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Recap

® We learned about planning algorithrns that generalize across many types

of robots

® But many robots are articulated linkages

® Arms, humanoids, etc.

® (Can we take advantage of this structure in motion planning?

® Yes! But we have to learn how these robots are controlled
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Outline

* Computing the Jacobian
* Using the Jacobian for inverse kinematics
* Using the null space to satisty secondary tasks

® Recursive null—space projection




Definitions

® (C-space is sometimes called joint space for

articulated robots

® Let N be the number of joints (i.e. the dimension of C-

space)

® The end-effector space is called task space
® In 2D:Task space is SE(2) = R? X S!
® In 3D:Task space is SE(3) = R3 X RP?

® [et M be the number of DOF in task space

® A point in task space x is called a pose of the

end-effector
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End-Effector pose*
(point is selected arbitrarily)

Joint

N

* Some people call this the Tool
Center Point (TCP)
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Forward Kinematics

® The Forward Kinematics function, given a configuration,

computes the pose of the end-effector:

X =FK(q)

® If N (number of joints) is greater than M (number of task space
DOF), the robot is called redundant
fiiQ— R

joint space (dim Q = N) task space (dim R = M)
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Redundancy
fiQ— R
joint space (dim Q = N) task space (dim R = M)

* If N>M, FK maps a continuum of configurations to one end-effector pose:

L
S

C-space Task space

* If N=M, FK maps a finite number of configurations to one end-effector pose:

FK

C-space Task space

* If N<M, you're in trouble (may not be able to reach a target pose)
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C-space and Task Space

® For manipulation, we often don’t care about the configuration of the arm (as

long as it’s feasible), we care about what the end-effector is doing

° Controlling an articulated robot is all about computing a C-space motion that

does the right thing in task space

® Inverse Kinematics (IK) is the problem of computing a configuration that places

the end-effector at a given point in task space

° Analytical solutions exist for some robots if N=M

® No unique solution if N > M, Why?

For N > M, what can we do?
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The Jacobian

® The Jacobian converts a velocity in C-space (dq/dt) to a velocity
in task space (dx/dt)
o Start with Forward Kinematics function

x=FK(q)

e Take the derivative with respect to time:

dx d[FK(g)] dFK(q) dg
dt dt dg dt

* Now we get the standard Jacobian equation:

dx (g ) dq dFK(q)
dt dg

=J(q)




Example
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Computing the Jacobian

® The Jacobian — a matrix where each column represents the

effect of a unit motion of a joint on the end-ettector

- dx dx
dg, dg,

!
N

=J(q)

Here x is all the end-effector DOF (position and rotation)

® For simple systems (i.e. up to 3 or 4 links), you can write the FK

function analytically and take its derivative to compute J(q)




The Manipulator Jacobian

x=J(q)q

ox@) ox@)  ox(a)
J(CI)Z 8q1 6qz aQn

«—position

&2,(a) &Snla) o &z, (@) e

‘o 0 Prismatic Joint k
“ 11 Revolute Joint k
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Computing the Jacobian: Translation

® You can compute the translation part of J(q) numerically:

J (CI) aql aqz 8qn

ox(@)  ox(@  ox(@)

_flzo(q) 95221((3]) é:nzn—l(q)_

1.  Place the robot in configuration q

dx Joint axis
2. For a translation (prismatic) joint: a =V (z axis here)
|

—X—V XP
dqi i i

3. For arotation (hinge) joint:
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Computing the Jacobian: Translation

Vi

| I« axis out-of-plane
|

" and passes through frame origin

w = 0k

angular velocity R'ro!:od:i.t:-:l.v'\ axis
of points in frame
wrk, axis k angular rotation in frame

V=WwWXT
Linear veLoci.l:j/”

of Poi.hl:s n frame vector to POE'“&
wrk, axis k uA fmme

vector from

— ] W Joint origin te
AV Ok x r«

endeffector

endeffector

Linear velo ci.hj joiu& rotation axis
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Computing the Jacobian: Rotation

