Kinematics

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Kinematics of Serial Robots

- We know how to describe the transformation of a single rigid object w.r.t. a single frame
- If we have many rigid object in serial connection,

how to express and derive their spatial relations?

Overview - Robot Kinematics

- Forward Kinematics
	- Planar Robotic Systems, Representation of Serial Robots, Open Polygon Model, Denavit-Hartenberg Representation, Singularities
- Inverse Kinematics
	- Kinematic Decoupling, Inverse Position: Geometric Approach, Inverse Orientation
- Kinematics in a Nut Shell

Forward and Inverse Kinematics

• For industrial robots, the main concern is the position and orientation of the end-effector or the attached tool

• Tool Center Position (TCP) of a Planar Robotic Manipulator

ample
 **Example 18 Accord Constrained Spanish Constrained Spanish Constructor: Jane Li, Mechanical Engineering Department 8

Potics – Instructor: Jane Li, Mechanical Engineering Department 8** Solution (TCP) of

The Position (TCP) of

The Position Sin Sin Sin Sin C

Sin A + b sin B + c sin C

Sobotics – Instructor: Jane Li, Mechanical Engineering Department 8

Mobotics – Instructor: Jane Li, Mechanical Engineer

Open Polygon Representation

- Homogeneous transformations can be applied to all joints to get the end effector / tool position. However …
	- The transformation matrix depends on how the coordinate systems are set up and how the structural parameters are defined.
	- Hence, how to make sure two people can develop same transformation matrices for the same robot?

•

Step 1: Assign local reference frame for each joint (z and x axes)

- Every coordinate frame is established following three rules:
	- The z_{i-1} axis lies along the axis of motion of the *i*th joint

Step 1: Assign local reference frame for each joint (z and x axes)

- Every coordinate frame is established following three rules:
	- The x_i axis is normal to the z_{i-1} axis, and points away from it to the z_i axis

Step 1: Assign local reference frame for each joint (z and x axes)

- Every coordinate frame is established following three rules:
	- The x_i axis forms the common perpendicular between the z_{i-1} and z_i axis

Choices for the base and end-effector frames

- Base Frame
	- You can choose any location for the coordinate frame o in the the robot base as long as the z_0 axis is aligned with the first joint
- End-effector Frame
	- The last coordinate frame (nth frame) can be placed anywhere in the tool or end effector, as long as the x_n axis is normal to z_{n-1} axis.

Step 2: Determine the D-H parameters

- Relative pose between rigid bodies
	- Position + Orientation
- How many parameters do you need to fully specify their relative pose? z_{i-1}

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22/2018 11

• θ_i is the joint angle from the x_{i-1} to the x_i axis about the z_{i-1} axis using the right hand rule

Link offset

 \cdot d_i is the offset distance from the origin of the $(i - 1)$ th coordinate frame to the intersection of the z_{i-1} axis with the x_i axis along the z_{i-1} axis.

Link Length

• a_i is the distance from the intersection of the z_{i-1} axis with the x_i axis to the origin of the *i*th frame along the x_i axis (the shortest distance between the z_{i-1} and z_i axes).

Distance between two Z-axes

Link Twist

• α_i is the twisted angle from the z_{i-1} axis to the z_i axis about the x_i axis (using the right-hand rule).

DH parameters

Step 3: Specify the transformation matrix\n
$$
A_{i-1}^{i} = Rot(z, \theta_{i}) \cdot Trans(0, 0, d_{i}) \cdot Trans(a_{i}, 0, 0) \cdot Rot(x, \alpha_{i})
$$
\n
$$
= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & d_{i} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \text{complete transformation from base frame to tool frame:} \\ \text{F0} = A_{0}^{1}A_{1}^{2}A_{2}^{3}A_{3}^{4}A_{4}^{5}A_{5}^{6} \\ A_{1}^{2}A_{2}^{3}A_{3}^{4}A_{4}^{5}A_{5}^{6} \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0
$$

• Recall:

is in the Transformation Matrix\n
$$
H = \begin{bmatrix} n_x & s_x & a_x & d_x \\ n_y & s_y & a_y & d_y \\ n_z & s_z & a_z & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{n} & \mathbf{s} & \mathbf{a} & \mathbf{d} \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$
\n
$$
y_n \equiv s
$$
\normal direction

\niding direction

\n
$$
y_n \equiv s
$$
\normal direction

\n
$$
y_n \equiv a
$$
\n
$$
y_n \equiv a
$$
\n
$$
y_n \equiv s
$$
\n
$$
y_n \equiv a
$$
\nsymbol direction

