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I. INTRODUCTION

Robots that assist humans in collaborative tasks need to
frequently transfer and manipulate objects in an intuitive
manner. However, most assistive robots still lack human-like
task fluency, mainly due to their inability to infer human
intent and fully understand the objects in play. Such intuitive
behavior can be encoded in a robot’s motion by kinesthetically
training it for a human partner’s movements [1]. This method
can be further extended for interacting with objects by training
the robot’s response for an object’s affordance. Affordance
is the propety of an object that determines its manipulability.
For example, a hammer used to hit an object and a book used
to hit the object, both fall into the same affordance class of
”used for hitting”. Therefore this property can be utilized for
planning the low-level grasping motions.

Early approaches to grasp planning train a set of basic
skills on a robot, and attempt to reason a set of causes
and effects; while Nguyen et. al. [2] proposes an approach
based on Convolutional Neural Networks (CNN) to classify
objects by affordance. But this approach requires large
datasets to achieve high accuracy. Other methods approach
grasping as a reinforcement learning problem. We follow a
hybrid approach to grasp planning based on Active Vision
techniques [3], where a 2D model is optimized using Elliptical
Fourier Descriptors (EFD) [4] along with a force closure
test. This method helps to determine the optimum points
for grasping, for which trajectory can be planned. But the
primary challenge for robots in collaborative environments is
implementing human-like high-level abstract decision making
by controlling low-level motions. This requires construction
of a symbolic representation for evaluating plans composed
of sequences of actions in a continuous environment [5].
Such a representation is created by reasoning about potential
propositional symbols that describe the preconditions and
effects of each action. The resulting representation can be
expressed in PDDL (Planning Domain Description Language)
that enables fast planning using a graph search planner for
determining the optimal sequence of the learned actions.

This paper describes our methods and preliminary results
towards developing a system that combines object recognition,
grasp planning through demonstration and high level task
abstraction into a comprehensive package for application in
human-robot collaborative tasks.

1 Heramb Nemlekar, Max Merlin, John Chiodini, and Zhi Li are with the
Robotics Engineering Program, Worcester Polytechnic Institute, Worcester,
MA 01609, USA

II. METHODOLOGY

A. Planning of low-level motions
The object recognition is done by correspondence group-

ing [6] and this initial guess of the object location is used
to filter the point cloud. To simplify detection, pure colored
objects are used. We use the pixel centroid of the object to
find the corresponding 3D point on the point cloud and then
calculate the 3D coordinates of the Kinect sensor frame. Grasp
points were determined based on a representation of the object
contour using EFD. EFD was chosen due to its invariance to
noise, and ability to preserve desirable features of an object. A
generalized model for the Fourier approximation of a contour
can be shown as follows:
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First derivatives compute the tangent vectors to the model.
Normal vectors N can be found by normalizing the derivative
of the tangent vector Z.

Curvature is the main feature used in selecting model grasp
points, and can be determined as the sign of the dot product
between normal and tangent vectors:

Curvature = sign(‖Z ·N‖) (3)

An algorithm (Algorithm 1) was designed to find the grasp
point pair residing in optimal curvature regions. We model
the robot gripper as a pair of frictionless contact points.
Grasp points must pass a force closure test determined by
the geometry of the Fourier descriptor.

Algorithm 1 Compute Optimal Grasping Pair

1: Rank all possible pair sets by descending x+y curvature
2: for each set x,y with positive α do
3: β = PerformForceClosure()
4: if β above threshold return
5: Rank sets by ascending and repeat for negative α
6:
7: procedure PERFORM FORCE CLOSURE(x, y)
8: A = Nm1

‖Nm1‖ ·
Pm1−Pm2

‖Pm1−Pm2‖
9: B = Nm2

‖Nm2‖ ·
Pm1−Pm2

‖Pm1−Pm2‖
10: return A2 + (π −B)2

For reaching to the object that needs to be grasped we
train Multi-dimensional Interaction Probabilistic Movement



Primitives (Pro-MP) [1] with multiple reach to grasp demon-
strations. During the learning phase the sensing module
observes the centroid of the object and its two grasping
points, along with the joint angles of the robot’s arm. At each
time step t, the 7 observed degrees-of-freedom (DOF) of the
robot arm and the 9 observed dimensions of the object are
concatenated into the following object-robot state vector:

yt = [yO1,t, · · · , yO9,t, yR1,t, · · · , yR7,t]T (4)

The trajectory of each DOF is further parameterized by
weights such that:

p(yt|w̄) = N (yt|Ht
T w̄,Σ†) (5)
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In the reproduction phase, the robot end-effector trajectory
is inferred by computing the posterior probability distribution
of the weights w conditioned on the observed object config-
uration. This method helps to predict the required trajectory
for grasping and moving objects in any configuration that it
wasn’t trained for.

B. High level symbolic representation

In order to generate a plan to perform the task, the robot
must learn a high level representation of the task space.
To start, the robot must be provided with a list of state
variables (si) describing the environment and a set of options
(oi), temporally abstract actions that change the state of the
environment. Task data is collected in the form of (s, o, r, s);
where s is all state variables before performing the option,
o is the option name, r is the reward of performing the
option, and s is all state variables after performing the option.
For every sample, its mask is calculated by comparing the
changed state variables between s and s and each unique
mask is assigned its own partition. Along with the mask, each
option also relates to an initiation set Ioi that enumerates the
set of all world states from which option oi can be initiated
and an effect set which returns the set of all world states after
performing option oi. The mask, initiation set, and effect
set of each option are then used to create symbols which
describe the high level symbolic space which describes the
domain. Each option has symbolic precondition and effect
sets associated with it. The preconditions element contains
the list of symbols that must evaluate to true in order for the
option to be executable and the positive effects is a set of
symbols that are set to true by executing the option, while
negative effects consists of the symbols to be set to false
when the option is executed. These symbolic descriptions of
options allow the robot to generate an informed option plan
relating each option with its relationships to the environment,
generating an option ”path” to a desired world state.

III. RESULTS AND FUTURE WORK

The proposed system is being implemented on the Tele-
robotic Intelligent Nursing Assistant (TRINA) system [7].
This robotic platform consists of a dual-armed humanoid torso
(Rethink Robotics Baxter), an omnidirectional mobile base
(HStar AMP-I), and two three-fingered grippers (Righthand
Robotics ReFlex grippers). A Microsoft Kinect 2 was attached

(a) Grasp Detection (b) Monkey & Treasure Game
Fig. 1: Implementation of proposed methods

Fig. 2: Grasp planning for object in different positions and orientations

to the robot’s chest for detecting objects and human motions
in the interaction space.

The right arm of TRINA was kinesthetically trained for
reaching motions towards an object in different positions
and a human, with 18 demonstrations each. The robot was
able to reproduce the trained human-like trajectories for new
positions and orientations (vertical and horizontal) of the
object (Fig. 2). This demonstrated the generalization of robot’s
arm motions for different states of the environment. The
method for symbolic representation of such low-level motions
was tested using a monkey playroom and a treasure game
(Fig. 1b). Through simulation, 32000 option samples were
collected for which 56 partitions were created. Completing the
grounding generation [5], a graph search in the Probabilistic
PDDL domain would lend us the desired sequence of actions.

The future work will extend the symbolic representation
for single robot task to human-robot collaboration tasks
(e.g., handing-over, collaborative moving, collaborative object
organization). The high-level collaborative task plan will
be composed using option symbols learned from human
partner and teleoperated robots, and implemented using the
Pro-MP for reaching and grasping, and human-robot motion
coordination.
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