® Represent rotation components with angular velocities

o) ox(@)  ox(a) |
J(CI)Z aql a(:12 aQn
_flzo(q) 5221(Q) énzn—l(q)_

1.  Place the robot in configuration q
Joint axis
(z axis here
_ »
2. Extract joint axis in world frame Z; (Q) =V,
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Using the Jacobian for Inverse Kinematics (IK)

® Process:

® Starting at some configuration, iteratively move closer to Xarget

XCurrent

dx d_q

/E:J(q) dt\

<Xtarget— Xcurrent)

® We need to invert the Jacobian to get the joint movement dq/ dt
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Inverting the Jacobian

e [fN=M,

® Jacobian is square = Standard matrix inverse
e [fN>M |

® Pseudo-Inverse

® Weighted Pseudo-Inverse

® Damped least squares

® [terative Jacobian Pseudo-Inverse




Pseudo-Inverse
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JI1] J
JT3gt JT
i=J gz (JIH7T AR L
® (ases 3 Jtn’ J'
(1JT(IJIT)™1 M < N s Fat Jacobian, redundant robot
I = J-1 T = 71 s Square Jacobian, standard pseudo inverse
L(JIT)=1JT m >N s Tall Jacobian, under-actuated robot




Behind Pseudo-inverse

® What does pseudo—inverse optimize?
= J(0)
Where | is tull (row)-rank matrix

° Optimization

Minimize %QTQ given that T = J (9)9
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A (x|Ax=yj

N(A)={z|Az=0}

>




oL

X

O\

— = Ax—y =0 — V= AX=
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Behind Pseudo-inverse

® Minimize ||X||2 — xI'x given Ax =y
® Derive the optimization problem using Lagrange multipliers

Lz, A\ =x'x+ 2\ (Ax — y)

° Optimal condition

T
—2x + ATA =0 oy x:_?

—AAT )\

) )= —2(AAT) "y |

X[y = _ =(AT (AAT) "1y
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Weighted Pseudo-Inverse

q=J(q)
° Weighted Pseudo-Inverse

Tha) = WL (W)

e What to optimize?

Minimize %Hq“i — %TWQ given that T = J(lﬁ})lﬁ}

° Significance of the Weight
e W>( and symmetric
® Large weight - small joint Velocity

° Weight can be chosen proportional to the inverse of the joint angle range
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Singular Value Decomposition (SVD)

J=UxV"!

the SVD routine of Matlab applied to J provides two orthonormal
matrices Uy, and V., and a matrix 2,,,, of the form

!
(o,

o — — —
Y= 2 0,z2z0,=2...20,>0, o,,=...=0,=0

Mx(N-M)

singular values of ]
\ Opm )

e The columns of U =2 cigenvectors of J37

e The columns of V =2 cigenvectors of 7]
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Singular Value Decomposition (SVD)
J=Uxv!

mxXn m X m m X mn nXn
21 0 \%a 1
— |:U1 U2 i| TXT rx(n—r) XN
mxr m X (m—r) 0 0 VT
(m—r)Xr (m—r)xX(n—r) (n—r)xXn
vT The orthogonal basis for the subspace of joint velocity that generate non-
rxn zero task space velocities
vT 2 The orthogonal basis for the subspace of joint velocity that gives zero
(n—r)xn _

task space velocity = Null space of ]
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Singular Value Decomposition (SVD)
J=Uxv!

m X1 m X 1 m X n nXn
21 0 vt 1
— |:U1 U2 i| TXT rx(n—r) XN
mxr mx(m—r) 0 0 VT
(m—r)Xr (m—r)xX(n—r) (n—r)xXn
U lm ‘o The orthogonal basis for the subspace of achievable task space Velocity X
U2 The orthogonal basis for the subspace of task space velocities X that can

mx(m—r)

not be generated by the robots
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Singular Value Decomposition (SVD)

m X1

20

rxr

J=UxV"!

