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I. INTRODUCTION

Tele-nursing robots extend medical workers’ physical ca-
pabilities to perform patient-caring tasks in remote and/or
quarantine environments. Recently developed tele-nursing
robots [15] are equipped with multiple manipulator arms,
hands and mobile bases. However, performing complex and
dexterous motion coordination is still difficult even if the
robots are under direct teleoperation of expert users. It
is also hard for the teleoperator to perceive the remote
environment and tasks through camera views, which affects
the users’ situation awareness, motion fluency, and motion
control accuracy. Previous research has compared teleop-
eration interface by their hardware capability and system
configuration (e.g., field of view, camera viewpoints, depth
perception, video frame rate, bandwidth limitations), time
delay and control stability, sensory feedback channels (e.g.,
visual, audio, tactile display), motion control interfaces (e.g.,
voice, gesture, motion mapping control) [6, 22, 2], and
augmented reality [8, 9, 19, 3]. However, research so far
hasn’t systematically compared teleoperation interfaces by
regularity and variability of the motion primitives and com-
plexity of task plan in the teleoperated motion coordination.

To study the motion coordination problem, we propose
to learn from the teleoperated motion coordination demon-
strated by expert users, to extract the robot’s low-level
motion primitives and high-level task plan for nursing tasks
that involves arm-hand coordination, bimanual coordination,
and loco-manipulation. We further compare the teleoperated
motion coordination controlled through different user inter-
faces, and evaluate the human performance and interface
usability in teleoperation. Our proposed research contributes
to the understanding of how human motor control adapts
to the motion and perception capabilities of remote robotic
surrogates. It also informs the design of human-robot tele-
operation interface that can facilitate the learning of motion
coordination for novice users.

II. RELATED WORK

Tele-robotic systems synergize human and robot capa-
bilities through teleoperation interfaces. To an expert user,
the task performance primarily depends on the usability
of teleoperation interface, given the teleoperation task and
robot capability. Our preliminary evaluation of a mobile
humanoid nursing robot (Tele-Robotic Intelligent Nursing
Assistant (TRINA) [15]) has demonstrated difficulties in
the direct teleoperation of arm-hand, bi-manual and loco-
manipulation motion coordination tasks. The teleoperation
interfaces constrain the set and quality of motion primitives
a robot can employ, which further affect a teleoperator’s task

planning. Measurement metrics for teleoperation inter-
faces proposed in previous research focused on evaluating
fixed scalar values in the task completion process to compare
teleoperation interfaces, including the task completion time,
the number of collisions, travel distances, the number of
motion primitives [9], smoothness of the trajectory [3], time
delay [8], user questionnaire scores [2]. These aspects are
useful in comparing performances of teleoperation interfaces.
However, a simple combination of these metrics cannot form
a framework that can systematically evaluate the usability of
a teleoperation interface, by how well it can map the low-
level motion primitives and high-level task plan from human
to the teleoperated robot.

To fill this gap, we propose to extract motion primi-
tives from the teleoperated robot coordination and use a
symbolic representation of motion primitives to construct
the task plan. The motion primitive models we consider
include Dynamic Movement Primitive (DMP) [11], Gaus-
sian Mixture Model(GMM) and Gaussian Mixture Regres-
sion(GMR) method [4, 5] and Probabilistic movement prim-
itives (ProMP) [16, 18]. DMP learns from single motion
trajectory with temporal and spatial scaling ability for re-
production. GMM/GMR can learn from multiple motion
trajectories to extract both mean and variances information.
ProMP is suitable for trajectory learning and reproduction in
changing environments. To model the high-level task plan, we
consider the problem in the state-action framework. Methods
include constructing skill tree [14], Bayesian model based
methods [21], Finite State Automaton (FSA) [17], semi-
Markov decision process [13], and inverse reinforcement
learning [1, 20].

Another aspect of data analysis is to evaluate human
performance. Gawron [10] proposes 12 considerations before
conducting an experiments and points out the importance
of selecting proper human performance measurement. Kaber
and Onal [12] evaluate the performance of the human op-
erator in teleoperation tasks from following aspects: mean
time for task completion, the number of motion errors and
collisions, situation awareness and NASA-TLX workload
score. All of these considerations will be reflected in our
data collection and post-study questionnaire.

III. METHODOLOGY

Our user study aims to investigate how expert teleoperators
control the motion coordination of a mobile humanoid robot
through different teleoperation interfaces. We focus on the set
of motion primitives developed through the usage of various
robot control interfaces, and the task plan frequently used in
arm-hand, bimanual and loco-manipulation coordination.



