =
e 8 Lis1 + Laci2 + L3aeci2s

. 01

X — ‘E =Jq=J| 6,
'y .

03

1

—Las12 — L3s123

Loci2 + L3cias

—L35123
L3ci23

RBE 550 MOTION PLANNING
BASED ON DR. DMITRY BERENSON’S R
550

)

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Computing the Jacobian

® The Jacobian — a matrix where each column represents the

effect of a unit motion of a joint on the end-ettector

- dx dx
dg, dg,

!
N

=J(q)

Here x is all the end-effector DOF (position and rotation)

® For simple systems (i.e. up to 3 or 4 links), you can write the FK

function analytically and take its derivative to compute J(q)

The Manipulator Jacobian

x=J(q)q

ox@) ox@) ox(a)
J(CI)Z 8q1 6qz aQn

«—position

&2,(a) &Snla) o &z, (@) e

‘o 0 Prismatic Joint k
“ 11 Revolute Joint k

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Computing the Jacobian: Translation

® You can compute the translation part of J(q) numerically:

J (CI) aql aqz 8qn

ox(@) ox(@ ox(@)

flzo(q) 95221((3]) é:nzn—l(q)

1. Place the robot in configuration q

dx Joint axis
2. For a translation (prismatic) joint: a =V (z axis here)
|

—X—V XP
dqi i i

3. For arotation (hinge) joint:

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Computing the Jacobian: Translation

Vi

| I« axis out-of-plane
|

" and passes through frame origin

w = 0k

angular velocity R'ro!:od:i.t:-:l.v'\ axis
of points in frame
wrk, axis k angular rotation in frame

V=WwWXT
Linear veLoci.l:j/”

of Poi.hl:s n frame vector to POE'“&
wrk, axis k uA fmme

vector from

—] W Joint origin te
AV Ok x r«

endeffector

endeffector

Linear velo ci.hj joiu& rotation axis

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Computing the Jacobian: Rotation

® Represent rotation components with angular velocities

o) ox(@) ox(a) |
J(CI)Z aql a(:12 aQn
flzo(q) 5221(Q) énzn—l(q)

1. Place the robot in configuration q
Joint axis
(z axis here
_ »
2. Extract joint axis in world frame Z; (Q) =V,

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Using the Jacobian for Inverse Kinematics (IK)

® Process:

® Starting at some configuration, iteratively move closer to Xarget

XCurrent

dx d_q

/E:J(q) dt\

<Xtarget— Xcurrent)

® We need to invert the Jacobian to get the joint movement dq/ dt

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Inverting the Jacobian

e [fN=M,

® Jacobian is square = Standard matrix inverse
e [fN>M |

® Pseudo-Inverse

® Weighted Pseudo-Inverse

® Damped least squares

® [terative Jacobian Pseudo-Inverse

Pseudo-Inverse

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

550

JI1] J
JT3gt JT
i=J gz (JIH7T AR L
® (ases 3 Jtn’ J'
(1JT(IJIT)™1 M < N s Fat Jacobian, redundant robot
I = J-1 T = 71 s Square Jacobian, standard pseudo inverse
L(JIT)=1JT m >N s Tall Jacobian, under-actuated robot

Behind Pseudo-inverse

® What does pseudo—inverse optimize?
= J(0)
Where | is tull (row)-rank matrix

° Optimization

Minimize %QTQ given that T = J (9)9

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

A (x|Ax=yj

N(A)={z|Az=0}

>

oL

X

O\

— = Ax—y =0 — V= AX=

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Behind Pseudo-inverse

® Minimize ||X||2 — xI'x given Ax =y
® Derive the optimization problem using Lagrange multipliers

Lz, A\ =x'x+ 2\ (Ax — y)

° Optimal condition

T
—2x + ATA =0 oy x:_?

—AAT)\

))= —2(AAT) "y |

X[y = _ =(AT (AAT) "1y

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Weighted Pseudo-Inverse

q=J(q)
° Weighted Pseudo-Inverse

Tha) = WL (W)

e What to optimize?

