Motion Planning for Articulated Robots 1

Jane Li

Assistant Professor

Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11

<u>Recap</u>

• We learned about planning algorithms that generalize across many types of robots

- But many robots are articulated linkages
 - Arms, humanoids, etc.
- Can we take advantage of this structure in motion planning?
 - Yes! But we have to learn how these robots are controlled

Outline

- Computing the Jacobian
- Using the Jacobian for inverse kinematics
- Using the null space to satisfy secondary tasks
- Recursive null-space projection

Definitions

- C-space is sometimes called **joint space** for articulated robots
 - Let *N* be the number of joints (i.e. the dimension of C-space)
- The end-effector space is called **task space**
 - In 2D: Task space is $SE(2) = R^2 X S^1$
 - In 3D: Task space is $SE(3) = R^3 X RP^3$
 - Let *M* be the number of DOF in task space
- A point in task space *x* is called a **pose** of the end-effector

RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE 550

^{*} Some people call this the Tool Center Point (TCP)

Forward Kinematics

• The Forward Kinematics function, given a configuration,

computes the pose of the end-effector:

$$x = FK(q)$$

 If N (number of joints) is greater than M (number of task space DOF), the robot is called **redundant**

f:
$$Q \rightarrow R$$

joint space (dim Q = N) task space (dim R = M)

• If N>M, FK maps *a continuum* of configurations to *one* end-effector pose:

• If N=M, FK maps a finite number of configurations to one end-effector pose:

• If N<M, you're in trouble (may not be able to reach a target pose)

C-space and Task Space

- For manipulation, we often don't care about the configuration of the arm (as long as it's feasible), we care about what the **end-effector** is doing
- Controlling an articulated robot is all about computing a *C-space* motion that does the right thing in *task space*
- *Inverse Kinematics* (IK) is the problem of computing a configuration that places the end-effector at a given point in task space
 - Analytical solutions exist for some robots if N=M
 - No unique solution if N > M, Why?
 - For N > M, what can we do?

The Jacobian

- The Jacobian converts a velocity in C-space (dq/dt) to a velocity in task space (dx/dt)
- Start with Forward Kinematics function

x = FK(q)

• Take the derivative with respect to time:

$$\frac{dx}{dt} = \frac{d[FK(q)]}{dt} = \frac{dFK(q)}{dq}\frac{dq}{dt}$$

• Now we get the standard Jacobian equation:

$$\frac{dx}{dt} = J(q)\frac{dq}{dt} \qquad \frac{dFK(q)}{dq} = J(q)$$

Computing the Jacobian

The Jacobian – a matrix where each column represents the effect of a unit motion of a joint on the end-effector

$$M - \left[\left[\frac{dx}{dq_1} \frac{dx}{dq_2} \cdots \right] = J(q) \right]$$

Here x is all the end-effector DOF (position and rotation)

• For simple systems (i.e. up to 3 or 4 links), you can write the FK function analytically and take its derivative to compute J(q)

The Manipulator Jacobian

BASED ON DR. DMITRY BERENSON'S RBE Computing the Jacobian: Translation

RBE 550 MOTION PLANNING

550

• You can compute the translation part of J(q) numerically:

$$J(q) = \begin{bmatrix} \frac{\partial x(q)}{\partial q_1} & \frac{\partial x(q)}{\partial q_2} & \cdots & \frac{\partial x(q)}{\partial q_n} \\ \\ \xi_1 z_0(q) & \xi_2 z_1(q) & \cdots & \xi_n z_{n-1}(q) \end{bmatrix}$$

Place the robot in configuration q 1.

