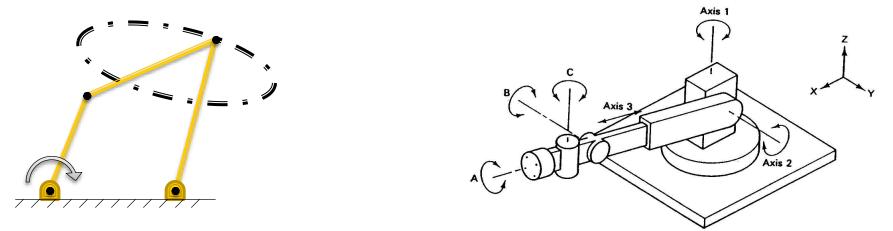
Coordinate Frames

Jane Li

Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Quiz (10 pts)

- (3 pts) How many DOFs does the four-bar mechanism have?
- (3 pts) List two advantages of parallel kinematic machines?
- (4 pts) Describe the work envelop of a RRP robot

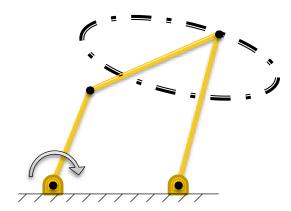


RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

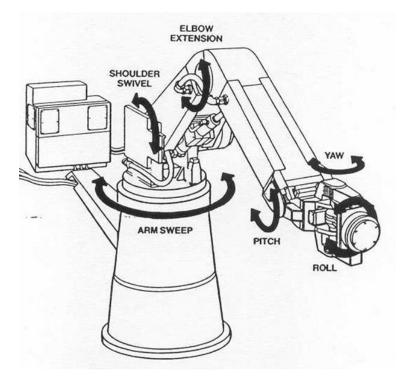
Degrees of Freedom (DOF)

- The minimum number of required independent coordinates to completely specify robot motions
 - # of required actuators?
 - # of joints?

Degrees of Freedom (DOF)



Four Bar Linkage Mechanism Closed-Loop Kinematic Chain

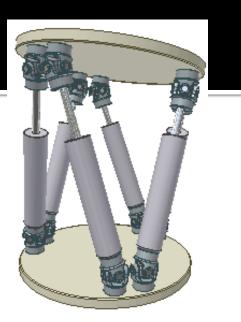


Industrial Robot

Open-Loop Kinematic Chain

Parallel Kinematics

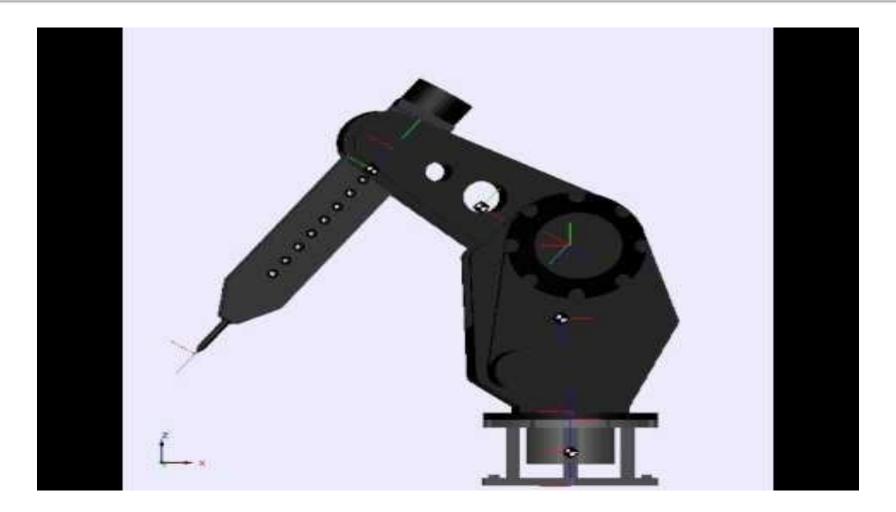
- Parallel Kinematic Machines (PKMs)
 - Closed kinematic loops
 - Stewart Platform / hexapods



