
RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Jane Li

Assistant Professor

Mechanical Engineering & Robotics Engineering

http://users.wpi.edu/~zli11

Motion Planning for Articulated Robots 1

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Recap

 We learned about planning algorithms that generalize across many types

of robots

 But many robots are articulated linkages

 Arms, humanoids, etc.

 Can we take advantage of this structure in motion planning?

 Yes! But we have to learn how these robots are controlled

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Outline

 Computing the Jacobian

 Using the Jacobian for inverse kinematics

 Using the null space to satisfy secondary tasks

 Recursive null-space projection

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Definitions

 C-space is sometimes called joint space for

articulated robots

 Let N be the number of joints (i.e. the dimension of C-

space)

 The end-effector space is called task space

 In 2D: Task space is SE(2) = R2 X S1

 In 3D: Task space is SE(3) = R3 X RP3

 Let M be the number of DOF in task space

 A point in task space x is called a pose of the

end-effector

Joint

Link

End-Effector pose*

(point is selected arbitrarily)

* Some people call this the Tool

Center Point (TCP)

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Forward Kinematics

 The Forward Kinematics function, given a configuration,

computes the pose of the end-effector:

 If N (number of joints) is greater than M (number of task space

DOF), the robot is called redundant

)(qFKx

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Redundancy

 If N>M, FK maps a continuum of configurations to one end-effector pose:

 If N=M, FK maps a finite number of configurations to one end-effector pose:

 If N<M, you’re in trouble (may not be able to reach a target pose)

C-space Task space

FK

C-space Task space

FK

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

C-space and Task Space

 For manipulation, we often don’t care about the configuration of the arm (as

long as it’s feasible), we care about what the end-effector is doing

 Controlling an articulated robot is all about computing a C-space motion that

does the right thing in task space

 Inverse Kinematics (IK) is the problem of computing a configuration that places

the end-effector at a given point in task space

 Analytical solutions exist for some robots if N=M

 No unique solution if N > M, Why?

 For N > M, what can we do?

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

The Jacobian

 The Jacobian converts a velocity in C-space (dq/dt) to a velocity

in task space (dx/dt)

 Start with Forward Kinematics function

 Take the derivative with respect to time:

 Now we get the standard Jacobian equation:

)(qFKx

dt

dq

dq

qdFK

dt

qFKd

dt

dx)()]([

dt

dq
qJ

dt

dx
)()(

)(
qJ

dq

qdFK

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Example

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Computing the Jacobian

 The Jacobian – a matrix where each column represents the

effect of a unit motion of a joint on the end-effector

 For simple systems (i.e. up to 3 or 4 links), you can write the FK

function analytically and take its derivative to compute J(q)

)(
21

qJ
dq

dx

dq

dx

M

N

Here x is all the end-effector DOF (position and rotation)

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

The Manipulator Jacobian

 qzqzqz

q

qx

q

qx

q

qx

qJ

nn

n

11201

21

kJoint Revolute 1

kJoint Prismatic 0
k

qqJx)(

position

rotation

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Computing the Jacobian: Translation

 You can compute the translation part of J(q) numerically:

1. Place the robot in configuration q

2. For a translation (prismatic) joint:

3. For a rotation (hinge) joint:

 qzqzqz

q

qx

q

qx

q

qx

qJ

nn

n

11201

21

Joint axis

(z axis here)

v1

i

i

v
dq

dx

p1

ii

i

pv
dq

dx

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Computing the Jacobian: Translation

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Computing the Jacobian: Rotation

 Represent rotation components with angular velocities

1. Place the robot in configuration q

2. Extract joint axis in world frame

 qzqzqz

q

qx

q

qx

q

qx

qJ

nn

n

11201

21

 ii vqz

Joint axis

(z axis here)

v1

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Using the Jacobian for Inverse Kinematics (IK)

 Process:

 Starting at some configuration, iteratively move closer to xtarget

 We need to invert the Jacobian to get the joint movement dq/dt

xtarget

xcurrent

dt

dq
qJ

dt

dx
)(

(xtarget– xcurrent) ???

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Inverting the Jacobian

 If N=M,

 Jacobian is square Standard matrix inverse

 If N>M ,

 Pseudo-Inverse

 Weighted Pseudo-Inverse

 Damped least squares

 Iterative Jacobian Pseudo-Inverse

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Pseudo-Inverse

 Cases

Fat Jacobian, redundant robot

Square Jacobian, standard pseudo inverse

Tall Jacobian, under-actuated robot

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Behind Pseudo-inverse

 What does pseudo-inverse optimize?

Where J is full (row)-rank matrix

 Optimization

Minimize given that

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Behind Pseudo-inverse

 Minimize given

 Derive the optimization problem using Lagrange multipliers

 Optimal condition

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Weighted Pseudo-Inverse

 Weighted Pseudo-Inverse

 What to optimize?

 Significance of the weight

 W>0 and symmetric

 Large weight small joint velocity

 Weight can be chosen proportional to the inverse of the joint angle range

Minimize given that

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

 The columns of U eigenvectors of

 The columns of V eigenvectors of

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

The orthogonal basis for the subspace of joint velocity that generate non-

zero task space velocities

The orthogonal basis for the subspace of joint velocity that gives zero

task space velocity Null space of J

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

The orthogonal basis for the subspace of achievable task space velocity

The orthogonal basis for the subspace of task space velocities that can

not be generated by the robots

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

The velocity transmission ratio from the joint space to the task space

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singular Value Decomposition (SVD)

where

where

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Singularities

 (J(q)TJ(q))-1 is square, but what if (J(q)TJ(q))-1 is singular

 E.g., we have lost a degree of freedom?

