Transformation

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- Given that
 - The center of the right rear wheel is at planar coordinates (0.24, -0.53) w.r.t. frame F₁

•
$$a_1 = 7$$
, $b_1 = 3$, and $\theta_1 = 26^{\circ}$

- (4 pts) Use homogeneous point vector to express the position of this wheel in Frame $F_{\rm 1}$
- (6 pts) Use homogeneous transformation matrix to express this wheel w.r.t. Frame F₀

Alternative solution?

A more efficient way to solve the problem is to use the combined matrix P:

$$\mathbf{v} = \mathbf{P}\mathbf{w} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & a_1 \\ \sin(\theta_1) & \cos(\theta_1) & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 + x_w \cos(\theta_1) - y_w \sin(\theta_1) \\ b_1 + x_w \sin(\theta_1) + y_w \cos(\theta_1) \\ 1 \end{bmatrix}$$

Transformation

Why need transformation?

- We want to control the end-effector of a robot to ...
 - Move to the desired pose (position and orientation)
 - Move along a pre-planned path, i.e., a sequence of robot poses

How to represent the robot end-effector poses mathematically?

- Reference Frames and Coordinate Systems
- Representing a Point and Vector in Space
 - Representing Rotations
 - Rotations in 2D
 - Characteristics of Rotation Matrices
 - Rotations in 3D
 - Rotational Transformations
 - Rigid Motion: Rotation and Translation
- Homogeneous Transformations

Representing a Point and Vector in Space

Normal representation of a point

Representation using unit vector

$$P = a\hat{i} + b\hat{j} + c\hat{k}$$

- What we want to know what is $R_0^1 = \begin{bmatrix} {}^0 \hat{x}_1 & | {}^0 \hat{y}_1 \end{bmatrix}$
 - where ${}^{0}\hat{x}_{1}$ and ${}^{0}\hat{y}_{1}$ are the coordinates in frame o of the unit vectors and , respectively. A matrix in this form is called a rotation matrix.

$${}^{0}\hat{x}_{1} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}, {}^{0}\hat{y}_{1} = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$
$${}^{\hat{y}_{1}} = \begin{bmatrix} \sin(\theta) \\ \cos(\theta) \end{bmatrix}$$
$${}^{\hat{y}_{1}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

- Alternatively, we can derive the 2D transformation matrix by
 - Project Frame 1 axes onto Frame o axes:

$${}^{\scriptscriptstyle 0}\hat{x}_1 = \begin{bmatrix} \hat{x}_1 \cdot \hat{x}_0 \\ \hat{x}_1 \cdot \hat{y}_0 \end{bmatrix} {}^{\scriptscriptstyle 0}\hat{y}_1 = \begin{bmatrix} \hat{y}_1 \cdot \hat{x}_0 \\ \hat{y}_1 \cdot \hat{y}_0 \end{bmatrix}$$

• Combine into a single matrix

$$R_0^1 = \begin{bmatrix} \hat{x}_1 \cdot \hat{x}_0 & \hat{y}_1 \cdot \hat{x}_0 \\ \hat{x}_1 \cdot \hat{y}_0 & \hat{y}_1 \cdot \hat{y}_0 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Inverse Rotation

What is the rotation of <u>Frame o</u> w.r.t. <u>Frame 1</u>?

$$R_1^0 = \begin{bmatrix} \hat{x}_0 \cdot \hat{x}_1 & \hat{y}_0 \cdot \hat{x}_1 \\ \hat{x}_0 \cdot \hat{y}_1 & \hat{y}_0 \cdot \hat{y}_1 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Compare to

$$\begin{array}{c} R_0^1 = \begin{bmatrix} \hat{x}_1 \cdot \hat{x}_0 & \hat{y}_1 \cdot \hat{x}_0 \\ \hat{x}_1 \cdot \hat{y}_0 & \hat{y}_1 \cdot \hat{y}_0 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

 $R_1^0 = \left\lceil R_0^1 \right\rceil^T$

Characteristics of Rotation Matrices

Special orthogonal group

$$R \in SO(n)$$

$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

- For any $R \in SO(n)$, the following properties hold
 - $R^T = R^{-1} \in SO(n)$
 - Columns (and rows) of *R* are **mutually orthogonal**
- $\Rightarrow \mathbf{u} \cdot \mathbf{v} = 0$
 - Each column (and each row) of *R* is a unit vector
 - det(R) = 1 (-1 for left handed coordinate systems)