2. For a translation (prismatic) joint:
$$\frac{dx}{dq_i} = v_i$$
 (z axis here)
3. For a rotation (hinge) joint: $\frac{dx}{dq_i} = v_i \times p_i$

RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON'S RBE 550 Computing the Jacobian: Translation VI k axis out-of-plane r_2 and passes through frame origin $\omega = heta oldsymbol{k}$ angular velocity otation axis of points in frame angular rotation in frame wrt. axis k 0 \boldsymbol{r} $= \omega imes \boldsymbol{r}$ Ο linear velocity vector to point of points in frame in frame wrt. axis k vector from $\mathbf{y} = \mathbf{\theta} \mathbf{k} imes \mathbf{r} \mathbf{k}$ joint origin to endeffector endeffector joint rotation axis linear velocity

Computing the Jacobian: Rotation

• Represent rotation components with angular velocities

$$J(q) = \begin{bmatrix} \frac{\partial x(q)}{\partial q_1} & \frac{\partial x(q)}{\partial q_2} & \cdots & \frac{\partial x(q)}{\partial q_n} \end{bmatrix}$$
$$\begin{bmatrix} \xi_1 z_0(q) & \xi_2 z_1(q) & \cdots & \xi_n z_{n-1}(q) \end{bmatrix}$$

- 1. Place the robot in configuration q
- 2. Extract joint axis in world frame

Joint axis
(z axis here)
$$z_i(q) = v_i$$

<u>Using the Jacobian for Inverse Kinematics (IK)</u>

RBE 550 MOTION PLANNING BASED ON **DR. DMITRY BERENSON**'S RBE

• Process:

• Starting at some configuration, iteratively move closer to x_{target}

• We need to invert the Jacobian to get the joint movement dq/dt

Inverting the Jacobian

- If N=M,
 - Jacobian is square \rightarrow Standard matrix inverse
- If N>M ,
 - Pseudo-Inverse
 - Weighted Pseudo-Inverse
 - Damped least squares
 - Iterative Jacobian Pseudo-Inverse

• Cases RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON'S RBE j_{550} $JJ^{\dagger}JJ = J$ $J^{\dagger}JJ^{\dagger} = J^{\dagger}$ $(JJJ^{\dagger})^{T} = JJ^{\dagger}$ $(JJJ^{\dagger})^{T} = JJ^{\dagger}$ $(J^{\dagger}J)^{T} = JJ^{\dagger}$

$$\mathbf{J}_{n \times m}^{\dagger} = \begin{cases} \mathbf{J}^{T} (\mathbf{J} \mathbf{J}^{T})^{-1} & m < n & \longrightarrow \text{Fat Jacobian, redundant robot} \\ \mathbf{J}^{-1} & m = n & \longrightarrow \text{Square Jacobian, standard pseudo inverse} \\ (\mathbf{J} \mathbf{J}^{T})^{-1} \mathbf{J}^{T} & m > n & \longrightarrow \text{Tall Jacobian, under-actuated robot} \end{cases}$$

Behind Pseudo-inverse

- Minimize $||\mathbf{x}||^2 = \mathbf{x}^T \mathbf{x}$ given $A\mathbf{x} = \mathbf{y}$
- Derive the optimization problem using Lagrange multipliers

$$L(x,\lambda) = \mathbf{x}^T \mathbf{x} + \lambda^T (A\mathbf{x} - \mathbf{y})$$

• Optimal condition

$$\frac{\partial L}{\partial \mathbf{x}} = 2\mathbf{x} + A^T \lambda = 0 \qquad \qquad \mathbf{x} = -\frac{A^T \lambda}{2}$$

$$\frac{\partial L}{\partial \lambda} = A\mathbf{x} - \mathbf{y} = 0 \qquad \qquad \mathbf{y} = A\mathbf{x} = \frac{-AA^T \lambda}{2} \qquad \qquad \mathbf{\lambda} = -2(AA^T)^{-1}\mathbf{y}$$

$$\mathbf{x}_{ln} = \frac{-A^T (-2(AA^T)^{-1}\mathbf{y})}{2} = A^T (AA^T)^{-1}\mathbf{y}$$

Weighted Pseudo-Inverse

$$\dot{q} = J_w^{\dagger}(q)\dot{x}$$

• Weighted Pseudo-Inverse

$$J_w^{\dagger}(q) = W^{-1} J^T (J W^{-1} J^T)^{-1}$$

• What to optimize?

