1

Introduction

Jane Li

Assistant Professor

Mechanical Engineering & Robotics Engineering

http://users.wpi.edu/~zli11

Practical Issues

- Office hours are available by appointment
- See course website for most current information:

https://sites.google.com/site/muyimolin/teaching/rbe550

(Link to this site is on my homepage)

- Course capacity = 35
- For those not yet enrolled, keep coming to class to see if spots open up

What you can expect to get from this course

- An understanding of modern motion planning methods
- Programming experience
- Hands-on experience working with motion planning
- *** Paper-reading, presentation, and research skills ***

Prerequisites

- Undergraduate Linear Algebra
- Experience with 3D geometry
- Significant programming experience
 - We will use python and C++ in this course
 - You don't need to be an expert but I expect you to pick it up

Python Example

```
#get the second TSR's offset from the handle to the hand
Tw1_e = linalg.inv(T0_w0*Tw0_e)*T0_RH1
```

```
#define bounds to allow rotation of the hand about z axis of the handle from -pi Bw1 = mat([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
```

```
#serialize the TSRs
TSRstring1 = SerializeTSR(0,'NULL',T0_w0,Tw0_e,Bw0)
TSRstring2 = SerializeTSR(0,'NULL',mat(eye(4)),Tw1_e,Bw1) #note the T0_w value h
TSRChainString = SerializeTSRChain(0,0,1,2,TSRstring1 + ' ' + TSRstring2,'kitche
```

```
#set the desired amount to open the door
door_rot = pi/1.5
#set the desired amount to rotate the hand about the handle at the goal
handle_rot = -pi/2.1
```

```
#keep track of how many DOF of the mimic body are being mimiced
numTSRChainMimicDOF = 1;
```

```
#get goal transform
Tdoor_rot = MakeTransform(rodrigues([0, 0, door_rot]),mat([0, 0, 0]).T)
Thandle_rot = MakeTransform(rodrigues([0, 0, handle_rot]),mat([0, 0, 0]).T)
T0_doornew = T0_w0*Tdoor_rot;
T0_RH2 = T0_doornew*Tw0_e*Thandle_rot*linalg.inv(T0_doornew*Tw0_e)*_T0_doornew*linal
```

```
goalik = str2num(probs_cbirrt.SendCommand('DoGeneralIK exec nummanips 1 maniptm 0 %s
robot.SetActiveDOFValues(goalik)
```

#set robot to starting configuration

C++ example

```
bool bGotSolution = false;
    for(int i = 0; i < qGuesses.size(); i++)</pre>
        planner->ClearTSRChainValues();
       // if a guess is valid, this will confirm it and return quickly, if not, it wil
        if(ConstrainedNewConfig(qGuesses[i], q_near, _planner->vTSRChainValues_temp,fal
            RrtNode * pikNode = new RrtNode(_planner->GetNumDOF(),ptree->GetFromGoal();
            pikNode->SetConfig(&qGuesses[i][0]);
            pikNode->SetTSRChainValues( planner->vTSRChainValues temp);
            ptree->AddNode(*pikNode); //this will automatically increment the size
            pikNode->Print();
            delete pikNode;
            //return true;
            bGotSolution = true;
    3
    if(bGotSolution)
        RAVELOG_INFO("Constrained IK solution(s) found!\n");
    else
        RAVELOG INFO("No Constrained IK solution found\n");
    return bGotSolution;
bool CBirrtPlanner::_CheckCollision(std::vector<dReal>& pConfig)
    collisioncheckcalls++;
#ifdef RECORD TIMES
    double starttime = timeGetThreadTime();
```

Math expectations

- Linear algebra proficiency is a MUST
 - Matrix operations
 - Dot products, cross products, etc.
 - A review of linear algebra:
 - http://cs229.stanford.edu/section/cs229-linalg.pdf
- Be able to read math notation
 - Some examples from the textbook:

$$X_{obs} = \left(\bigcup_{i=1}^{m} X_{obs}^{i}\right) \bigcup \left(\bigcup_{ij, i \neq j} X_{obs}^{ij}\right)$$
$$X_{obs}^{ij} = \{(s_1, \dots, s_m) \in X \mid \mathcal{A}^i(\tau_i(s_i)) \cap \mathcal{A}^j(\tau_j(s_j)) \neq \emptyset\}$$
$$\mathcal{C}_{obs}^p = \{(q^a, q^p) \in \mathcal{C} \mid \operatorname{int}(\mathcal{P}(q^p)) \cap \mathcal{O} \neq \emptyset\}$$