Project <u>Frame 1</u> axes onto <u>Frame o</u> axes:

$$R_{0}^{1} = \begin{bmatrix} \hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} & \hat{z}_{1} \cdot \hat{x}_{0} \\ \hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0} & \hat{z}_{1} \cdot \hat{y}_{0} \\ \hat{x}_{1} \cdot \hat{z}_{0} & \hat{y}_{1} \cdot \hat{z}_{0} & \hat{z}_{1} \cdot \hat{z}_{0} \end{bmatrix} \qquad R_{0}^{1} \in \mathrm{SO}(3)$$

$$Basic (Canonical) \operatorname{Rotations}$$

$$R_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} R_{y,\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} R_{z,\gamma} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

 $\hat{x_1}$

$$\mathbf{R}_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$
$$\mathbf{R}_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\alpha} & -s_{\alpha} \\ 0 & s_{\alpha} & c_{\alpha} \end{bmatrix}$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Canonical Rotations

$$R_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$
$$R_{y,\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$
$$R_{z,\gamma} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Project the point p_1 onto Frame o:

$$p_{0} = \begin{bmatrix} p_{1} \cdot \hat{x}_{0} \\ p_{1} \cdot \hat{y}_{0} \\ p_{1} \cdot \hat{z}_{0} \end{bmatrix} = \begin{bmatrix} (u\hat{x}_{1} + v\hat{y}_{1} + w\hat{z}_{1}) \cdot \hat{x}_{0} \\ (u\hat{x}_{1} + v\hat{y}_{1} + w\hat{z}_{1}) \cdot \hat{y}_{0} \\ (u\hat{x}_{1} + v\hat{y}_{1} + w\hat{z}_{1}) \cdot \hat{z}_{0} \end{bmatrix}$$
$$= \begin{bmatrix} u\hat{x}_{1} \cdot \hat{x}_{0} & v\hat{y}_{1} \cdot \hat{x}_{0} & w\hat{z}_{1} \cdot \hat{x}_{0} \\ u\hat{x}_{1} \cdot \hat{y}_{0} & v\hat{y}_{1} \cdot \hat{y}_{0} & w\hat{z}_{1} \cdot \hat{y}_{0} \\ u\hat{x}_{1} \cdot \hat{z}_{0} & v\hat{y}_{1} \cdot \hat{z}_{0} & w\hat{z}_{1} \cdot \hat{z}_{0} \end{bmatrix}$$

Rotational Transformations

Rotation simply represented as:

Rigid Motions: Rotation and Translation

Given a point *p* in Frame 1, we can express the point in Frame o with:

$$p_0 = R_0^1 p_1 + d_0$$

 \hat{x}_0

Rigid Motions: Rotation and Translation

• P2 is the position of Point P defined w.r.t. Frame 2

Rigid Motions: Rotation and Translation

Homogeneous Transformations

• Rewrite rigid motion as:

$$\begin{bmatrix} R_0^1 & d_0^1 \\ \varnothing & 1 \end{bmatrix} \begin{bmatrix} R_1^2 & d_1^2 \\ \varnothing & 1 \end{bmatrix} = \begin{bmatrix} R_0^1 R_1^2 & R_0^1 d_1^2 + d_0^1 \\ \varnothing & 1 \end{bmatrix}$$

• where Ø denotes the null or zero row vector [0,0,0].

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI 3/22

Homogeneous Transformations

• Represent the augmented transformation matrix as:

$$H = \begin{bmatrix} R & d \\ \emptyset & 1 \end{bmatrix}, R \in \mathrm{SO}(3), d \in \mathbb{R}^3$$

- Transformation matrices of this form are called homogeneous transformations.
- They represent both rotation and translation, $H \in SE(3)$.

Homogeneous Transformations

What is the inverse transformation?

