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Abstract
Objective. Modern prosthetic limbs have made strident gains in recent years, incorporating 
terminal electromechanical devices that are capable of mimicking the human hand. However, 
access to these advanced control capabilities has been prevented by fundamental limitations 
of amplitude-based myoelectric neural interfaces, which have remained virtually unchanged 
for over four decades. Consequently, nearly 23% of adults and 32% of children with major 
traumatic or congenital upper-limb loss abandon regular use of their myoelectric prosthesis. 
To address this healthcare need, we have developed a noninvasive neural interface technology 
that maps natural motor unit increments of neural control and force into biomechanically 
informed signals for improved prosthetic control. Approach. Our technology, referred to 
as motor unit drive (MU Drive), utilizes real-time machine learning algorithms for directly 
measuring motor unit firings from surface electromyographic signals recorded from residual 
muscles of an amputated or congenitally missing limb. The extracted firings are transformed 
into biomechanically informed signals based on the force generating properties of individual 
motor units to provide a control source that represents the intended movement. Main results. 
We evaluated the characteristics of the MU Drive control signals and compared them to 
conventional amplitude-based myoelectric signals in healthy subjects as well as subjects 
with congenital or traumatic trans-radial limb-loss. Our analysis established a vital proof-of-
concept: MU Drive provides a more responsive real-time signal with improved smoothness 
and more faithful replication of intended limb movement that overcomes the trade-off between 
performance and latency inherent to amplitude-based myoelectric methods. Significance. MU 
Drive is the first neural interface for prosthetic control that provides noninvasive real-time 
access to the natural motor control mechanisms of the human nervous system. This new neural 
interface holds promise for improving prosthetic function by achieving advanced control that 
better reflects the user intent. Beyond the immediate advantages in the field of prosthetics, MU 
Drive provides an innovative alternative for advancing the control of exoskeletons, assistive 
devices, and other robotic rehabilitation applications.

Keywords: motor unit, neural interface, prosthetic control, real-time sEMG decomposition

(Some figures may appear in colour only in the online journal)

M D Twardowski et al

Printed in the UK

016012

JNEIEZ

© 2018 IOP Publishing Ltd

16

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/aaeb0f

Paper

1

Journal of Neural Engineering

IOP

4 Author to whom any correspondence should be addressed.

2019

1741-2552/19/016012+15$33.00

https://doi.org/10.1088/1741-2552/aaeb0fJ. Neural Eng. 16 (2019) 016012 (15pp)

https://orcid.org/0000-0002-6931-0707
https://orcid.org/0000-0002-6523-5527
mailto:jkline@delsys.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/aaeb0f&domain=pdf&date_stamp=2018-12-12
publisher-id
doi
https://doi.org/10.1088/1741-2552/aaeb0f


M D Twardowski et al

2

Introduction

Beginning with the introduction of electrically powered pros-
theses more than 65 years ago (Reiter 1948) surface electro-
myographic (sEMG) signals recorded from residual muscles 
in amputated limbs have served as the primary source of 
neural information for myoelectric prosthetic control (Schultz 
and Kuiken 2011, Fougner et al 2012). The majority of these 
devices use one or more recording electrodes to translate the 
sEMG signal amplitude into voltage signals that drive the 
mechanical components of the prosthesis. In so doing, users 
are able to directly control the direction of prosthetic actuation 
by activating different muscles of their residual limb (Fougner 
et al 2012). However, previous scientific investigations have 
shown that the amplitude of the sEMG signal is only an approx
imation of the intended proportional increments of neural 
control that are nonlinearly related to the actual force of the 
contracting muscle (Milner-Brown and Stein 1975, Lawrence 
and De Luca 1983, Basmajian and De Luca 1985, Solomonow 
et al 1990, Solomonow et al 1991). Consequently, in spite of 
decades of use, amplitude-based myoelectric control methods 
remain prone to generating disproportional, highly variable 
control signals (Guanglin et  al 2010, Schultz and Kuiken 
2011) likely contributing to the relatively high-incidence of 
upper-limb myoelectric prosthesis abandonment—estimated 
at 23% of adults and 32% of children with major limb-loss 
(Biddiss and Chau 2007).