A. Platform

Our experiments and user study is based on the nursing
robot platform TRINA [15]. On the robot side, the hardware
includes a humanoid robot torso (Rethink Robotics Baxter),
an omnidirectional mobile base (HStar AMP-I) and two
three-fingered grippers (Righthand Robotics Reflex grippers).
Shown in Fig. 1, our preliminary work has set up six input
interfaces to control the motion of a humanoid robot and its
mobile base, including (1) keyboard and mouse, (2) gamepad,
(3) Geomagic touch haptic devices, (4) RoboPuppet [7],
and motion mapping from (5) Vicon motion capture system
and (6) Kinect v2 camera. The platform also enables a
teleoperator to use voice control to switch camera views,
from the RGB cameras attached to the left and right hands,
mounted on robot head, and from a standalone camera that
looks at the robot and workspace.

B. Experiment

Our user study will train 15 subjects to be fluent in
teleoperating a mobile humanoid robot and perform the
following motion coordination tasks designed based on our
previous nursing task collection [15]:

• pick and place task: several objects will be placed
randomly on a table. The objects have different shapes
and weights. The goal is to pick up each of them and
place them on a tray (will include locomotion).

• bi-manual task: 1) pick up and hold a tray using two
hands, then place the tray to a different table nearby
(requires locomotion). 2) pick and insert a straw into a
cup, perform brushing & rotation motion.

• physical human-robot interaction: handing over different
objects to a human in the same robot work-space.

• loco manipulation task: hold the handle of a cart and
move the cart to a different location.

• precise perception: this is the category of tasks that
require relatively precise perception, including pressing
a button, scan a barcode, open cabinet door.

• handling irregular items: Lift large, heavy and/or ir-
regular items with both arms. The object might be
transformable, such as a pillow or a bag of rice.

The subjects will start with a training session. If the
subject can successfully perform a task consecutively for
three times with stable task completion time (variance within
10% of mean), the subject is considered an expert user for the
specific task and the input device. After the training session,
each subject will have ten trials for each control mode
and each task. The order of the control mode is randomly
selected. There will also be a post-study questionnaire for
the subjective views during the study.

We will record synchronized teleoperated robot motion,
control interface input and interface visual display. We seg-
ment the collected data to extract motion primitives from the
motion robot hand, arm, and mobile bases, and coupled them
if the motions are performed simultaneously. In addition, we
also extract information for motion-perception coordination.
We associate the camera view being used with the motion
being performed. We also record task performance including

task completion time, collisions with unwanted objects, and
success rate over repetitive trials.

C. Modeling motion primitives and task plan

After robot states data is collected for the entire motion
sequence, the first step is to segment the data into com-
pact and repeatable pieces. The segments of data would be
modeled with motion primitive learning methods. We will
use different modeling methods to learn motion primitives
to extract features that can address different aspects of the
low-level motor skills. For instance, DMP can be used to
learn from an individual demonstration of reaching motion
and normalize them across their traversed time and distances.
We further use GMM/GMR to extract the regularity and vari-
ability of the normalized motion primitives and use ProMP to
model the reaching motion performed with respect to moving
landmarks in the environment. For task plan modeling, we
will also use multiple modeling methods. Constructing skill
tree can be applied to compare task plan complexity using
skill tree levels. Constructing skill tree can be combined with
the motion primitive modeling results directly because they
are all trajectory based. Bayesian model based methods can
provide a measure of confidence in their model regression
results because of their probability nature. FSA constructs
original plan structures which can be modified with accoding
to different task situations. For example, based on a grasping
plan of an object very close to the robot end-effector, more
nodes for locomotion can be added to the task plan to model
grasping of an object further away. The methods developed
based on semi-Markov decision process require the set of
motion primitives to be pre-specified. Motion primitives in
this context can be series of learned trajectories, which have
semantic meaning by itself, for example, ”turn on light”,
”open door”. Skill tree modeling can serve as primitives here.

IV. FUTURE WORK

Our motion analysis based on a novel framework of
modeling teleoperated motion coordination will contribute
to the understanding of how human motor control adapts
to the capabilities of a physical robotic embodiment. By
evaluating various teleoperation interfaces, we aim to infor-
mation the human-robot interface designs to facilitate the
natural mapping of low-level motor skills and task plan. we
also aim to identify the low-level tasks difficult for direct
teleoperation but easy for autonomous control. For instance,
we can autonomously adjust the mobile base to facilitate
the manipulation tasks being performed. From observing
teleoperators’ choice of camera perception, we can also learn
when and how to adjust the perception camera to facilitate
the action arm motion. Under the framework of shared
autonomous control, these tasks can be automated using
geometric motion planning methods and/or through learning
from demonstration. A robot control interface with intelligent
motion coordination assistance will reduce medical workers’
physical and cognitive efforts to control a nursing robot
so that they can focus on the decision-making and patient
interaction.



Fig. 1: Teleoperation system software architecture
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