Basic homogeneous transformations

$$\mathbf{Trans}_{x,\Lambda x} = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{Trans}_{x,\Lambda x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{Rot}_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{Rot}_{x,\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{Rot}_{x,\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{Rotations}$$

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Translation and rotation in a unified form

• General form of the homogeneous transformation matrix

$$H_{0}^{1} = \begin{bmatrix} n_{x} & s_{x} & a_{x} & d_{x} \\ n_{y} & s_{y} & a_{y} & d_{y} \\ n_{z} & s_{z} & a_{z} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{n} & \mathbf{s} & \mathbf{a} & \mathbf{d} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- **n** represents the direction of x_1 in Frame o (**n** \rightarrow normal)
- s represents the direction of y_1 in Frame o (s \rightarrow sliding)
- *a* represents the direction of z_1 in Frame o ($a \rightarrow$ approach)
- *d* represents the distance from the origin of Frame o to the origin of Frame 1

What if we need to translate and rotate?

Combinations of homogeneous transformations:

 $H_0^2 = H_0^1 H_1^2$

Multiplication in order!

Transformation w.r.t. fixed and moving frame

What if we need to translate and rotate?

Combinations of homogeneous transformations:

Basic homogeneous transformations

$$Trans_{x,\Lambda x} = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$ranslations$$

$$Trans_{y,\Delta y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot_{y,\beta} = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot_{z,\gamma} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Tr

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Example 1

- A point P is defined as $P = [2, 3, 5]^T$ relative to Frame o.
- Calculate the position of the point <u>w.r.t. the original Frame o</u> after the following <u>transformations of Frame o</u>:
 - Translate 5 units along x, 1 unit along y, and 6 units along z
 - Rotate 90 degrees about the z axis
 - Rotate 90 degrees about the y axis

Translate 5 units along x, 1 unit along y, and 6

Rotate 90 degrees about the z axis

Rotate 90 degrees about the y axis

Solution

- Given $P = [2, 3, 5]^T$
- Translate 5 units along x, 1 unit along y, and 6 units along z

$$H_0^1 = Trans(5, 1, 6)$$

Rotate 90 degrees about the z axis

$$H_1^2 = Rot_z(90^\circ)$$

• Rotate 90 degrees about the y axis

$$H_2^3 = Rot_y(90^\circ)$$

• Finally,

$$P_{new} = H_0^3 \cdot P = H_0^1 H_1^2 H_2^3 \cdot P$$

Example 2

- A point P is defined as $P = [2,3,5]^T$ relative to Frame o.
- Calculate the position of the point after the following transformations <u>about the axes of original Frame o</u>:
 - Translate 5 units along x, 1 unit along y, and 6 units along z
 - Rotate 90 degrees about the z axis
 - Rotate 90 degrees about the y axis
- Write your answer w.r.t the basic homogeneous transformations

Transformation w.r.t. the fixed Frame Fo

Solution

- Given $P = [2, 3, 5]^T$
- Translate 5 units along x, 1 unit along y, and 6 units along z

$$P_1 = H_0^1 \cdot P = Trans(5, 1, 6) \cdot P$$

• Rotate 90 degrees about the z axis

$$P_2 = H_1^2 \cdot P_1 = Rot_z(90^\circ) \cdot Trans(5, 1, 6) \cdot P$$

Rotate 90 degrees about the y axis

$$P_3 = H_2^3 \cdot P_2 = Rot_y(90^\circ) \cdot Rot_z(90^\circ) \cdot Trans(5, 1, 6) \cdot P$$

Finally,

$$P_{new} = H_2^3 H_1^2 H_0^1 \cdot P$$

Solution

$$P_{final} = Rot(y,90^{\circ}) \cdot Rot(z,90^{\circ}) \cdot Trans(5,1,6) \cdot P$$

$$P_{final} = \begin{bmatrix} \cos(90) & 0 & \sin(90) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(90) & 0 & \cos(90) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(90) & -\sin(90) & 0 & 0 \\ \sin(90) & \cos(90) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 5 \\ 1 \end{bmatrix}$$

• Compute the P_{final}

RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

Rotate a frame about X, Y, Z-axis

Rotating about a fixed frame

Rotating about a moving frame

$$R_{X}(\gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix}$$
$$R_{Y}(\beta) = \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix}$$
$$R_{Z}(\alpha) = \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotating about a fixed frame

$${}^{A}_{B}R_{XYZ}(\gamma,\beta,\alpha) = R_{Z}(\alpha)R_{Y}(\beta)R_{X}(\gamma)$$

Rotating about a moving frame

$${}_{B}^{A}R_{Z'Y'X'}(\alpha,\beta,\gamma) = R_{Z}(\alpha)R_{Y}(\beta)R_{X}(\gamma)$$

Equivalent rotation

End