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Abstract— Handing over objects is the foundation of many
human-robot interaction and collaboration tasks. In the sce-
nario of human handing over an object to the robot, the human
chooses where the object needs to be transferred. The robot
needs to accurately predict this point of transfer to reach
out proactively, instead of waiting for the final position to
be presented. This work investigates an efficient method for
predicting the Object Transfer Point (OTP), which synthesizes
(1) an offline OTP calculated based on the safety, comfort and
reachability of the human partner with (2) a dynamic OTP
prediction based on the observed human motion. Our proposed
OTP predictor is implemented on a humanoid nursing robot
and experimentally validated in human-robot handover tasks.

I. INTRODUCTION

The study of fluent and natural-looking human-robot han-
dovers has been motivated by the need for intimate phys-
ical interactions between assistive robots and their human
partners [1]. For instance, a nursing robot needs to hand
over food, beverage and medicines to patients, and hand
over medical supplies when assisting a human nurse. Such
handover tasks are frequent and therefore disproportionately
affect the overall task performance. In this paper, we focus
on how to predict where the object will be transferred in a
handover process and how to render a proactive and natural
robot response.

Studies of human-human handovers have provided in-
sights on the premeditated prediction of the object transfer
point (OTP) in human-robot handover tasks. An analysis of
handing over objects on a table [2] showed the reaching
motion of the receiver to be based on experience and not
on the visual feedback of the giver’s arm motion. The giver
usually chooses a direct path to the OTP without deviating
from it. Similarly, the giver’s arm motion in a vertical 2D
plane [3] is pre-planned feed forward with a fixed maximum
velocity. The motion of the giver’s arm is also independent
of the receiver [4], with similar velocity profiles observed for
handing over an object to a human and for placing the object
on a table at the same distance. Moreover, the handovers
occur halfway between the giver and the receiver. Apart from
interpersonal distance, even safety, visibility and arm comfort
can be considered to postulate the point of object transfer
[5]. Therefore the receiver can have a fairly good guess of
where the OTP would be, even before any handover motion
is initiated.

Accurate estimation of the OTP requires knowledge of
the tempo-spatial coordination observed in individual and
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interactive human motion. A simple but effective method to
react is to control the robot hand velocity to be proportional
to the hand velocity of the human partner [1]. Knowing
that natural human reaching motions follow minimum-jerk
trajectories, the timing and location of the object transfer can
be predicted after peak velocity of the human partner’s hand
has been observed [6]. A novel technique is developed in [7]
which achieves real-time performance by early prediction
of the goal location, having greater than 70% classification
accuracy in less than 500 ms by observing the first one-third
of the human’s trajectory.

Methods for robot learning from human teachers directly
benefit real-time motion prediction in human-robot inter-
actions. In the case of human-robot handover, the human-
initiated handover is more challenging compared than robot-
initiated handover [8], [9], [10], because it is difficult to
predict the object transfer point based on observing only
a small part of the human partner’s motion. To address
interactive intent and motion coordination during handover,
Maeda et al. proposed probabilistic models for learning and
reproducing the phase matching between human and robot
hands [11]. Superior to the minimal jerk model, the phase
estimation model can reliably predict the object transfer point
earlier in the process, yet, the robot is unsure about how
to move until a portion of human partner’s hand motion
has been observed. In addition, this model predicts the
handover motion phase based on the absolute hand positions
of the human and robot, and therefore will not be valid in
cases where the human-robot distance and relative pose are
different from the learned demonstrations.

In this paper, we propose an improved model for es-
timating the object transfer point by integrating a pre-
computed OTP which addresses giver’s tendency and re-
ceiver’s comfort, safety, and social acceptability, with a
dynamic OTP predictor which updates the OTP based on
real-time handover motion phase estimation. Our integrated
OTP predictor initiates the robot reaching motion in the
appropriate direction before the human partner’s motions
are observed and adjusts the robot motion by dynamic
handover phase matching. To improve model generality, we
demonstrate the importance of using the coordinate frame
defined by the human’s orientation relative to the robot.
Our proposed OTP-estimation strategy is implemented on
a humanoid mobile nursing platform. Initial experimental
results show that handover time is decreased by 16% and
position accuracy is increased by 50% after observing 30%
of the human trajectory.



II. PILOT STUDY

A human motion study was performed with the receiver
standing at a fixed location and orientation, while the giver
would stand at positions A,B and C as shown in Fig. 1b.
These positions are at a distance of 96 cm to 135 cm [4]
from the receiver with A and C at 45◦ to the receiver’s
orientation. Markers were placed on the wrists, shoulders,
head and torso of both the subjects and tracked with the
Vicon Motion Capture system. From each position the giver
would hand over a bottle to the receiver, 5 times. This
motion data was used to find the reaction and handover time
for human-human handover as a baseline and the correlations
between the subject’s relative pose and the OTP.