To improve neural interfaces beyond the limitations of 
amplitude-based myoelectric approaches, recent work has 
focused on advancing electrodes that can be implanted within 
muscles (Pasquina et  al 2015) or on peripheral nerves to 
better access the underlying signals within the nervous system 
(Rossini et al 2010). In recent years, several of these implant-
able technologies have shown promise for recording signals for 
up to 12–24 months in cats and monkeys (Schorsch et al 2008, 
Baker et al 2010) and up to 6–9 months in human subjects 
(Pasquina et  al 2015). Yet, despite these technical achieve-
ments, practical questions surrounding the implantation and 
maintenance of invasive neural interfaces remain, including: 
(1) the preservation of residual nerve or muscle integrity; (2) 
the management of increased health-risks to an aging popula-
tion of people with limb-loss; and (3) the accommodation of 
substantially greater health costs by the prosthesis care system 
(Baker et al 2010, Schultz and Kuiken 2011, Lewis et al 2013, 
Pasquina et al 2015). Even if some of these practical concerns 
are mitigated over time, there remains an immediate need for 
a risk-averse neural interface that can provide comparable 
access to the motor control information within the nervous 
system, but in a noninvasive configuration.

To meet this need, we have developed a new neural inter-
face technology, referred to as motor unit drive (MU Drive), 
to provide control signals that are based on the firing behavior 
of individual motor units obtained both noninvasively and 
in real-time. Motor unit firing rates and recruitment provide 
natural physiological mechanisms for controlling force and 
movement in the intact limb (De Luca and Erim 1994) and 
therefore hold promise for more natural restoration of func-
tion for persons with limb-loss. Our group has been at the 

forefront of developing algorithms for extracting motor unit 
firings from the decomposition of sEMG signals; first using 
intramuscular electrodes (LeFever and De Luca 1982, LeFever 
et al 1982, De Luca and Adam 1999) and more recently using 
high-fidelity noninvasive surface electrodes (De Luca et  al 
2006, 2014). This work has culminated in a system of sensors 
and algorithms that can measure the firing behavior of well 
over 20 motor units per contraction during exercise and func-
tional human movements (De Luca et al 2014). In the current 
study, we developed and tested MU Drive on amputees with 
congenital or traumatic trans-radial limb-loss and found that 
sEMG signals obtained from residual muscles are not only 
decomposable, but the extracted motor unit activity provides 
valuable control information that incorporates known con-
trol properties documented in muscles of intact limbs. We 
combined the motor unit firings with the force generating 
properties of individual motor units to derive a biomechani-
cally informed signal (MU Drive signals) that can be used as 
a control input for upper-limb prosthetic devices. We com-
pared the characteristics of MU Drive signals to conventional 
amplitude-based signals in both trans-radial amputees as well 
as intact control subjects during various intended and actual 
movements of the hand, respectively. Across all subjects and 
movements tested, MU Drive signals provided more respon-
sive and smoother real-time proportional control that better 
replicated actual movement of the limb.

Methods

Participants

A total of 23 subjects volunteered for participation: 13 subjects 
were amputees with trans-radial limb loss (four congenital 
and nine traumatic; eight males and four females; mean age 
47.2  ±  15.1 years (range 26–74 years); mean residual limb 
length 14.1  ±  6.6 cm (range 7.5–32 cm))—and ten subjects 
were controls with intact limbs (five males and five females; 
mean age 37.4  ±  15.3 years (range 22–68 years)). All subjects 
were otherwise healthy and showed no signs of neuromus-
cular disorders. Each subject read, indicated they understood 
and signed informed consent forms approved by the Western 
Institutional Review Board before participating in the study.