Minimize
$$\frac{1}{2} \|\dot{q}\|_w^2 = \frac{1}{2} \dot{q}^T W \dot{q}$$
 given that $\dot{x} = J(\theta) \dot{\theta}$

- Significance of the weight
 - W>0 and symmetric
 - Large weight \rightarrow small joint velocity
 - Weight can be chosen proportional to the inverse of the joint angle range

Singular Value Decomposition (SVD)

$$J = U\Sigma V^T$$

the SVD routine of Matlab applied to J provides two orthonormal matrices $U_{M \times M}$ and $V_{N \times N}$, and a matrix $\sum_{M \times N}$ of the form

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_M \end{pmatrix} \quad 0_{Mx(N-M)} \quad 0_{Mx(N-M)} \quad \sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_\rho > 0, \quad \sigma_{\rho+1} = \ldots = \sigma_M = 0$$
singular values of J

- The columns of $U \rightarrow$ eigenvectors of JJ^{T}
- The columns of $V \rightarrow$ eigenvectors of J^{TJ}

550

Singular Value Decomposition (SVD)
$$J = U\Sigma V^{T}$$

$$\begin{aligned} \mathbf{J}_{m \times n} &= \mathbf{U}_{m \times m} \mathbf{\Sigma}_{m \times n} \mathbf{V}_{n \times n}^{\mathbf{T}} \\ &= \begin{bmatrix} \mathbf{U}_{1_{m \times r}} & \mathbf{U}_{2_{m \times (m-r)}} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{1_{r \times r}} & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1_{r \times n}} \\ \mathbf{V}_{2_{(n-r) \times n}}^{\mathbf{T}} \end{bmatrix} \end{aligned}$$

 $\mathbf{V^{T}}_{1_{r\times n}}$

The orthogonal basis for the subspace of **joint velocity** that generate **non-zero** task space velocities

 $\mathbf{V^{T}}_{2_{(n-r)\times n}}.$

The orthogonal basis for the subspace of **joint velocity** that gives **zero** task space velocity \rightarrow Null space of J

 $\frac{\text{Singular Value Decomposition (SVD)}}{J = U\Sigma V^{T}}$ $J_{m \times n} = \mathbf{U}_{m \times m} \mathbf{\Sigma}_{m \times n} \mathbf{V}_{n \times n}^{T}$ $= \begin{bmatrix} \mathbf{U}_{1_{m \times r}} & \mathbf{U}_{2_{m \times (m-r)}} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{1_{r \times r}} & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1_{r \times n}} \\ \mathbf{V}_{2_{(n-r)} \times r} \end{bmatrix}$

The orthogonal basis for the subspace of achievable **task space** velocity $\dot{\mathbf{X}}$.

 $\mathbf{U}_{2_{m \times (m-r)}}$

 $\mathbf{U}_{1_{m \times r}}$

The orthogonal basis for the subspace of **task space** velocities $\dot{\mathbf{X}}$ that can not be generated by the robots

 $\frac{\text{RBE 550 MOTION PLANNING}}{\text{BASED ON DR. DMITRY BERENSON'S RBE}}$ $\frac{\text{Singular Value Decomposition (SVD)}}{J = U\Sigma V^{T}}$ $J_{m \times n} = \mathbf{U}_{m \times m} \mathbf{\Sigma}_{m \times n} \mathbf{V}_{n \times n}^{T}$

$$= \begin{bmatrix} \mathbf{U}_{1_{m \times r}} & \mathbf{U}_{2_{m \times (m-r)}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{1_{r \times r}} & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} \mathbf{V}^{\mathbf{T}}_{1_{r \times n}} \\ \mathbf{V}^{\mathbf{T}}_{2_{(n-r) \times n}} \end{bmatrix}$$

