Kinematics

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Kinematics of Serial Robots

- We know how to describe the transformation of a single rigid object w.r.t. a single frame
- If we have many rigid object in serial connection,

how to express and derive their spatial relations?

Overview – Robot Kinematics

- Forward Kinematics
 - Planar Robotic Systems, Representation of Serial Robots, Open Polygon Model, Denavit-Hartenberg Representation, Singularities
- Inverse Kinematics
 - Kinematic Decoupling, Inverse Position: Geometric Approach, Inverse Orientation
- Kinematics in a Nut Shell

Forward and Inverse Kinematics

 For industrial robots, the main concern is the position and orientation of the end-effector or the attached tool

A 2D example

 Tool Center Position (TCP) of a Planar Robotic Manipulator

 $X = d + a\cos A + b\cos B + c\cos C$ $Y = e + a\sin A + b\sin B + c\sin C$

Open Polygon Representation

- Homogeneous transformations can be applied to all joints to get the end effector / tool position. However ...
 - The transformation matrix depends on how the coordinate systems are set up and how the structural parameters are defined.
 - Hence, how to make sure two people can develop same transformation matrices for the same robot?

Step 1: Assign local reference frame for each joint (z and x axes)

- Every coordinate frame is established following three rules:
 - The z_{i-1} axis lies along the axis of motion of the *i*th joint

Step 1: Assign local reference frame for each joint (z and x axes)

- Every coordinate frame is established following three rules:
 - The x_i axis is normal to the z_{i-1}axis, and points away from it to the z_i axis

Step 1: Assign local reference frame for each joint (z and x axes)

- Every coordinate frame is established following three rules:
 - The x_i axis forms the common perpendicular between the z_{i-1} and z_i axis

Choices for the base and end-effector frames

- Base Frame
 - You can choose any location for the coordinate frame o in the the robot base as long as the z_0 axis is aligned with the first joint
- End-effector Frame
 - The last coordinate frame (*n*th frame) can be placed anywhere in the tool or end effector, as long as the x_n axis is normal to z_{n-1} axis.

Step 2: Determine the D- H parameters

- Relative pose between rigid bodies
 - Position + Orientation
- How many parameters do you need to fully specify their relative pose? z_i , z_{i-1}

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

 θ_i is the joint angle from the x_{i-1} to the x_i axis about the z_{i-1}
 axis using the right hand rule

Link offset

d_i is the offset distance from the origin of the (i – 1)th coordinate frame to the intersection of the z_{i-1} axis with the x_i axis along the z_{i-1} axis.

Link Length

 a_i is the distance from the intersection of the z_{i-1} axis with the x_i axis to the origin of the *i*th frame along the x_i axis (the shortest distance between the z_{i-1} and z_i axes).

Distance between two Z-axes

Link Twist

 α_i is the twisted angle from the z_{i-1} axis to the z_i axis about the x_i axis (using the right-hand rule).

DH parameters

Step 3: Specify the transformation matrix

$$\begin{split} A_{i-1}^{i} &= Rot\left(z,\theta_{i}\right) \cdot Trans\left(0,0,d_{i}\right) \cdot Trans\left(a_{i},0,0\right) \cdot Rot\left(x,\alpha_{i}\right) \\ &= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split} \qquad \underbrace{ \begin{array}{c} Complete \ transformation \ from \ base \ frame \ to \ tool \ frame: \\ T_{0}^{6} &= A_{0}^{1}A_{1}^{2}A_{2}^{3}A_{3}^{4}A_{5}^{6}A_{5}^{6} \\ \end{bmatrix}} \end{split}}$$

Vectors in the Transformation Matrix

• Recall:

$$H = \begin{bmatrix} n_x & s_x & a_x & d_x \\ n_y & s_y & a_y & d_y \\ n_z & s_z & a_z & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{n} & \mathbf{s} & \mathbf{a} & \mathbf{d} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- **n** = normal direction
- **S** = sliding direction
- *a* = approach direction

Example: A planar robot

Example: A planar robot

#	θ	d	а	α
1	θ_1	0	<i>a</i> ₁	0
2	θ_2	0	<i>a</i> ₂	0

0	Ŭ	$Rot(z,\theta_{1})$	- /	`	- /		\ -	/	```	- /
	C_{θ_1}	$-s_{ heta_1}c_{lpha_1} \ c_{ heta_1}c_{lpha_1} \ s_{lpha_1} \ 0$	$S_{ heta_1}S_{lpha_1}$	$a_1 c_{\theta_1}$		C_{θ_1}	$-s_{\theta_1}$	0	$a_1 c_{\theta_1}$	
_	S_{θ_1}	$C_{\theta_1}C_{\alpha_1}$	$-c_{\theta_1}s_{\alpha_1}$	$a_1 s_{\theta_1}$	_	S_{θ_1}	$\mathcal{C}_{ heta_1}$	0	$a_1 s_{\theta_1}$	
	0	s_{lpha_1}	C_{lpha_1}	d_{1}		0	0	1	0	
	0	0	0	1		0	0	0	1	

#	θ	d	а	α
1	θ_1	0	<i>a</i> ₁	0
2	θ_2	0	<i>a</i> ₂	0

		$Rot(z,\theta_2)$	•	•	,		•	•	,	,
	$\int C_{\theta_2}$	$-s_{ heta_2}c_{lpha_2}$ $c_{ heta_2}c_{lpha_2}$ s_{lpha_2} 0	$S_{\theta_2}S_{\alpha_2}$	$a_2 c_{\theta_2}$		C_{θ_2}	$-s_{\theta_2}$	0	$a_2 c_{\theta_2}$	
=	S_{θ_2}	$C_{\theta_2}C_{\alpha_2}$	$-c_{\theta_2}s_{\alpha_2}$	$a_2 s_{\theta_2}$	_	S_{θ_2}	$C_{ heta_2}$	0	$a_2 s_{\theta_2}$	
	0	S_{α_2}	C_{α_2}	d_{2}		0	0	1	0	
	0	0	0	1		0	0	0	1	