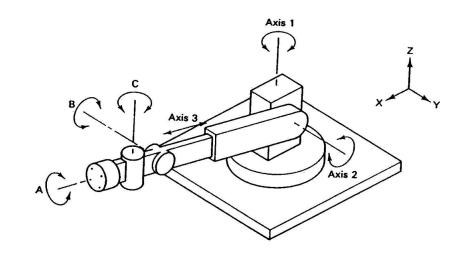
- Pros:
 - Greater rigidity parallel links
 - Higher speed less mass to move
 - Higher accuracy averaged error

- Cons:
 - Limited work envelope
 - Requires a large space for large motion
 - Inability to avoid objects

Spherical - RRP



Work Envelope of a Spherical Robot





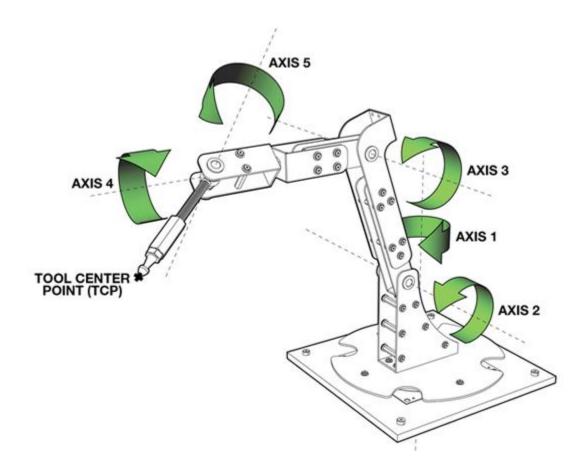
RBE/ME 4815 – Industrial Robotics – Instructor: Jane Li, Mechanical Engineering Department & Robotic Engineering Program - WPI

2D Transformation

Robot kinematics

- Kinematics analysis
 - Study robot motion (position, velocity, acceleration) without considering the force/torque that cause the motions

How to represent robot position in 2D/3D workspace?

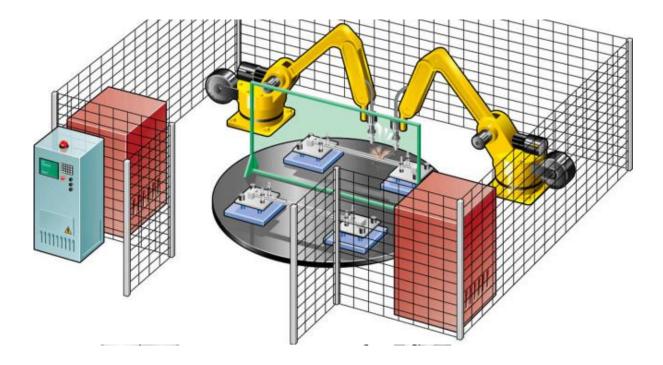


Overview

- Mathematical representations of robot position & orientation
 - Reference frame
 - Using vector to represent robot position
 - Using matrix to represent robot orientation
 - 2D homogeneous transformation

Reference frames

- Industrial robot typically operates in a "work cell"
 - World frame = the reference frame attached to the robot workspace

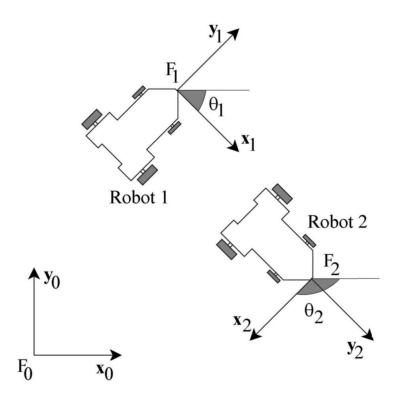


Reference frame

- Given a reference frame, you can
 - Use a vector to specify robot position
 - Use a matrix to specify robot orientation

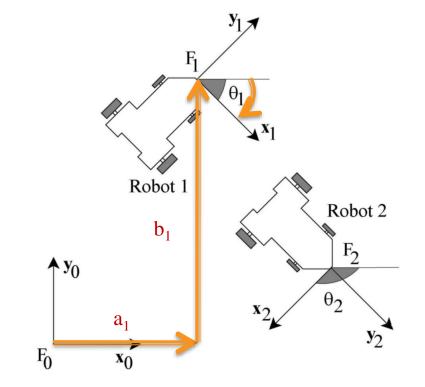
Planar Location

- World frame = Fo
- Robot frame
 - F1 attached to Robot 1
 - F2 attached to Robot 2



