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I. INTRODUCTION

Teleoperated robotic systems are widely used for extending
and augmenting the physical and cognitive capabilities of
humans in various tasks [1]. This combination of robot
power and precision with human dexterity and decision-
making enables performance of complex tasks in unstructured
environments [2, 3], while maintaining a greater degree of
safety than using human agents [4] and a higher success
rate than purely autonomous robots [5, 6]. Teleoperation
also lends itself to robot learning from human teachers,
permitting simultaneous task performance and learning [7].
Through teleoperation interfaces, operators can demonstrate
high-level task structure, human preference, and low-level
motion primitives for robot motion coordination (refer to [8]
for a review).

Many teleoperation interfaces have been developed for
robotic systems, and are summarized in [9]. Common
examples include hand-held game pads and joysticks, exo-
skeletons, and motion capture systems. High degree-of-
freedom humanoid robots may require a multi-modal com-
bination of interface components for full control. While
these systems are often ideal for performing a wide range of
motion coordination tasks in cluttered human environment,
controlling and/or teaching humanoid robots can be both
cognitively and physically demanding [8]. Despite a large
field of study in ergonomic factors in the workplace [10],
little research has investigated the fatigue in humanoid robot
teleoperation.

In this paper, we propose a study to evaluate teleoperation
interfaces in the performance of complex motion coordination
tasks on the basis of operator physical fatigue. We present
a methodology to investigate physical fatigue while using
different teleoperation interfaces to perform tasks using a
humanoid robot, and compare the estimation of fatigue with
the overall performance across interfaces and tasks. We aim
to use the results of the fatigue analysis to inform the design
of efficient user interfaces and teleoperation strategies that
complement the physical limitations of the operator.

II. RELATED WORK

Human Performance in Teleoperation — Research on
human performance in robot teleoperation has investigated the
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workload that leads to physical and mental fatigue [11–13].
The assessment of physical and cognitive workload has been
used to inform the design of user interfaces [14], and to com-
pare effectiveness of different levels of autonomy [13]. Thus
far, the evaluation of operator workload has relied heavily on
subjective ratings. Self-reported ratings (such as the NASA-
Task Load Index) are used to investigate the effects of operator
expertise, task familiarity, task structure, and other factors on
the perceived workload of the operator (e.g., [15]). Recently
developed interfaces enable robot teleoperation through a
variety of input devices, including motion capture systems. As
the human body becomes more involved in robot teleoperation
interfaces, the increased physical workload and fatigue needs
to be evaluated to appraise the teleoperation interface usability.
Previous research efforts (see [16]) assessed the usability of
different interfaces (voice control, motion tracking) on the
Robonaut to minimize operator workload using subjective
ratings. However, the fatigue measurement approach was
intrusive, requiring the operator to break away from the task
implementation to respond to the survey. In addition, objective
and quantitative assessment of the teleoperator’s physiological
states are necessary for understanding the development of
fatigue in the teleoperation of complex motion coordination.

Physical fatigue measurement — Researchers have pro-
posed means of evaluating and estimating physical fatigue
through non-invasive sensors such as surface electromyogra-
phy (sEMG) sensors [17]. This is based on the established
finding that certain changes in the temporal and spectral
characteristics of the EMG signal from a muscle correlate
with fatigue build-up within the muscle [17, 18]. In this
context, physical fatigue relates to the transient inability
of the muscle to sustain optimal performance. Existing
methods for estimation of physical fatigue from sEMG
include spectral analysis, which is assumed to be limited
to isometric contraction scenarios [19], and time-frequency
analysis, which is more robust in dynamic tasks [20]. In
occupational ergonomics, accurate estimation of physical
fatigue has motivated the improved design of operator
workspaces and tools [21]. [22] proposed a method to assess
physical fatigue during robot-assisted rehabilitative therapies
using sEMG. They found that accurate fatigue estimation can
advance the design of safer rehabilitative devices.

III. PROPOSED METHODOLOGY

We propose a study in which novice human operators
complete complex motion coordination tasks through three
distinct teleoperation interfaces, while biofeedback, kinematic,
and self-reported data is recorded. The resulting data will be



analyzed using three fatigue models proposed in literature
to describe the evolution of fatigue in tasks with different
motion features and using different teleoperation interfaces.

The study will be performed using the TRINA (Tele-
Robotic Intelligent Nursing Assistant) platform as the robot
agent, described in section III-A. The tasks to be performed
by the operator-agent team are enumerated in section III-B,
and the data analysis pipeline is presented in section III-D.

A. System Setup

We have prepared the teleoperation system architecture for
the study as shown in Fig. 1. The TRINA robot hardware
includes a bimanual humanoid robot torso with two, seven-
DOF manipulators (Rethink Robotics’ Baxter) mounted on
an omnidirectional mobile base (HStar AMP-I). A three-
fingered hand (Righthand Robotics’ Reflex Hand) is fitted
onto both robot arms for complex object manipulation. For
perception, two cameras (Intel RealSense SR300) are fitted
to the wrists of the robot, accompanied by the built-in head
camera on the Baxter robot, and a third-view camera looking
at the robot and the workspace. In our operator console, the
following teleoperation interfaces have been set up for our
experiment: (1) marker-based motion capture (Vicon Motion
Capture System), (2) haptic control device (OMNI Geomagic
Touch), (3) gamepad (Logitech F710). The operator console
also supports voice control for switching camera views.