\n
$$
y_n \equiv a
$$
\nas Robotic Engineering Program - WPI

\n
$$
z_n \equiv a
$$
\nas Robotic Engineering Program - WPI

\n
$$
y_n \equiv a
$$
\nas Robotic Engineering Program - WPI

\n
$$
y_n \equiv a
$$
\nas Robotic Engineering Program - WPI

\n
$$
y_n \equiv a
$$
\nas Robotic Engineering Program - WPI

- \cdot **n** = normal direction
- $S =$ sliding direction
- a = approach direction

Example: A planar robot

Example: A planar robot

$$
T_0^1 = A_0^1
$$

\n
$$
T_0^2 = A_0^1 A_1^2 = \begin{bmatrix} c_{q_1}c_{q_2} - s_{q_3}s_{q_2} & -c_{q_1}s_{q_2} - s_{q_3}c_{q_2} & 0 & a_1c_{q_1} + a_2(c_{q_1}c_{q_2} - s_{q_3}s_{q_3}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
T_0^2 = A_0^1 A_1^2 = \begin{bmatrix} c_{q_2}c_{q_2} - s_{q_3}s_{q_2} & -c_{q_1}s_{q_2} - s_{q_1}c_{q_2} & 0 & a_1c_{q_1} + a_2(c_{q_1}c_{q_2} - s_{q_3}s_{q_3}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
RBE/ME \triangle 48a_5 - Industrial Robotics - Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI
$$

\n
$$
BBE/ME \triangle 48a_5 - Industrial Robotics - Instructor: Jane Li, Mechanical Engineering Program - WPI
$$

\n
$$
3/2a_2ca_8 = a_3
$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22/2018 23

Example: A six-DOF articulate robot

$$
T_0^1 = A_0^1 A_1^2 A_2^3 A_3^4 A_3^5 A_3^6
$$

\n
$$
= \begin{bmatrix}\nc_1 (c_{234}c_5c_6 - s_{234} s_6) & c_1 (-c_{234}c_5c_6 - s_{234}c_6) & c_1 (c_{234} s_5) & c_1 (c_{234} a_4 + c_{23} a_3 + c_2 a_2)\n\end{bmatrix}
$$
\n
$$
+ s_1 s_5 s_6
$$
\n
$$
+ s_1 s_5 s_6
$$
\n
$$
+ s_1 s_5 s_6
$$
\n
$$
- c_1 s_5 s_6
$$
\n
$$
- s_{234}c_5c_6 + c_{234} s_6
$$
\n
$$
- s_{234}c_5c_6 + c_{234}c_6
$$
\n
$$
- s_{234}c_5c_6 + c_{234}c_6
$$
\n
$$
- s_{234}c_5c_6 + c_{234}c_6
$$
\n
$$
s_{234}a_4 + s_{23}a_3 + s_{234}a_2
$$
\n
$$
s_{234}a_4 + s_{23}a_3 + s_{234}a_2
$$
\n
$$
s_{234}a_4 + s_{234}a_3 + s_{234}a_2
$$
\n
$$
s_{234
$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22/2018 26

Singularities

- There are 3 common singularities with serial robotics systems
	- Wrist alignment joint 4 and 6 collinear axis
	- Elbow singularity Out-of-reach
	- Alignment singularity wrist is as close to joint 1 as it can get

- Degeneracy = Robot looses 1 DOF
	- Physical Limits
	- 2 similar joints become collinear
	- Determinant of position matrix = zero
- Reduced dexterity
	- Impossible to orient end effecter at a desired orientation, at the limits of robots workspace.

Example: Spherical wrist singularity

- A spherical wrist
	- A singular configuration when the vectors z3 and z5 are linearly dependent.
	- The axes z₃ and z₅ are collinear, which happens when θ 5 = 0 or π .

Example: Spherical wrist singularity

- Unavoidable singularity for sphere wrist, unless …
	- The wrist is designed in such a way as to not permit this alignment.
- Not limited to a spherical wrist
	- If any two revolute joint axes become collinear a singularity results.

Wrist singularity

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22/2018 31

Gimbal Lock

2D Elbow Singularities

- The robot arm has two joints
- The joint space has 2 dimensions

- Theoretically, any position within the robot workspace is reachable by the end effector. However …
	- A singularity reduces the mobility of the robot.
	- This will occur in two configurations what are they?

2D Elbow Singularities

2D Elbow singularity

2D Elbow Singularities

- Singularity due to aligned links
	- Like the 2D case we just saw, there are two singularities due to the parallel Z1 and Z2 axes.

- Singularity due to aligned rotational axes
	- If the wrist center intersects with the axis of the base rotation, z_0 , then there are an infinite number of solutions to the inverse kinematic equations.
	- In other words, any value of θ 1 will produce the same wrist position. We have again lost a degree of freedom…

- Singularity due to reach limit
	- There are workspace volumes (shown in purple) where the end of arm tooling cannot reach.

- Singularity due to self collision
	- There are also configurations where the arm will collide with itself (another form of singularity).

Singularities of the ABB robot

End