Minimize %Hq“i — %TWQ given that T = J(lﬁ})lﬁ}

° Significance of the Weight
e W>(and symmetric
® Large weight - small joint Velocity

° Weight can be chosen proportional to the inverse of the joint angle range

/ RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

J=UxV"!

the SVD routine of Matlab applied to J provides two orthonormal
matrices Uy, and V., and a matrix 2,,,, of the form

!
(o,

o — — —
Y= 2 0,z2z0,=2...20,>0, o,,=...=0,=0

Mx(N-M)

singular values of]
\ Opm)

e The columns of U =2 cigenvectors of J37

e The columns of V =2 cigenvectors of 7]

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Singular Value Decomposition (SVD)
J=Uxv!

mxXn m X m m X mn nXn
21 0 \%a 1
— |:U1 U2 i| TXT rx(n—r) XN
mxr m X (m—r) 0 0 VT
(m—r)Xr (m—r)xX(n—r) (n—r)xXn
vT The orthogonal basis for the subspace of joint velocity that generate non-
rxn zero task space velocities
vT 2 The orthogonal basis for the subspace of joint velocity that gives zero
(n—r)xn _

task space velocity = Null space of]

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Singular Value Decomposition (SVD)
J=Uxv!

m X1 m X 1 m X n nXn
21 0 vt 1
— |:U1 U2 i| TXT rx(n—r) XN
mxr mx(m—r) 0 0 VT
(m—r)Xr (m—r)xX(n—r) (n—r)xXn
U lm ‘o The orthogonal basis for the subspace of achievable task space Velocity X
U2 The orthogonal basis for the subspace of task space velocities X that can

mx(m—r)

not be generated by the robots

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Singular Value Decomposition (SVD)

m X1

20

rxr

J=UxV"!

U T
m X 1m mxn nXn
21 0 VTl
|:U1 U2 i| rXr rx(n—r) X"
mxr m X (m—r) 0 0 VT
(m—r)Xr (m—r)xX(n—r) (n—r)Xmn
The velocity transmission ratio from the joint space to the task space

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

Singular Value Decomposition (SVD)

q Vg PAVA Uzvg=Jq
>

[/] -

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

Singular Value Decomposition (SVD)

q Vg PAVA Uzvg=Jq
—» V' —» X —» U >

Manipulator Configuration and Velocity Ellipsoid
1 : :

R e Ay
0.5 1 _____ ZZAN
05 1
» _Ez o i
%

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE\

Singular Value Decomposition (SVD)

J = UEVT where X =

JT — VETUT where ET =

A=

[

Mx(N-M)

[N—Mp

550

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Singularities

* (J(q)'J(q))is square, but what if (J(q)"J(q)) ' is singular

® E.g., we have lost a degree of freedom?

Q
T

:
|

7 -

A singular configuration: no way to move in x!

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Damped Least Squares

unconstrained) = . 1.. ‘ . compromise between
minimization of a min %"quz + E"b{— anz = H(CD large joint velocity

suitable objective function g and task accuracy

SOLUTION (= Jp,¢ (qQ)X = JT(JJT + lem) X

® Significance
® To render robust behavior when crossing the singularity, we can add a small
constant along the diagonal of (J(q)'](q)) to make it invertible when it is

singular - “damped least-squares”

® The matrix will be invertible but this technique introduces a small

inaccuracy - error?

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Damped Least Squares

® Induced error by DLS

. -1,
e = yz (JJT -+ *u.zIM) X (as in N=M case)

using SVD of J=U3VT = J . =V, U with ZDLS= PP diag{uiz}

(N-M)xp DEN -M)x(N-p)

® Choice of the damping factor !L.I,Z(q) >0
® As a function the minimum singular value = measure of distance to
singularity

® Induce the damping only/mostly in the non-feasible direction of the task

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

[terative Jacobian Pseudo-Inverse Inverse Kinematics

While true

Xcurrcnt = FK(qcurrcnt)

x= (Xtargct - Xcurrcnt)

error = | | x| |
If error < threshold Y v

return Success
q=J@" % Configuration g.yent X current
(| 1q]]> o)

a=a@/11q11) 3%

. VY

qcurren t =Y curren = q target

end

This is a local method, it will get stuck in local minima (i.e. joint limits)!!!
o is the step size
Error handling not shown

A correction matrix has to be applied to the angular Velocity components to map them into the

target frame (not shown)

Null Space of Jacobian

Families of IK Solutions

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE\
550

/ y
YA o/ b,
(X=Y) ~ A \\
N Y (x.y) A
. N
NS 0,/ ’
¢, \q\)_ 0 - -
22 6,
9, ’ \ >
X 7 ¢, X
Families Range of joint angles Reachable

range
(along y axis)

Family 1 (Fig. 10.2.A) | 61 >0, 602 >0, 603 >0 (0,1)

Family 2 (Fig. 10.2.B) | 61 >0, 62 >0, 03 <0 (0.3,1)