(a) Subjects with Markers (b) Giver Positions

Fig. 1: Recording of human-human handover in motion
capture space for giver standing 116 cm from the receiver
and in 3 different positions each 45◦ apart.

A. Response Time of Receiver

The response time for a handover was measured from the
instant the giver started moving his hand, to the instant the
receiver started his reaching motion. The reaction time was
observed to be 0.425± 0.187 secs. The observed handover
time, which was the time from the giver starting his motion
to the receiver reaching to grasp the object, was 1.212±0.225
secs. For a robot to respond this quickly it is vital to predict
the OTP and begin its motion early.

B. OTP Parameters

The OTP was found to lie at the mid-point of the distance
between the subjects and at a height that was between the
hip and the head of the receiver. Therefore this correlation
can be used to obtain an initial guess of the OTP.

III. METHODOLOGY

This paper proposes a fast and reliable method to deliver
proactive and natural robot motion in response to an ob-
ject handover initiated by a human. Shown in Fig. 2, the
autonomous control module takes input from the sensing
module which observes the robot states and human partner’s
motions in real-time. Within the autonomous control module,
the offline training components are responsible for (1) train-
ing a Probabilistic Movement Primitives (Pro-MP) model
to reproduce legible robot motion using demonstrations of
human-robot handovers, as well as (2) generating an off-line
OTP estimation before the handover starts. As soon as the
human partner starts a handover, the dynamic OTP generator
takes in the offline OTP estimation and continuously updates

Fig. 2: Handover System Architecture

the OTP estimation based on the observed human partner’s
motion. The dynamic OTP generator also sends its estimation
of the phase of the human partner’s motion to the Pro-MP,
in order to match the robot motion to the observed human
motion in timing. The motion planner receives the estimated
OTP and controls the robot end-effector to reach toward it.
The planned motion is then sent to the robot for execution.

A. Natural-looking Motion Generation

The core of our method is to train a Multi-dimensional
Interaction Probabilistic Movement Primitives (Pro-MP) with
multiple human-robot handover demonstrations [11]. Here
we briefly describe the algorithms of motion learning and
reproduction using Pro-MP:

Learning phase: During the learning phase, the sensing
module observes both human and robot arms during a
handover demonstration. At each time step t, the 7 observed
degrees-of-freedom (DOF) of the robot end-effector and the
3 observed DOFs of the human hand are concatenated into
the following human-robot state vector:

yt = [yH1,t, · · · , yH3,t, yR1,t, · · · , yR7,t]T (1)

The trajectory of each DOF is further parameterized by
weights such that:

p(yt|w̄) = N (yt|Ht
T w̄,Σ†) (2)

where HT
t = diag((ΨT

t )1, · · · , (ΨT
t )3, (Ψ

T
t )1, · · · , (ΨT

t )7)
is the diagonal matrix of the Gaussian basis functions.
Among the M handover demonstrations, the i-th demonstra-
tion correlates the observed DOFs of human and robot in the
handover such that:

w̄i = [(wH
1 )T , · · · , (wH

3 )T , (wR
1 )T , · · · , (wR

7 )T ]T (3)

Reproduction phase: Using the learned Pro-MP model,
the robot end-effector trajectory can be inferred by com-
puting the posterior probability distribution of the weights
w conditioned on the observed human motion. The inferred
trajectory not only matches the human partner’s reaching in
phase but also updates the dynamic estimation of the OTP
as more human motion is observed. For algorithm details,
please refer to [11].
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Fig. 3: Reference Frame Transformations

B. Reference Frame Transformation

In [11], the demonstrations for training the Pro-MPs
are recorded in the robot’s body frame or the world frame
depending on the sensor placement. As a result, the motion
of the human arm differs from the training demonstrations if
the human stands in a new position. This causes the ProMP
estimation of the OTP to be inaccurate. To resolve this
problem by training the Pro-MP with many demonstrations
of all possible handover configurations is highly inefficient.

We avoid this problem by learning from demonstrations in
a user-adaptive reference frame. The Z-axis of this reference
frame is aligned with the direction in which the human is
facing and the Y-axis is set perpendicular to the ground.
In this reference frame, the robot’s end effector and human
wrist positions are recorded and saved from the perspective
of the human partner. Since the object transfer points can
be calculated with respect to the human partner’s pose,
the accuracy of the predicted points is not affected by the
changes in position and distance of the human partner with
respect to the robot. Overall, using a user-adaptive reference
improves the generalization capability of the Pro-MP model.

C. OTP Estimation

To reduce the robot response time during handover, it is
useful to begin the robot motion as early as possible based
on an initial estimate of the OTP. As a result, we synthesize:

Offline OTP estimation: Before handover is initiated,
the offline OTP-estimator computes the initial object transfer
point (OTPoff ) in the task space based on three criteria: (a)
the “Initial Pose” criterion constrains the handover region
to be bounded in a trapezoidal prism whose edges are the
vectors joining the human’s and robot’s head positions and
initial wrist positions; (b) the “Midpoint of Actors” and (c)
the “Reachability”, based on the motion study data.