Readings

- Textbook
 - Principles of Robot Motion (by Howie Choset)
 - Referred as "Principles" in this course
 - Available online via library
- Week 1-7 ~ Textbook
- Week 8-14 ~ Research papers
- Students will present and discuss research papers
- Other reference:
 - Planning algorithms by S. M. LaValle
 - Available online

Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun Foreword by Jean-Claude Latombe

Principles of Robot Motion

Theory, Algorithms, and Implementation

Steven M. LaValle

Syllabus

- No exams!
- Three homeworks
 - Individual (no groups)
 - Learn to implement algorithms
 - Use openrave open-source motion planning framework
- Final Project
 - Human/robot motion planning
 - Individual project encouraged (tailor to your research), teams of 2 or 3 also allowed

Piazza

- https://piazza.com/wpi/spring2017/rbe550/home
- **Piazza.com** for all class communication (question/answer about homeworks, paper discussion, etc.)

Grading

- In-Class Participation and Preparation 15%
 - Attending class and asking questions during lecture
 - Participating in paper discussions
 - Participating in discussions on Piazza
- Research Paper Presentations 15%
- Homeworks 20%
- Final Project Proposal 10%
- Final Project Report 25%
- Final Project Presentation 15%

Schedule

• Latest schedule is on course website:

https://sites.google.com/site/muyimolin/teaching/rbe550

	Α	В	С	D	E	F	G
1	Date	Торіс	Slides	Reading			Assignment
2	1/13/2017	L: Introduction to Motion Planning	link	Principles: CH 1, 5	Graph Review		Sign up for course on Piazza
							Enter presentation topic preferances into
3	1/18/2017	L: Planning for point robots	<u>link</u>				Piazza
4	1/20/2017	L: Configuration Space	link				Homework 1 Out
5	1/25/2017	L: Discrete Motion Planning	<u>link</u>				
6	1/27/2017	L: Transformations	link				
7	2/1/2017	L: Collision Checking	<u>link</u>	Probability Review			Homework 1 Due
8	2/3/2017	L: Sampling-based Planning 1	link	How to read a paper			Homework 2 Out
				Non-holonomic motion			
9	2/8/2017	L: Sampling-based Planning 2	link	planning guide			
				Paper Presentation	Presentation Grading		
10	2/10/2017	L: Non-holonomic motion planning	link	Guidelines	Sheet	Reviewing Guidelines	
					Adaptive Anytime		
					Motion Planning For		
					Robust Robot		
					Navigation In Natural		
11	2/15/2017	Presentation		ANA*	Environments	LEARCH	
				Adaptive workspace	Demonstration-		
				biasing for sampling-	guided motion		
12	2/17/2017	Presentation		based planners	planning	RRT*	Homework 2 Due
13	2/22/2017						
					A Sampling-Based		
					Tree Planner for	Simulation-Based LQR-	
				Randomized	Systems with	Trees with Input and	
14	2/24/2017	Presentation		Kinodynamic Planning	Complex Dynamics	State Constraints	Homework 3 Out
15	3/1/2017	L: Grasping	link				Submit Project Proposal (recommended)
16	3/3/2017	SPRING BREAK					
17	3/8/2017	SPRING BREAK					
18	3/10/2017	SPRING BREAK					
				Data Driven Grasp			
				Synthesis using Shape	Grasping Objects with	Probabilistic Collision	
				Matching and Task-	Holes: A Topological	Checking With Chance	
19	3/15/2017	Presentation		Based Pruning	Approach	Constraints	Project Proposal Due

Presentations

- In-depth understanding of a paper
- Tentatively 15 minutes long + 2 minutes of questions
 - Like a standard conference talk
- Evaluated on
 - Depth of understanding
 - Clarity of presentation
 - Presentation skill (don't run out of time!)

Final Project

- Schedule meeting with me to discuss project topic and expectation
- Preparation (now ~ March 1)
 - Literature survey
 - Acquire necessary skills
 - Work on project proposal -- clear timeline
- Project proposal due March 15
- Final project progress report due April 12
- Final project presentation + Final report due on April 28

First person to ask for help – TA Aditya Bhat

- Email <u>abhat@wpi.edu</u>
- Office: 85 Prescott 224

Introduction to Motion Planning

Jane Li

Assistant Professor

Mechanical Engineering & Robotics Engineering

http://users.wpi.edu/~zli11

What is motion planning?