Planar Location

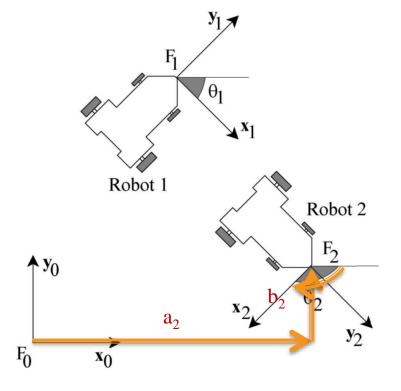
- Variables for describing the planar location of the robots
- Position
 - Robot $1 (a_1, b_1)$ in Fo
- Orientation
 - Robot 1 θ_1 in Fo



Planar Location

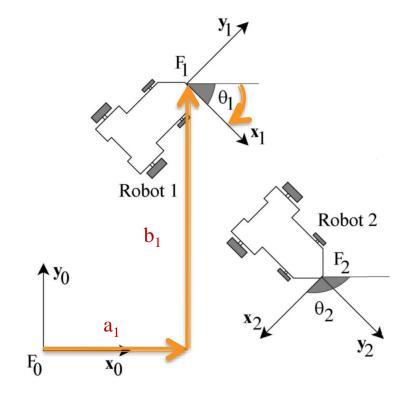
- Variables for describing the planar location of the robots
- Position
 - Robot $2 (a_2, b_2)$ in Fo
- Orientation
 - Robot 2 θ_2 in Fo

How to use vectors and matrices?



Robot position & orientation w.r.t. world frame

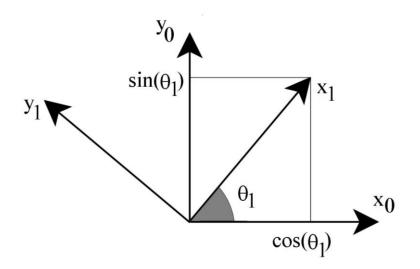
- Position of Robot 1
 - Consider the frame of robot and world frame
- Robot orientation w.r.t. Fo
 - Matrix rotation between frame orientation
 - Frame rotation
- Robot position w.r.t Fo
 - Vector difference between frame origins
 - Frame translation



Frame Rotation

- The unit vectors $\mathbf{x_1}$ and $\mathbf{y_1}$ w.r.t. F_0 are related to the angle θ_1 as follows:

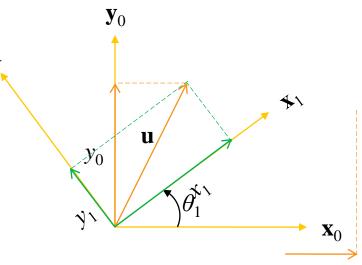
$$\mathbf{x}_{1} = \cos(\theta_{1})\mathbf{x}_{0} + \sin(\theta_{1})\mathbf{y}_{0}$$
$$\mathbf{y}_{1} = -\sin(\theta_{1})\mathbf{x}_{0} + \cos(\theta_{1})\mathbf{y}_{0}$$



Planar Orientation

- Suppose we have a vector **u** given by its coordinates w.r.t. frame F_1 : $\mathbf{u} = x_1 \mathbf{x}_1 + y_1 \mathbf{y}_1$
 - What would the coordinates of the same point in space be relative to the F_0 coordinate system (which has the same origin as F_1 but is rotated by θ_1)? y_0