Data acquisition

For both amputee (figure 1(A)) and control subjects (figure 
1(B)), we recorded sEMG signals using a dEMG 5-pin sur-
face array (Delsys Inc., Natick, USA) placed on the surface 
of the skin over each of four muscles—Extensor Digitorum 
Communis, Flexor Digitorum Profundus, Pronator Teres 
and the Biceps Brachii—associated with four intended and 
actual movements of the intact limb for amputees and control 
subjects: extension of the fingers, flexion of the fingers, pro-
nation of the forearm and supination of the forearm, respec-
tively. The sensors were placed over the mid-belly of each 
muscle, located by manual palpation and verified by sEMG 
signal monitoring during each of the specified intended or 
actual movements. At each sensor location, only mild skin 
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preparation was performed by shaving excess hair with a 
razor, removing the superficial dead skin with medical-grade 
tape peels, and cleansing the skin with an alcohol swab. From 
each sensor, four differential sEMG signals were recorded 
from different bipolar pairs of the five-pin electrode, filtered 
from 20 to 450 Hz, and digitized at 20 kHz using a Bagnoli™ 
16-channel EMG acquisition system (Delsys Inc.).

For control subjects, a custom data acquisition glove 
was used to accurately measure kinematics of the hand and 
forearm during the different movement tasks. The glove meas-
ured joint angles of each digit using five biaxial goniometers 
(Biometrics Ltd, Newport, UK) with Trigno™ Goniometer 
Adapters (Delsys Inc.) and forearm orientation using a 
Trigno™ IM inertial measurement sensor (Delsys Inc.). All 
primary goniometer axes were low-pass filtered at 50 Hz 
and digitized at 1.93 kHz. The triaxial gyroscope, accelerom-
eter and magnetometer of the inertial sensor were digitized 
at 148.1 Hz, and processed using a custom orientation filter 
(Madgwick et al 2011) to provide three principal axes of roll, 
pitch and yaw. Trigger modules were used to synchronize the 
start and stop of data acquisition between the Bagnoli™ and 
Trigno™ systems. Data were acquired on a computer with an 
Intel® Core™ i7-4790 CPU @ 3.60 GHz with 8 GB of RAM 
and processed using custom MATLAB software.

Protocol

We designed a protocol to test voluntary intended and actual 
control of the hand in two degrees of freedom: (1) finger 
flexion/extension, and (2) forearm supination/pronation. For 
each degree of freedom, subjects started by performing a 
brief voluntary contraction at a relatively low-level, typical of 
normal daily activity. The signal-to-noise ratio of the recorded 
sEMG signal was monitored to prevent noise from obscuring 
the recognition of motor unit action potentials during the MU 
Drive processing described later in the methods. The sensor 
was removed and retested in multiple locations on the muscle 
until an sEMG signal-to-noise ratio of at least 4:1 could 
be obtained from the relatively low-level voluntary effort. 
Subjects then performed a brief 10–20 s initialization contrac-
tion of sufficient duration to extract the action potentials of 
approximately 20–30 different motor units during the motor 
unit action potential detection stage of MU Drive processing. 
Following initialization, subjects were instructed to perform a 
series of sequential trials of alternating contractions of finger 
flexion and extension and forearm pronation and supination 
through their full range of motion for approximately 12 to 24 
repetitions. We tested each contraction at speeds of 20 and 
40 repetitions per minute, to assess our algorithms viability 
during varied movement speeds within the bounds of normal 
daily activity. In both amputee and control subjects, sEMG 
biofeedback was visualized on a computer screen to facili-
tate compliance with the protocol. Additionally, amputee 
subjects simultaneously performed mirrored movements with 
the intact limb to assist themselves in activating the muscles 
involved in the intended movements. Rest periods were pro-
vided between each series of contractions to avoid the onset 
of muscle fatigue.

MU Drive processing

The sEMG signals recorded during the different movement 
tasks were processed to measure the firings of concurrently 
active motor units in real-time and convert the detected 
firing instances into a continuously varying biomechanically 
informed signal (figure 2). The approach is based on existing 
algorithms that use an offline architecture to measure motor 
unit firing times from sEMG signals recorded during dynamic 
exercise and functional movements (De Luca et  al 2014). 
However, because the current post-processing architecture 
prevents real-time access to neural control signals, we imple-
mented the following changes to develop real-time processing 
capabilities for the MU Drive algorithms.