Family 3 (Fig. 10.2.C) | 61 >0, 05 <0, 53 >0 (0.3,1)
® Consider #7 > 0

° Family 4 — Flip Family 1 to left plane

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

IK Solutions for Redundant Manipulators

YA
(x,y)
(x.y)
ry
LS
y & 0y
L . ’:,Ris
J
L |

AN
0, S S
= 6, > 0,92 > 0,93 > ()

v

IK Solution — Family 1

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

IK Solutions for Redundant Manipulators

(x.y)
ry
LS
y & 0y
o . ’:,Ris
L/
L - ’
X

4.;1 0, 6, > 0.0, < 0,03 >0

v

IK Solution — Family 2

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

IK Solutions for Redundant Manipulators

4" ~ 91 = 0392 = 0,93 < 0

v

IK Solution — Family 3

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

IK Solutions for Redundant Manipulators

I
__— /'.x0
> >

B X

A (X.Y) Ending point

X — const

(X0.Y,) Starting point

>
N d
T777

Families of IK Solutions

(x,y)

N\
S
6y > 0392 > 0,93 > ()

IK Solution — Family 1

F:amil).rI Configurations: x = 0, ¥, = 0.2

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

0.8F

550

F:amilg.r1 Configurations: x = 0, Yy, = 04

Families of IK Solutions

(X,y) A
\92 e

—

—

0,
N, ©

S S
Al >O?92 <0?93> 0

IK Solution — Family 2

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE\
550

Families of IK Solutions

y
(x,y) « 0’{/’
(1)7-—""—- {OQV
- 1
0,

S

#, > 0,605 >0.0; <0

IK Solution — Family 3

0.8

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE\

550

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Families of IK Solutions

Joint Space Evolution: F1 (red), F2 (green), F3 {blue) Joint Space Evolution: F1 (red), F2 (green), F3 (blue)

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

The Null-space of Jacobian

® We can try to satisfy secondary tasks in the null-space of the Jacobian pseudo-
Inverse

® In linear algebra, the null-space of a matrix A is the set of vectorsV such that,
for any vin V, 0 = Alv.

® You can prove that V is orthogonal to the range of A

range of A
range of A
v
/ : /
X
. \
2D example 3D example

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

The Null-space of Jacobian

® For our purposes, this means that the secondary task will not disturb the
primary task
® The null-space projection matrix for the Jacobian pseudo-inverse is:
+
N(a)=(1-J(q)" J(a))
* To project a vector into the null-space, just multiply it by the above

matrix

secondary
task v

range of

J@*

range of

N(a)

b
K N (a)v

X

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Why does this work?

* First, decompose v into two orthogonal parts:

/ Part of v that is in the range of A
y
V=rin__

Part of v that is in the left

null-space of 4 n | av
r /

nN=v—-r=v-—Av

Need to find this
A'n=0 range of 4
AT (v— AV) =0
ATAV=A'v

V=(ATA)ATY

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Why does this work?

e Use this relationship to get r

V=(ATA) ATV oL
N = A\7 r /
r=A(ATA) ATy
r=AA"v

range of A

* Now we can find n, the part of v that is in the left null-space of 4

n=v-AA'v=(I - AA")v

This is the left nuﬂ—space projection matrix

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Why does this work?

® Now we plug in the Jacobian pseudo-inverse

y

n= (I _ AA+)V secondary

. range of task v range of
A=J(q) J@* N(Q)
n=(—-J(@)" J(@)V ‘s x

I kn=N(Q)V

This is N(q)

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Combining tasks using the null—space

° Combining the primary task dx,/dt and the secondary task dq,/dt :

dq B dqz
maiiC —+ﬂ(| J(@) I@)-

* Guaranteeing that the projection of q, is orthogonal to J(q)"(dx,/dt)

® Assuming the system is linear

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Using the Null—space

® The null—space is often used to “push” IK solvers away from
® Joint limits

e (Obstacles

e How do we define the secondary task for the two constraints

above?

dg _

IO —+ﬂ(l—J(Q) @) dqz

RBE 550 MOTION PLANNING
BASED ON DR. DMITRY BERENSON’S RBE

Using the Null—space

dt

Why do we need this?

99 _ 3 —+ﬂ(|—J(q)+J(q»%

550

What guarantees do we have about accomplishing the secondary task?

™~

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE\

Recursive Null—space Projection

e What if you have three or more tasks?

® The ith task is:

® The ith null-space is:

N; =B,(1=3;(a)" J;(a))

® The recursive null—space formula is then:

d
d_? =T, + Ny (T, + N (T3 + Na(T, +-- I\I(n—l)Tn)))

550

RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

Recursive Null—space Projection

® You can do as many tasks as you want, right?
dg
E :Tl + N1(T2 + Nz(T3 + Ns(T4 +ee N(n—l)Tn)))
® Sadly, no. Every time you go down a level, you loose degrees of

freedom.

® For example, let’s say we have a 6DOF manipulator. It’s primary
task is to place its end-effector at some 6D pose. What is the

dimensionality of the null-space of this task?