$$\mathbf{u} = \mathbf{P} \mathbf{x}_0 + \mathbf{P} \mathbf{y}_0$$



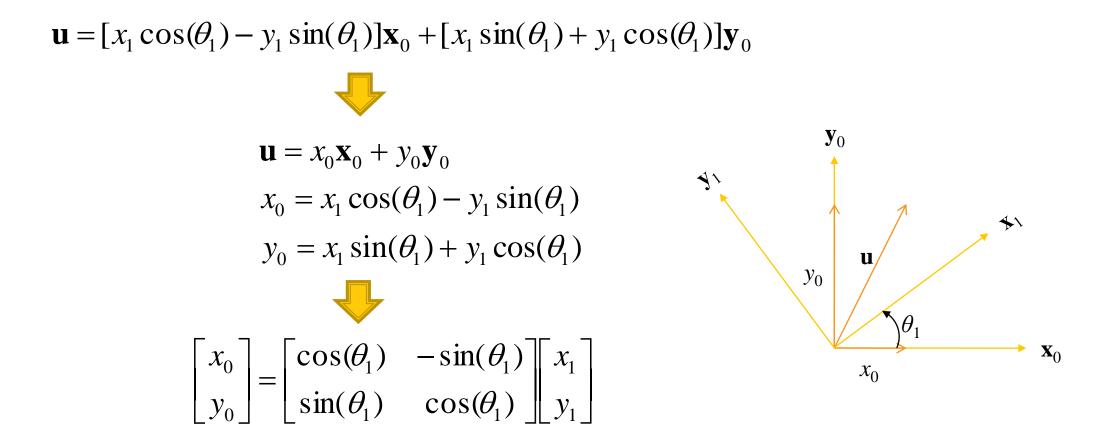
Planar Orientation

$$\mathbf{u} = x_1 \mathbf{x}_1 + y_1 \mathbf{y}_1$$

$$\mathbf{u} = x_1 [\cos(\theta_1) \mathbf{x}_0 + \sin(\theta_1) \mathbf{y}_0] + y_1 [-\sin(\theta_1) \mathbf{x}_0 + \cos(\theta_1) \mathbf{y}_0]$$

$$\mathbf{u} = [x_1 \cos(\theta_1) - y_1 \sin(\theta_1)] \mathbf{x}_0 + [x_1 \sin(\theta_1) + y_1 \cos(\theta_1)] \mathbf{y}_0$$

Planar Orientation

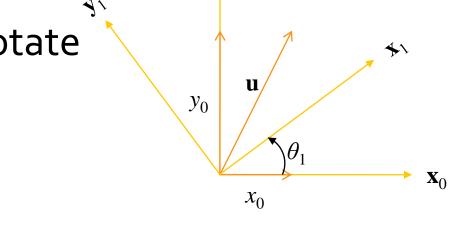


2D Rotation matrix

• The 2×2 matrix \mathbf{R} is called the *rotation matrix*:

$$\mathbf{R} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$$

- The rotation matrix allows you to rotate
 x₀ into x₁ and y₀ into y₁
- It depends only on θ_1

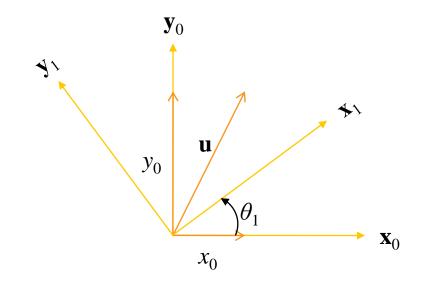


 \mathbf{y}_0

2D Rotation matrix

- The rotation matrix ${\bm R}$ determines the orientation of frame F_1 w.r.t. F_0

- The dual nature of R
 - Representation of a frame orientation
 - Geometric transform of rotation

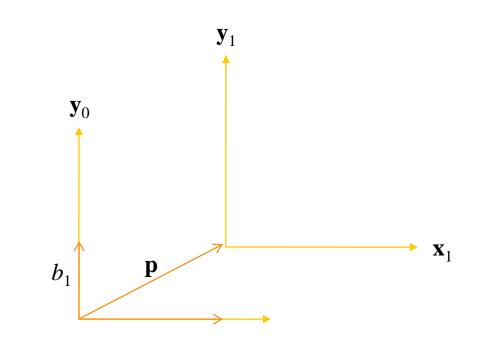


Planar position

- Vector ${\bm p}$ describe a translation of the F_1 coordinate system relative to the F_0 coordinate system

$$\mathbf{p} = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$

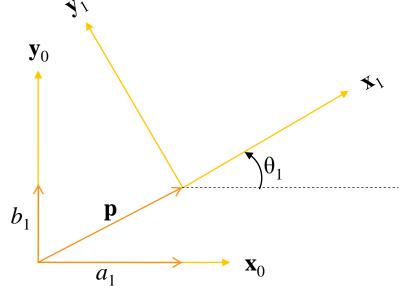
- The dual nature of p
 - Representation of a frame position
 - Geometric transform of translation