 $\Sigma_{1_{r imes r}}$

The velocity **transmission ratio** from the joint space to the task space

RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON'S RBE 550 Singular Value Decomposition (SVD) $\Sigma V^{T}\dot{q}$ $U\Sigma V^{T}\dot{q}=J\dot{q}$ ġ V^Tġ \mathbf{V}^{T} Σ U Minor Axis Major Axis O max -Ο E. $\boldsymbol{V}^{\mathrm{T}}\left(\boldsymbol{J}\boldsymbol{J}^{\mathrm{T}}\right)^{+}\boldsymbol{V}\leq 1$ $\boldsymbol{q}^{\mathrm{T}}\boldsymbol{q} \leq 1$ Σ_w x

RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON'S RBE 550 Singular Value Decomposition (SVD) $J = U\Sigma V^T \quad \text{where} \quad \Sigma = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \end{bmatrix} \quad \mathbf{0}_{\mathsf{Mx(N-M)}}$ $\frac{1}{\sigma_1}$ $J^{\dagger} = V \Sigma^{\dagger} U^{T} \quad \text{where} \quad \Sigma^{\dagger} = \begin{bmatrix} \frac{1}{\sigma_{1}} & & \\ & \ddots & \\ & & \frac{1}{\sigma_{\rho}} \end{bmatrix}$ 0_{(N-M)×M}

Singularities

- $(J(q)^T J(q))^{-1}$ is square, but what if $(J(q)^T J(q))^{-1}$ is singular
 - E.g., we have lost a degree of freedom?

Damped Least Squares

mir

unconstrained minimization of a **suitable** objective function

$$\frac{\mu^2}{2} \|\dot{q}\|^2 + \frac{1}{2} \|\dot{x} - J\dot{q}\|^2 = H(\dot{q})$$

compromise between large joint velocity and task accuracy

SOLUTION
$$\dot{\mathbf{q}} = \mathbf{J}_{\text{DLS}}(\mathbf{q})\dot{\mathbf{X}} = \mathbf{J}^{\text{T}}(\mathbf{J}\mathbf{J}^{\text{T}} + \mu^{2}\mathbf{I}_{\text{M}})^{-1}\dot{\mathbf{X}}$$

- Significance
 - To render robust behavior when crossing the singularity, we can add a small constant along the diagonal of (J(q)^TJ(q)) to make it invertible when it is singular → "damped least-squares"
 - The matrix will be invertible but this technique introduces a small inaccuracy → error?

Damped Least Squares

• Induced error by DLS

$$\dot{\mathbf{e}} = \mu^{2} \left(\mathbf{J} \mathbf{J}^{\mathsf{T}} + \mu^{2} \mathbf{I}_{\mathsf{M}} \right)^{-1} \dot{\mathbf{X}} \text{ (as in N=M case)}$$
using SVD of J=U $\Sigma V^{\mathsf{T}} \Rightarrow \mathbf{J}_{\mathsf{DLS}} = \mathbf{V} \Sigma_{\mathsf{DLS}} \mathbf{U}^{\mathsf{T}} \text{ with } \mathbf{\Sigma}_{\mathsf{DLS}} = \begin{bmatrix} \frac{\operatorname{diag} \{\frac{\sigma_{i}}{\sigma_{i}^{2} + \mu^{2}}\}}{\rho \times \rho} & \operatorname{diag} \{\frac{1}{\mu^{2}}\}}{\rho \times \rho} & \operatorname{diag} \{\frac{1}{\mu^{2}}\}}{\mathbf{0}_{(\mathsf{N}-\mathsf{M})\mathsf{X}\rho}} \end{bmatrix}$

- Choice of the damping factor $\mu^2(q) \ge 0$,
 - As a function the minimum singular value → measure of distance to singularity
 - Induce the damping only/mostly in the non-feasible direction of the task

- This is a local method, it will get stuck in local minima (i.e. joint limits)!!!
- α is the step size
- Error handling not shown
- A correction matrix has to be applied to the angular velocity components to map them into the target frame (not shown)

Null Space of Jacobian

550

Families of IK Solutions

Families	Range of joint angles	Reachable range
		(along y axis)
Family 1 (Fig. 10.2.A)	$\theta_1 > 0, \theta_2 > 0, \theta_3 > 0$	(0,1)
Family 2 (Fig. $10.2.B$)	$\theta_1 > 0, \theta_2 > 0, \theta_3 < 0$	(0.3,1)
Family 3 (Fig. $10.2.C$)	$\theta_1 > 0, \theta_2 < 0, \theta_3 > 0$	(0.3,1)