Dynamic OTP estimation: When the human partner
initiates the handover, dynamic OTP is activated and will
be updated until its prediction converges as depicted in
Algorithm 1. As more of the human partner’s motion is
observed, the trust factor w which indicates the phase of
the human arm motion is updated according to the expected
time to the goal location. This time estimate is re-calculated
based on the speed of the human’s arm and its distance to the
current OTP estimate and provided to the ProMP for slicing
the trained data.

A Pro-MP by itself requires 40-50% of the human’s
motion to be observed for accurate estimation of goal states.

Data: Pobj , OTPoff , OTPpmp

w ← 1, tgoal ← tinit;
while w ≥ 0 do

if moving then
w ← w −K ∗ ( dt

tgoal
);

OTPd ← (w ∗OTPoff ) + (1− w) ∗OTPpmp;
tgoal ← OTPd−Pobj

Vobj
;

return OTPdynamic;
end

end
Algorithm 1: Dynamic OTP generator

This setup allows the robot to initiate its motion as soon as
the human starts moving without compromising the legibility
of the trajectory, thus leading to faster handovers.

IV. EXPERIMENTS & RESULTS

Fig. 4: (Left) The Tele-robotic Intelligent Nursing Assistant
(TRINA) system. (Right top) The sensing server computer
that runs skeleton tracking system, and (Right Bottom) the
operator console displayed on the robot control computer.

We implemented the proposed autonomous control method
on the Tele-robotic Intelligent Nursing Assistant (TRINA)
system shown in Fig. 4, which was developed for remote
patient-caring tasks [12]. A Microsoft Kinect 2 sensor is
attached to the robot’s chest and interfaced with a sensing
server computer with Windows 10, which uses NI Mate [13]
to stream the human partner’s skeleton data. The Pro-MP
model is trained using 25 human-robot handover demon-
strations, in which the robot motion is controlled through
kinesthetic teaching. During these demonstrations, the human
partner stood at a fixed position with respect to the nursing
robot and intended to hand over the object at five different
object transfer points. For each demonstration, we recorded
the arm joint angles, and end-effector pose (position and
orientation) of the robot, as well as the shoulder, elbow and
wrist trajectories of the human partner’s reaching arm.

A. Faster Handover Response

In Experiment 1, the subject stands at the same posi-
tion as in the training demonstration and initiates natural
handovers to arbitrary positions. The total OTP prediction
accuracy (difference between the observed and the estimated
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Fig. 5: Comparison of the prediction error between the
baseline (red) and the proposed system (blue).

OTP) was measured when 10%, 20%, · · · , 90% of the human
partner’s hand motion was observed. Shown in Fig. 5, the
proposed method only needs to observe about 30% of human
partner’s hand motion to render accurate predictions, while
the baseline (original ProMP) [14] can achieve the same
prediction accuracy after 45% of human motion has been
observed. After 70% of the human motion has been observed,
both the proposed method and the baseline method can
predict the OTP with less than 5cm error.

Fig. 6: Comparison of the handover time between the base-
line (red) and the proposed system (blue).

Fig. 6 compares the two methods by handover time, with
the robot operated at a safe and slow speed. Overall, the
robot can respond faster by about 1.97 sec. with the proposed
method. Considering the total handover process takes about
12.6 sec for the baseline method, the proposed method
improves the robot response time by 16%.

B. Better OTP Estimation at Different Positions

Fig. 7: Comparison of the generalization capability between
the baseline (red) and proposed method (blue).

Experiment 2 compares the prediction errors of the pro-
posed and baseline method for three different standing posi-
tions within the visible workspace. When the subject stands
close to the edges of the robot’s vision range (positions 1 and
2), the proposed method has significantly smaller prediction
errors. The prediction error for the right extreme is smaller

because the field of view of the Kinect camera is asymmetric.
In human-robot handover demonstrations, the subject was
standing at position 3 (centre), which is closer to the right
edge of the Kinect vision range, which is why the baseline
method can generalize better for the extreme right of the
visible workspace. Through Experiment 2, we demonstrate
that the proposed method has better generalization capability
across the robot’s visible workspace given the same training
demonstrations.

V. CONCLUSION & FUTURE WORK
The need for a prompt handover was determined from the

pilot study which demonstrated that receiver should respond
in 0.425 secs to the handover initiated by the giver, whose
OTP depends on the initial head and wrist position of the
receiver. This justifies a full-fledged human motion study
to be conducted for validating the claim of a pre-computed
OTP. Further, a human-robot motion study is required to
verify if the giver chooses the same OTP when the receiver
is a robot. The results clearly show the improvement in
handover time and estimation accuracy by using the proposed
method. Further tests are required for faster handovers and
for comparison with other existing methods implemented on
the same system.
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