Motor unit action potential detection.  The existing dEMG 
algorithms identify action potentials of individual motor units 
by searching the recorded sEMG signal for uncontaminated 
occurrences of each action potential shape prior to resolv-
ing the motor unit firing locations. In the MU Drive algo-
rithms, we separated this processing stage from the rest of 
the algorithm to detect a priori measurements of motor unit 
action potentials (MUAPs) during relatively brief contrac-
tions performed during the initialization stage for each sen-
sor location (figure 2(A)). The detected MUAP shapes were 
parameterized within a multi-dimensional shape-based fea-
ture set used throughout later processing stages to track the 
firings of individual motor units. (See De Luca et al (2014) 
for further details.) This initialization step was performed at 
the onset of testing and the identified MUAP shapes were 
tracked throughout the remainder of the protocol without the 
need for re-calibration.

Real-time processing of motor unit firing times.  The 
detected MUAP shapes were used to resolve motor unit fir-
ings that occurred in superposition with those of other motor 
units throughout the voluntary contractions. In the existing 
algorithms this stage requires processing the entirety of the 
recorded signal to resolve the firings of all motor units prior 
to outputting the result. To alleviate this computational bur-
den, we parsed the sEMG data into smaller, non-overlapping 
signal segments and measured the firing locations of differ-
ent motor units separately from each segment (figure 2(B)). 
To improve the firing time detection from relatively smaller 
duration signal segments, signal-based features extracted 
from occurrences of one or more motor unit action poten-
tials that overlapped with a previous segment were used to 
inform the current segment processing. This implementation 
allowed us to reduce the overall processing delay by pro-
viding firing times as they are detected in the sEMG signal. 
(See De Luca et al (2006, 2014) and Nawab et al (2010) for 
further details.)

Translating motor unit firings into biomechanically informed 
signals.  The existing dEMG algorithm provides the action 
potentials and firing times of all detected motor units. For the 
MU Drive algorithms, however, we designed an additional 
processing stage to translate the motor unit firing times into 
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proportionally varying increasing and decreasing biome-
chanically informed signals. This component of the algorithm 
uses a specially designed neuromuscular transfer function to 
estimate the relative mechanical contribution of each active 
motor unit. While other approaches (Farina et al 2017) have 
attempted to pool motor unit firings with non-linear trans-
forms of the sEMG signal to infer joint kinematics, we chose 
to directly model the biomechanical contributions of each fir-
ing of the individual motor units based on known and docu-
mented empirical measures of motor unit force twitches. The 
neuromuscular transfer function is adapted from an existing 
computational model of empirically-derived motor unit force 
twitches (Raikova and Aladjov 2002, Contessa and De Luca 
2013) to obtain a signal representation of MU Drive from each 
muscle. Additional details of this procedure can be found in 
appendix A.

Data analysis

To assess the control characteristics of the MU Drive neural 
interface, we evaluated three primary signal metrics from each 
subject and muscle tested:

	(1)	�Real-time Performance—We measured the total time 
required to obtain the output signal as the sum of the 
segmentation delay (i.e. the time required to record each 
signal segment) and the processing delay (i.e. the time 
required to obtain the output signal from each input signal 
segment). To evaluate the effects of window size on real-
time performance, we segmented the sEMG data into 
windows ranging from 20 to 400 ms.

	(2)	�Proportional Smoothness—We quantified the degree of 
smoothness of the output signal based on the spectral 

arc length (SPARC) described by Balasubramanian et al 
(2015). The SPARC measurement provides an indication 
of the smoothness of a movement based on the arc length 
of the discrete Fourier transform derived from a kinematic 
or biomechanical signal. This approach has been shown 
to provide valuable quantification of the smoothness of 
natural limb movement and thus provides a mathematical 
framework that can be used for assessing the smoothness 
of an input signal for prosthetic control.