- Consider $\theta_1 > 0$
- Family 4 Flip Family 1 to left plane

550

IK Solutions for Redundant Manipulators

 $\theta_1 > 0, \theta_2 > 0, \theta_3 > 0$

550

IK Solutions for Redundant Manipulators

 $\theta_1>0, \theta_2>0, \theta_3<0$

550

Families of IK Solutions

550

Families of IK Solutions

$$\theta_1 > 0, \theta_2 < 0, \theta_3 > 0$$

550

0.8

0.6

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.5

0.4

0.5

Families of IK Solutions

0.1

0.1

0.2

0.2

0.3

0.4

0.5

0.3

0.4

0.5

0.8

0.6

0.4

0.2

0

 $\theta_1>0, \theta_2>0, \theta_3<0$

550

Families of IK Solutions

The Null-space of Jacobian

- We can try to satisfy secondary tasks in the *null-space* of the Jacobian pseudoinverse
- In linear algebra, the *null-space* of a matrix A is the set of vectors V such that, for any v in V, 0 = A^Tv.
- You can prove that **V** is orthogonal to the range of A

The Null-space of Jacobian

- For our purposes, this means that the secondary task will not disturb the primary task
- The null-space projection matrix for the Jacobian pseudo-inverse is:

 $N(q) = (I - J(q)^+ J(q))$

• To project a vector into the null-space, just multiply it by the above

• Now we can find n, the part of v that is in the left null-space of A

$$n = v - AA^+v = (I - AA^+)v$$

This is the left null-space projection matrix

Why does this work?

• Now we plug in the Jacobian pseudo-inverse

$$n = (I - AA^{+})v$$

$$A = J(q)^{+}$$

$$n = (I - J(q)^{+}J(q))v$$
This is N(q)

Combining tasks using the null-space

• Combining the primary task dx_1/dt and the secondary task dq_2/dt :

$$\frac{dq}{dt} = J(q)^+ \frac{dx_1}{dt} + \beta (I - J(q)^+ J(q)) \frac{dq_2}{dt}$$

- Guaranteeing that the projection of q_2 is orthogonal to $J(q)^+(dx_1/dt)$
 - Assuming the system is linear

<u>Using the Null-space</u>

- The null-space is often used to "push" IK solvers away from
 - Joint limits
 - Obstacles
- How do we define the secondary task for the two constraints above?

$$\frac{dq}{dt} = J(q)^+ \frac{dx_1}{dt} + \beta (I - J(q)^+ J(q)) \frac{dq_2}{dt}$$

<u>Using the Null-space</u>

 $\frac{dq}{dt} = J(q)^+ \frac{dx_1}{dt} + \beta (I - J(q)^+ J(q)) \frac{dq_2}{dt}$

Why do we need this?

What guarantees do we have about accomplishing the secondary task?

Recursive Null-space Projection

- What if you have three or more tasks?
- The *i*th task is:

$$T_i = J_i(q)^+ \frac{dx_i}{dt}$$

• The *i*th null-space is:

$$N_i = \beta_i (I - J_i(q)^+ J_i(q))$$

• The recursive null-space formula is then:

$$\frac{dq}{dt} = T_1 + N_1(T_2 + N_2(T_3 + N_3(T_4 + \dots + N_{(n-1)}T_n)))$$

Recursive Null-space Projection

• You can do as many tasks as you want, right?

$$\frac{dq}{dt} = T_1 + N_1(T_2 + N_2(T_3 + N_3(T_4 + \dots + N_{(n-1)}T_n)))$$

 Sadly, no. Every time you go down a level, you loose degrees of freedom.

• For example, let's say we have a 6DOF manipulator. It's primary task is to place its end-effector at some 6D pose. What is the dimensionality of the null-space of this task?