Homogeneous transformation

- Combine both the rotation matrix ${f R}$ with the position vector ${f p}$
- Describe the planar pose (position + orientation) of F_1 (relative to F_0) in a single 3×3 matrix P

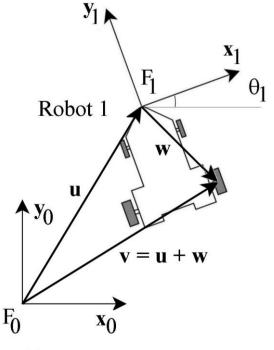
$$\mathbf{P} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & a_1 \\ \sin(\theta_1) & \cos(\theta_1) & b_1 \\ 0 & 0 & 1 \end{bmatrix}$$



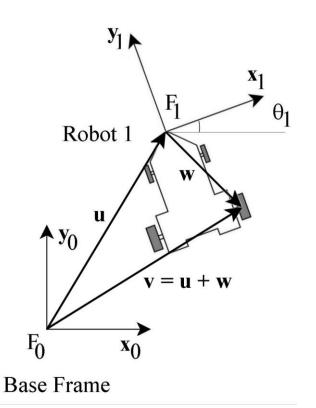
- Given that
 - The center of the right rear wheel is at planar coordinates (0.4, -0.73) w.r.t. frame F₁

•
$$a_1 = 5, b_1 = 2, \text{ and } \theta_1 = 45^{\circ}$$

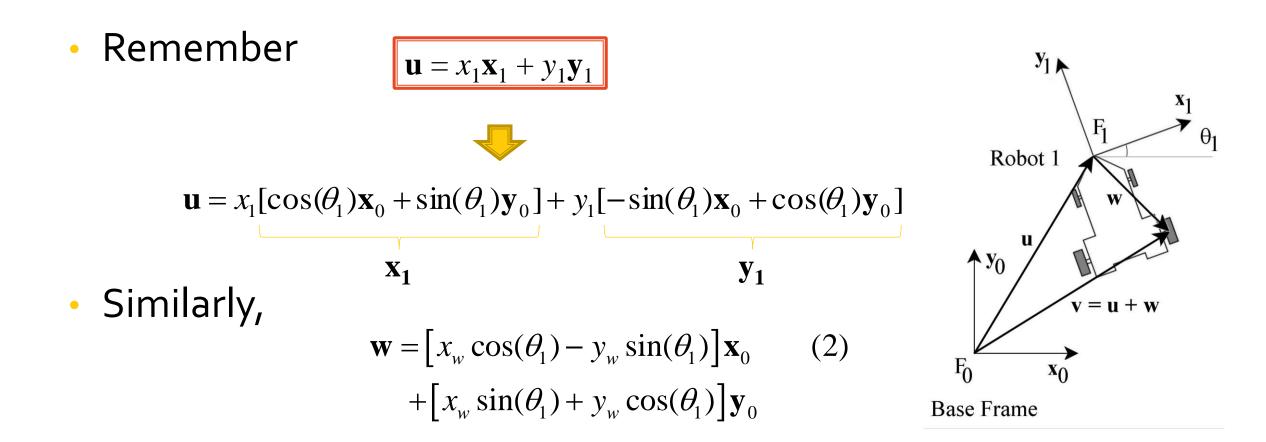
 What are the coordinates of the wheel w.r.t. frame F₀?