Fig. 1: TRINA robot with three teleoperation interfaces: direct motion
mapping using motion capture, haptic device and gamepad

B. Experiments

To assess the progression of fatigue in humanoid robot
teleoperation, we propose a human motion study involving 10
subjects performing teleoperation task sets that demonstrate a
range of motion features. Specifically, we focus on the level
of motion precision, the requirement for locomotion, and
the need for bimanual coordination. These features describe
a broad set of motor skills that may be necessary in any
teleoperated task. We classify the motions as fine (F) if the
grasp, motion trajectory, or placement is highly constrained,

otherwise the motion is gross (G). If the task requires moving
the robot base during execution, it is a locomotion task (L),
otherwise it is stationary (S). Finally, if the task requires
moving or coordinating two hands simultaneously, it is
bimanual (B), otherwise it is unimanual (U). For this study, we
select two task sets that are common in home-care, although
the skills are broadly applicable to many teleoperation roles.
The tasks are described in Table I.

Laundry Task
Collect ”dirty” laundry GSU
Move laundry hamper (2 handles) GLB
Move towel basket (1 handle) GLU
Fold towels FSB
Move towel stack to shelf FLB

Grocery Task
Unpack grocery bag FSU
Store items on shelf GLU
Retrieve items from fridge GLB
Set the table FSB
Hand over cooking tools FSU

TABLE I: Teleoperation task sets and motion features

C. Procedure

Each subject will be asked to complete six sessions in this
experiment. A session includes completing one of two tasks
sets (see Table I) using one of three teleoperation interfaces
(see section III-A). We will attach EMG and IMU sensors
(Trigno EMG, Delsys, Inc) to the active muscle groups in the
upper limbs of the subject to record both EMG signal data
and motion data during the sessions. Sensor placement will be
consistent with SENIAMs (Surface ElectroMyoGraphy for the
Non-Invasive Assessment of Muscles) recommendation [23].
Sufficient rest times will be provided between sessions to
prevent cumulative fatigue over the study. Subjects will also
provide a self-assessment of fatigue using the local perceived
discomfort (LPD) survey [24].

D. Data Analysis

We will analyze the EMG and motion data recorded across
each session using multiple fatigue analysis methods, as well
as the subject’s self-reported fatigue evaluation. The EMG
data collected will be band-pass filtered at 5-100Hz, rectified
and low-pass filtered (with cut-off frequency of 20Hz) to
eliminate noise and transients. This preprocessed EMG data
is then used in our fatigue analysis. Existing methods proposed
in literature for fatigue analysis include time-domain analysis,
spectral analysis and time-frequency analysis. In this study,
we employ three different methods as follows:

a) Spectral fatigue index: Spectral analysis method
evaluates the effects of fatigue on the EMG signal by
computing the ratio of different spectral moments of the
power spectral distribution. Dimitrov et al has shown that
best results are obtained when a ratio between the spectral
moments of order -1 and 5 is used [25]. This is because the
moment of order -1 reflects the increments in low frequencies
in the signal whereas moments of order 5 emphasize the
decrements in the high frequencies. This index has been



shown to have higher sensitivity to mapping fatigue than
traditional metrics such as the median and mean frequencies.

b) Instantaneous mean frequency (IMF): Bonato et al
proposed an index calculated over time-frequency distribu-
tions of the EMG signal [26]. Time-frequency analysis were
introduced because the assumption of stationarity may not
hold when recording EMG signals in dynamic contractions.
The continuous wavelet transform has been shown to have
the best accuracy in mapping changes in EMG signals to
fatigue [19, 20]. In IMF, the mean frequency of the signal
over the time-frequency spectrum is computed at each instant
of time. A decrease in the IMF over time would reflect build
up of fatigue in the muscle.

c) Dynamic fatigue model: The fatigue model proposed
in [27] is inspired by the first-order dynamics of an RC
circuit. One limitation of the model is that it may not possess
high bio-fidelity in its computation, however, it lends itself
to real-time fatigue estimation which has very promising
applications in human-robot interaction. The fatigue in the
muscle is modeled to increase based on the current effort
exerted by the muscle, which is estimated from the RMS
of the EMG signal. Other parameters such as the muscle
capacity and recovery rate are subject specific and, hence,
computed experimentally [27].

We will compare the resulting fatigue estimations across
teleoperation interfaces and task features to identify trends
in operator fatigue.

IV. FUTURE WORK

This paper proposes a study to investigate the development
of fatigue in robot teleoperation for a range of complex
motion coordination tasks, and a method to inform the
selection or design of teleoperation interfaces to support
the needs of a teleoperator in a particular task procedure.
Given the assessment of physical fatigue in teleoperation,
our future work will consider (1) shifting the control in the
range from direct human teleoperation to robot autonomy,
(2) distinguishing good and bad demonstrations in the robot
teaching through teleoperation interfaces, and (3) adjusting
the level of cognitive assistance for teleoperators.
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