U T
m X 1m mxn nXn
21 0 VTl
|:U1 U2 i| rXr rx(n—r) X"
mxr m X (m—r) 0 0 VT
(m—r)Xr (m—r)xX(n—r) (n—r)Xmn
The velocity transmission ratio from the joint space to the task space




RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE

Singular Value Decomposition (SVD)

q Vg PAVA Uzvg=Jq
>

[ /] -
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Singular Value Decomposition (SVD)

q Vg PAVA Uzvg=Jq
—» V' —» X —» U >

Manipulator Configuration and Velocity Ellipsoid
1 : :

R e Ay
0.5 1 _____ ZZAN
05 1
» _Ez o i
%
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Singular Value Decomposition (SVD)

J = UEVT where X =

JT — VETUT where ET =

A=

[

Mx(N-M)

[ N—Mp

550
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Singularities

* (J(q)'J(q))is square, but what if (J(q)"J(q)) ' is singular

® E.g., we have lost a degree of freedom?

Q
T

:
|

7 -

A singular configuration: no way to move in x!
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Damped Least Squares

unconstrained ) = . 1.. ‘ . compromise between
minimization of a min %"quz + E"b{— anz = H(CD large joint velocity

suitable objective function g and task accuracy

SOLUTION (= Jp,¢ (qQ)X = JT(JJT + lem) X

® Significance
® To render robust behavior when crossing the singularity, we can add a small
constant along the diagonal of (J(q)'](q)) to make it invertible when it is

singular - “damped least-squares”

® The matrix will be invertible but this technique introduces a small

inaccuracy - error?
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Damped Least Squares

® Induced error by DLS

. -1,
e = yz (JJT -+ *u.zIM) X (as in N=M case)

using SVD of J=U3VT = J . =V, U with ZDLS= PP diag{uiz}

(N-M)xp DEN -M)x(N-p)

® Choice of the damping factor !L.I,Z(q) >0
® As a function the minimum singular value = measure of distance to
singularity

® Induce the damping only/mostly in the non-feasible direction of the task
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[terative Jacobian Pseudo-Inverse Inverse Kinematics

While true

Xcurrcnt = FK(qcurrcnt)

x= (Xtargct - Xcurrcnt)

error = | | x| |
If error < threshold Y v

return Success
q=J@" % Configuration g.yent X current
(| 1q]]> o)

a=a@/11q11) 3%

. VY

qcurren t =Y curren = q target

end

This is a local method, it will get stuck in local minima (i.e. joint limits)!!!
o is the step size
Error handling not shown

A correction matrix has to be applied to the angular Velocity components to map them into the

target frame (not shown)




Null Space of Jacobian




Families of IK Solutions
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/ y
YA o/ b,
(X=Y) ~ A \\
N Y (x.y) A
. N
NS 0,/ ’
¢, \q\)_ 0 - -
22 6,
9, ’ \ >
X 7 ¢, X
Families Range of joint angles Reachable

range
(along y axis)

Family 1 (Fig. 10.2.A ) | 61 >0, 602 >0, 603 >0 (0,1)

Family 2 (Fig. 10.2.B ) | 61 >0, 62 >0, 03 <0 (0.3,1)

Family 3 (Fig. 10.2.C ) | 61 >0, 05 <0, 53 >0 (0.3,1)
® Consider #7 > 0

° Family 4 — Flip Family 1 to left plane
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IK Solutions for Redundant Manipulators

YA
(x,y)
(x.y)
ry
LS
y & 0y
L . ’:,Ris
J
L |

AN
0, S S
= 6, > 0,92 > 0,93 > ()

v

IK Solution — Family 1
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IK Solutions for Redundant Manipulators

(x.y)
ry
LS
y & 0y
o . ’:,Ris
L/
L - ’
X

4.;1 0, 6, > 0.0, < 0,03 >0

v

IK Solution — Family 2
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IK Solutions for Redundant Manipulators

4" ~ 91 = 0392 = 0,93 < 0

v

IK Solution — Family 3




RBE 550 MOTION PLANNING \
BASED ON DR. DMITRY BERENSON’S RBE
550

IK Solutions for Redundant Manipulators

I
__— /'.x0
> >

B X

A (X.Y) Ending point

X — const

(X0.Y,) Starting point

>
N d
T777




Families of IK Solutions

(x,y)