- Let x_w = 0.4 and y_w = -0.73 be the coordinates of the wheel in frame F₁
- The vector w where the wheel is located (in frame F₁) is given by Eq. 1:



$$\mathbf{w} = \begin{bmatrix} x_w \\ y_w \end{bmatrix} = x_w \mathbf{x}_1 + y_w \mathbf{y}_1 \tag{1}$$



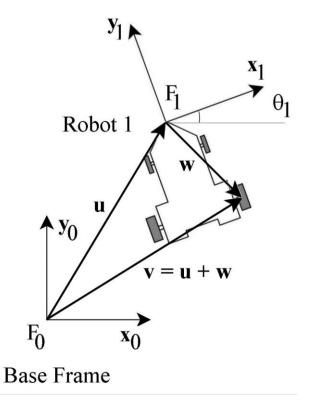
Example

Now we have

$${}^{1}\mathbf{w} = \begin{bmatrix} x_{w} \\ y_{w} \end{bmatrix} {}^{0}\mathbf{w} = \begin{bmatrix} x_{w}\cos(\theta_{1}) - y_{w}\sin(\theta_{1}) \\ x_{w}\sin(\theta_{1}) + y_{w}\cos(\theta_{1}) \end{bmatrix}$$

Sum of vectors

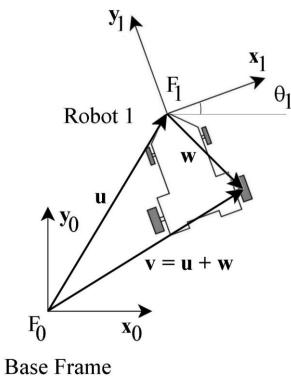
$$\mathbf{v} = \mathbf{u} + \mathbf{w} = \begin{bmatrix} a_1 + x_w \cos(\theta_1) - y_w \sin(\theta_1) \\ b_1 + x_w \sin(\theta_1) + y_w \cos(\theta_1) \end{bmatrix}$$



Alternative solution?

A more efficient way to solve the problem is to use the combined matrix P:

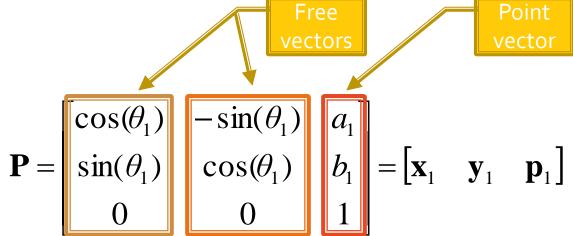
$$\mathbf{v} = \mathbf{P}\mathbf{w} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & a_1 \\ \sin(\theta_1) & \cos(\theta_1) & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 + x_w \cos(\theta_1) - y_w \sin(\theta_1) \\ b_1 + x_w \sin(\theta_1) + y_w \cos(\theta_1) \\ 1 \end{bmatrix}$$



- These are free vectors in that they don't represent a point in space but rather a direction (they are unit vectors)
- Homogeneous *free* vectors are formed by the addition of a zero-element
- For example, the unit vector \mathbf{x}_1 has the homogeneous

value of
$${}^{1}\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 in frame F_{1} , and ${}^{0}\mathbf{x}_{1} = \begin{bmatrix} \cos(\theta_{1}) \\ \sin(\theta_{1}) \\ 0 \end{bmatrix}$ in frame F_{0}

- The matrix **P** (also called *pose matrix*) as a generalized representation of the location of frame F_1 (w.r.t. F_0)
- Each column vectors of matrix P consists of a homogeneous vector



 The third row of P as well as of homogeneous vectors (0 for free, and 1 for point) ensures that the distinction between free and point vectors is maintained through the transformation

$$\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & a_1 \\ \sin(\theta_1) & \cos(\theta_1) & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(\theta_1) \\ \sin(\theta_1) \\ 0 \end{bmatrix}$$
$$\mathbf{P} \qquad \mathbf{x}_1 = \mathbf{x}_1$$

Apply transformation to a homogeneous free vector

 The third row of P as well as of homogeneous vectors (0 for free, and 1 for point) ensures that the distinction between free and point vectors is maintained through the transformation

$$\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & a_1 \\ \sin(\theta_1) & \cos(\theta_1) & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 + x_w \cos(\theta_1) - y_w \sin(\theta_1) \\ b_1 + x_w \sin(\theta_1) + y_w \cos(\theta_1) \\ 1 \end{bmatrix}$$

$$\mathbf{P} \qquad \mathbf{W} = \mathbf{W} \qquad \mathbf{Apply transformation to a homogeneous point vector}$$

End