A singular configuration: no way to move in x!

x

y

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Damped Least Squares

 Significance

 To render robust behavior when crossing the singularity, we can add a small

constant along the diagonal of (J(q)TJ(q)) to make it invertible when it is

singular “damped least-squares”

 The matrix will be invertible but this technique introduces a small

inaccuracy error?

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Damped Least Squares

 Induced error by DLS

 Choice of the damping factor

 As a function the minimum singular value measure of distance to

singularity

 Induce the damping only/mostly in the non-feasible direction of the task

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Iterative Jacobian Pseudo-Inverse Inverse Kinematics

0F

Xcurrent

Xtarget

Configuration qcurrent

While true

Xcurrent = FK(qcurrent)

𝒙 = (xtarget - xcurrent)

error = || 𝒙 ||

If error < threshold

 return Success

𝒒 = 𝑱 𝒒 + 𝒙

If(||𝒒 || > a)

 𝒒 = a(𝒒 / ||𝒒 ||)

qcurrent = qcurrent - 𝒒

end

• This is a local method, it will get stuck in local minima (i.e. joint limits)!!!

• a is the step size

• Error handling not shown

• A correction matrix has to be applied to the angular velocity components to map them into the

target frame (not shown)

Null Space of Jacobian

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Families of IK Solutions

 Consider

 Family 4 – Flip Family 1 to left plane

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

IK Solutions for Redundant Manipulators

IK Solution – Family 1

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

IK Solutions for Redundant Manipulators

IK Solution – Family 2

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

IK Solutions for Redundant Manipulators

IK Solution – Family 3

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

IK Solutions for Redundant Manipulators

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Families of IK Solutions

IK Solution – Family 1

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Families of IK Solutions

IK Solution – Family 2

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Families of IK Solutions

IK Solution – Family 3

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Families of IK Solutions

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

The Null-space of Jacobian

 We can try to satisfy secondary tasks in the null-space of the Jacobian pseudo-

inverse

 In linear algebra, the null-space of a matrix A is the set of vectors V such that,

for any v in V, 0 = ATv.

 You can prove that V is orthogonal to the range of A

range of A

V

range of A

V

y

x

2D example 3D example

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

The Null-space of Jacobian

 For our purposes, this means that the secondary task will not disturb the

primary task

 The null-space projection matrix for the Jacobian pseudo-inverse is:

 To project a vector into the null-space, just multiply it by the above

matrix

))()(()(qJqJIqN

range of

J(q)+

x

)(qN

range of

secondary

task v

vqN)(

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Why does this work?

 First, decompose v into two orthogonal parts:

range of A

y

x

v

r

n

vAvrvn ˆ

Need to find this

nrv
Part of v that is in the left

null-space of A

Part of v that is in the range of A

vAAAv

vAvAA

vAvA

nA

TT

TT

T

T

1)(ˆ

ˆ

0)ˆ(

0

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Why does this work?

 Use this relationship to get r

 Now we can find n, the part of v that is in the left null-space of A

range of A

y

x

v

r

n vAAAv TT 1)(ˆ

vAAr

vAAAAr

vAr

TT

1)(

ˆ

vAAIvAAvn)(

This is the left null-space projection matrix

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Why does this work?

 Now we plug in the Jacobian pseudo-inverse

vqJqJIn

qJA

vAAIn

))()((

)(

)(

This is N(q)

range of

J(q)+

y

x

)(qN

range of

secondary

task v

vqNn)(

r

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Combining tasks using the null-space

 Combining the primary task dx1/dt and the secondary task dq2/dt :

 Guaranteeing that the projection of q2 is orthogonal to J(q)+(dx1/dt)

 Assuming the system is linear

dt

dq
qJqJI

dt

dx
qJ

dt

dq 21))()(()(

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Using the Null-space

 The null-space is often used to “push” IK solvers away from

 Joint limits

 Obstacles

 How do we define the secondary task for the two constraints

above?

dt

dq
qJqJI

dt

dx
qJ

dt

dq 21))()(()(

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Using the Null-space

dt

dq
qJqJI

dt

dx
qJ

dt

dq 21))()(()(

Why do we need this?

What guarantees do we have about accomplishing the secondary task?

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Recursive Null-space Projection

 What if you have three or more tasks?

 The ith task is:

 The ith null-space is:

 The recursive null-space formula is then:

)))((()1(4332211 nn TNTNTNTNT

dt

dq

dt

dx
qJT i

ii

)(

))()((qJqJIN iiii

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE

550

Recursive Null-space Projection

 You can do as many tasks as you want, right?

 Sadly, no. Every time you go down a level, you loose degrees of

freedom.

 For example, let’s say we have a 6DOF manipulator. It’s primary

task is to place its end-effector at some 6D pose. What is the

dimensionality of the null-space of this task?

)))((()1(4332211 nn TNTNTNTNT
dt

dq