- The automatic generation of motion
 - Path + velocity and acceleration along the path

Why Motion Planning Instead of Obstacle Avoidance?

- Path planning
 - low-frequency, time-intensive search method for global finding of a (optimal) path to a goal
- Obstacle avoidance (aka "local navigation")
 - fast, reactive method with local time and space horizon
- Distinction: Global vs. local reasoning

Is motion planning hard?

Related Fields and Contents

- Intersection of three fields
 - Robotics
 - Control theory
 - Al
- Topics
 - Planning in **discrete space**
 - Planning in **continuous space**
 - Planning under uncertainty
 - Planning under **differential constraints**

Basic Problem Statement

- Motion planning in robotics
 - Automatically compute a path for an object/robot that does not collide with obstacles.

Basic Motion Planning Problem

- Examples
 - Piano mover's problem 3D
 - Sofa mover's problem 2D
 - Generalized mover's problem
- Key to the problem
 - Make sure not point on the robot hits an obstacle
 - All kinematic motion planning

More than kinematic motion planning ...

- Trajectory planning (speed & acceleration along the path)
- Nonholonomic constraints (e.g. parallel parking)
- Sensor-based motion planning (deal with uncertainty)
- SLAM (e.g. planetary exploration)
- Coverage path planning (e.g. vacuum robot, demining)
- Hyper-redundant robot (e.g. snake robot for search and rescue)
- Human-like motion (e.g. animated characters)
- Drug design (e.g. protein as linked rigid bodies)

Applications

Automatically generate motion

• Automatically validate

Applications: Mobile Robots

Roomba Create

Mars Rovers

DARPA Urban Challenge

Google Self-Driving Car

Applications: Robotic Manipulation

Factory Automation

Humanoid Robots

Personal Robots

Personal Robots

Applications: Computer Games/Graphics

Path Finding in Games

Character Animation

Retargeting Motion Capture

Animation of Crowds

Applications: Assembly Planning

Applications: Computational Biology

Approaches

- Exact algorithms
 - Either find a solution or prove none exists
 - Very computationally expensive
 - Unsuitable for high-dimensional spaces
- Discrete Search
 - Divide space into a grid, use A* to search
 - Good for vehicle planning
 - Unsuitable for high-dimensional spaces
- Sampling-based Planning
 - Sample the C-space, construct path from samples
 - Good for high-dimensional spaces
 - Weak completeness and optimality guarantees

What matters?

- Motion planning algorithms are judged on
 - Completeness
 - Optimality
 - Speed (AKA efficiency)
 - Generality
- These vary in importance depending on the application

What matters: Completeness

- Will the algorithm solve all solvable problems?
- Will the algorithm return no solution for unsolvable problems?
- What if the algorithm is probabilistic?

- For what application(s) is completeness very important?
- For what application(s) is completeness not important?

What matters: Optimality

- Will the algorithm generate the shortest path?
- Will the algorithm generate the least-cost path (for an arbitrary cost function)?
- Do we need optimality or is feasibility enough?

- For what application(s) is completeness very important?
- For what application(s) is completeness **not important**?

What matters: Speed (AKA Efficiency)

- How long does it take to generate a path for real-world problems?
- How does the run-time scale with dimensionality of the problem and complexity of models?
- Is there a quality vs. computation time tradeoff?

- For what application(s) is completeness very important?
- For what application(s) is completeness not important?

What matters: Generality

- What types of problems can it solve?
- What types of problems can't it solve?

- For what application(s) is completeness very important?
- For what application(s) is completeness not important?

Robotic Surgery

Information Space and Sensor Uncertainty

Consider multiple states of the world

Planning with the Cloud

Summary

- Robot motion planning is used for...
 - Vehicles
 - Robots
 - Digital Characters
 - Molecules
 - Design verification
- Types of planning methods
 - Exact algorithms
 - Discrete Search
 - Sampling-based planners
- Many frontiers to explore

Homework

- Reading
 - Recap:
 - CH 1 Introduction
 - Principles Appendix G Analysis of Algorithm and Complexity Classes
 - Next class:
 - Graph Review (short)
 - Principles CH 4.0-4.1, 4.4 Potential Fields
 - Principles CH 5.0-5.2 Roadmaps, Voronoi diagram
 - Principles CH 6.0-6.1 Cell decomposition
- Sign up for course on Piazza

End

NP Complete