#	θ	d	а	α
1	${ heta}_1$	0	<i>a</i> ₁	0
2	θ_2	0	<i>a</i> ₂	0

$$T_{0}^{1} = A_{0}^{1}$$

$$T_{0}^{2} = A_{0}^{1}A_{1}^{2} = \begin{bmatrix} c_{\theta_{1}} - s_{\theta_{1}} & 0 & a_{1}c_{\theta_{1}} \\ s_{\theta_{1}} & c_{\theta_{1}} & 0 & a_{1}s_{\theta_{1}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{0}^{1} = \begin{bmatrix} c_{\theta_{1}} - s_{\theta_{1}} & 0 & a_{1}s_{\theta_{1}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1}^{2} = \begin{bmatrix} c_{\theta_{1}} - s_{\theta_{1}} & 0 & a_{1}s_{\theta_{1}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1}^{2} = \begin{bmatrix} c_{\theta_{1}} - s_{\theta_{1}} & 0 & a_{1}s_{\theta_{1}} \\ s_{\theta_{1}} - s_{\theta_{1}} & 0 & a_{1}s_{\theta_{1}} \\ s_{\theta_{1}} - s_{\theta_{1}} & 0 & a_{1}s_{\theta_{1}} \\ s_{\theta_{1}} - s_{\theta_{1}} & s_{\theta_{1}} & s_{\theta_{1}} \\ s_{\theta_{1}} - s_{\theta_{1}} \\ s_{\theta_{1}} - s_{\theta_{1}} & s_{\theta_{1}} \\ s_{\theta_{1}} - s_{\theta_{1}} & s_{\theta_{1}} \\ s_{\theta_{1}} - s_$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

 θ_2

Innill.

Link	d_i	a_i	α_i	$ heta_i$
1	0	0	-90	θ_1^{\star}
2	d_2	0	+90	θ_2^{\star}
3	d_3^{\star}	0	0	0
4	0	0	-90	$ heta_4^\star$
5	0	0	+90	$ heta_5^{\star}$
6	d_6	0	0	θ_6^{\star}

Example: A six-DOF articulate robot

$$T_{0}^{1} = A_{0}^{1}A_{1}^{2}A_{2}^{3}A_{3}^{4}A_{4}^{5}A_{5}^{6}$$

$$= \begin{bmatrix} c_{1}(c_{234}c_{5}c_{6} - s_{234}s_{6}) & c_{1}(-c_{234}c_{5}c_{6} - s_{234}c_{6}) & c_{1}(c_{234}s_{5}) & c_{1}(c_{234}a_{4} + c_{23}a_{3} + c_{2}a_{2}) \\ -s_{1}s_{5}c_{6} & +s_{1}s_{5}s_{6} & +s_{1}c_{5} \\ s_{1}(c_{234}c_{5}c_{6} - s_{234}s_{6}) & s_{1}(-c_{234}c_{5}c_{6} - s_{234}c_{6}) & s_{1}(c_{234}s_{5}) \\ +c_{1}s_{5}s_{6} & -c_{1}s_{5}s_{6} & -c_{1}c_{5} \\ s_{234}c_{5}c_{6} + c_{234}s_{6} & -s_{234}c_{5}c_{6} + c_{234}c_{6} & s_{234}s_{5} \\ 0 & 0 & 0 \end{bmatrix} s_{1}(c_{234}a_{4} + s_{23}a_{3} + s_{2}a_{2})$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Singularities

- There are 3 common singularities with serial robotics systems
 - Wrist alignment joint 4 and 6 collinear axis
 - Elbow singularity Out-of-reach
 - Alignment singularity wrist is as close to joint 1 as it can get

- Degeneracy = Robot looses 1 DOF
 - Physical Limits
 - 2 similar joints become collinear
 - Determinant of position matrix = zero
- Reduced dexterity
 - Impossible to orient end effecter at a desired orientation, at the limits of robots workspace.

Example: Spherical wrist singularity

- A spherical wrist
 - A singular configuration when the vectors z₃ and z₅ are linearly dependent.
 - The axes z₃ and z₅ are collinear, which happens when $\theta_5 = o \text{ or } \pi$.

Example: Spherical wrist singularity

- Unavoidable singularity for sphere wrist, unless ...
 - The wrist is designed in such a way as t not permit this alignment.
- Not limited to a spherical wrist
 - If any two revolute joint axes become collinear a singularity results.

Wrist singularity

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Gimbal Lock

2D Elbow Singularities

- The robot arm has two joints
- The joint space has 2 dimensions

- Theoretically, any position within the robot workspace is reachable by the end effector. However ...
 - A singularity reduces the mobility of the robot.
 - This will occur in two configurations what are they?

2D Elbow Singularities

2D Elbow singularity

2D Elbow Singularities

- Singularity due to aligned links
 - Like the 2D case we just saw, there are two singularities due to the parallel Z1 and Z2 axes.

- Singularity due to aligned rotational axes
 - If the wrist center intersects with the axis of the base rotation, z₀, then there are an infinite number of solutions to the inverse kinematic equations.
 - In other words, any value of θ1 will produce the same wrist position. We have again lost a degree of freedom...

- Singularity due to reach limit
 - There are workspace volumes (shown in purple) where the end of arm tooling cannot reach.

- Singularity due to self collision
 - There are also configurations where the arm will collide with itself (another form of singularity).

Singularities of the ABB robot

End