N\
S
6y > 0392 > 0,93 > ()

IK Solution — Family 1

F:amil).rI Configurations: x = 0, ¥, = 0.2
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F:amilg.r1 Configurations: x = 0, Yy, = 04




Families of IK Solutions

(X,y) A
\92 e

—

—

0,
N, ©

S S
Al >O?92 <0?93> 0

IK Solution — Family 2

RBE 550 MOTION PLANNING

BASED ON DR. DMITRY BERENSON’S RBE\
550




Families of IK Solutions

y
(x,y) « 0’{/’
(1)7-—""—- {OQV
- 1
0,

S

#, > 0,605 >0.0; <0

IK Solution — Family 3

0.8
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Families of IK Solutions

Joint Space Evolution: F1 (red), F2 (green), F3 {blue) Joint Space Evolution: F1 (red), F2 (green), F3 (blue)
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The Null-space of Jacobian

® We can try to satisfy secondary tasks in the null-space of the Jacobian pseudo-
Inverse

® In linear algebra, the null-space of a matrix A is the set of vectorsV such that,
for any vin V, 0 = Alv.

® You can prove that V is orthogonal to the range of A

range of A
range of A
v
/ : /
X
. \
2D example 3D example
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The Null-space of Jacobian

® For our purposes, this means that the secondary task will not disturb the
primary task
® The null-space projection matrix for the Jacobian pseudo-inverse is:
+
N(a)=(1-J(q)" J(a))
* To project a vector into the null-space, just multiply it by the above

matrix

secondary
task v

range of

J@*

range of

N(a)

b
K N (a)v

X
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Why does this work?

* First, decompose v into two orthogonal parts:

/ Part of v that is in the range of A
y
V=rin__

Part of v that is in the left

null-space of 4 n | av
r /

nN=v—-r=v-—Av

Need to find this
A'n=0 range of 4
AT (v— AV) =0
ATAV=A'v

V=(ATA)ATY
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Why does this work?

e Use this relationship to get r

V=(ATA) ATV oL
N = A\7 r /
r=A(ATA) ATy
r=AA"v

range of A

* Now we can find n, the part of v that is in the left null-space of 4

n=v-AA'v=(I - AA")v

This is the left nuﬂ—space projection matrix
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Why does this work?

® Now we plug in the Jacobian pseudo-inverse

y

n= (I _ AA+ )V secondary

. range of task v range of
A=J(q) J@* N(Q)
n=(—-J(@)" J(@)V ‘s x

I kn=N(Q)V

This is N(q)
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Combining tasks using the null—space

° Combining the primary task dx,/dt and the secondary task dq,/dt :

dq B dqz
maiiC —+ﬂ(| J(@) I@)-

* Guaranteeing that the projection of q, is orthogonal to J(q)"(dx,/dt)

® Assuming the system is linear
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Using the Null—space

® The null—space is often used to “push” IK solvers away from
® Joint limits

e (Obstacles

e How do we define the secondary task for the two constraints

above?

dg _

IO —+ﬂ(l—J(Q) @) dqz
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Using the Null—space

dt

Why do we need this?

99 _ 3 —+ﬂ(|—J(q)+J(q»%

550

What guarantees do we have about accomplishing the secondary task?

™~
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Recursive Null—space Projection

e What if you have three or more tasks?

® The ith task is:

® The ith null-space is:

N; =B,(1=3;(a)" J;(a))

® The recursive null—space formula is then:

d
d_? =T, + Ny (T, + N (T3 + Na(T, +-- I\I(n—l)Tn)))

550
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Recursive Null—space Projection

® You can do as many tasks as you want, right?
dg
E :Tl + N1(T2 + Nz(T3 + Ns(T4 +ee N(n—l)Tn)))
® Sadly, no. Every time you go down a level, you loose degrees of

freedom.

® For example, let’s say we have a 6DOF manipulator. It’s primary
task is to place its end-effector at some 6D pose. What is the

dimensionality of the null-space of this task?