	(3)	�Replication of Actual Limb Movement—In control 
subjects, we chose to compare the MU Drive signals—
obtained from the summation of force twitches produced 
from individual motor unit firings—to the kinematics 
(e.g. position, and orientation) of the hand and forearm as 
both force and position measures are inter-related and the 
estimate of either can used to be control the velocity of a 
prosthesis motor in a proportional manner (Fougner et al 
2012). To make these comparisons, we quantified the 
degree to which the output signal replicates movement 
of an intact limb by calculating the percent error between 
each signal and the measured changes of the finger joint 
angle or forearm orientation indicated by the primary axis 
of roll. Each percent error was measured at the point of 
maximum cross correlation between the control signal 
and the appropriate kinematic measure.

Comparison with conventional amplitude-based myoelectric 
signals.  We compared the MU Drive signal characteristics 
with the root mean square (RMS), and mean absolute value 
(MAV) of the sEMG signal that are typically used for ampl
itude-based myoelectric prosthetic control (Phinyomark et al 
2012). These signals were calculated over a temporal window 

Figure 1.  Examples of the experimental setup for one of the amputee (A) and control (B) subjects. EMG sensors are identified 
on the extensor digitorum communis, flexor digitorum profundus, pronator teres and the biceps brachii muscles to record surface 
electromyographic signals during the test protocol. The control subject is instrumented with a custom data acquisition glove comprised of 
goniometers, and an inertial measurement unit sensor to measure hand and forearm kinematics.

J. Neural Eng. 16 (2019) 016012



M D Twardowski et al

5

equal in duration to the total time required to obtain a MU 
Drive signal. For example (figure 2(C)), if the MU Drive out-
put required a 20 ms segmentation delay and 5 ms processing 
time totaling a delay of 25 ms, then the amplitude-based sig-
nals would be calculated using an equivalent window size of 
25 ms. The amplitude-based myoelectric signals, MU Drive 
signals, and kinematic data were normalized for each subject 
and movement direction prior to the analysis. We measured 
the latency of each amplitude-based signal with respect to the 
MU Drive signal by finding the point of maximum cross cor-
relation between the two signals. The latency, smoothness and 
error metrics were analyzed for all signals as a function of dif-
ferent window lengths. A non-parametric Wilcoxon rank sum 
test was used to evaluate significant differences between the 
MU Drive and the amplitude-based signals.

Results

We successfully measured the motor unit firing behavior from 
4942 volitional and intended contractions in all 23 subjects 
tested. On average, the MU Drive real-time performance 
achieved 2.7  ±  1.3 ms (5th and 95th Percentiles  =  0.7, 4.7 ms) 
processing time for each 20 ms signal segment, equivalent to 
a real-time ratio less than 0.25:1 and upper-limit total delay 
of approximately 25 ms. When we compared the MU Drive 
signal measured from each muscle with that of the amplitude-
based signals obtained with a comparable 25 ms delay (i.e. 
25 ms window) from the same muscle, we observed that MU 
Drive improves the control characteristics shown by the repre-
sentative examples in figure 3.

The MU Drive signal measured from the forearm pronator 
in the amputee subject during intended forearm pronation/
supination maintained a smoothness of  −6.0 (figure 3(A), 
black), a 97.4% improvement relative to the  −232.0 smooth-
ness measured from the RMS signal (figure 3(A), gray). 
Similarly, in the control subject during finger extension/
flexion, the MU Drive signal measured from the finger exten-
sors had a smoothness of  −6.5 (figure 3(B), black), a 97.6% 
improvement relative to the  −275.5 smoothness measured 
from the RMS signal (figure 3(B), gray) and closer to the  −6.6 
smoothness measured from the changes in finger angle of the 
control subject’s intact limb (figure 3(B), black dashes).

When comparing the measured changes in joint angle of 
the 2nd finger of the control subject with the MU Drive and 
RMS signals measured from the finger extensors, we found 
that MU Drive was able to better replicate changes in move-
ment of the intact limb with a relatively small error of 8.0% 
(figure 3(B), black), substantially lower than the 57.8% error 
measured from the RMS signal (figure 3(B), gray).

We compared the performance characteristics of MU Drive 
and RMS signals in both the amputee and control subjects for 
all muscles and movements tested. Figure 4 shows examples 
of individual results selected to illustrate the varying degrees 
of performance. In these examples, the MU Drive signals 
ranged in smoothness from  −8 to  −4.4 and from  −16.6 
to  −6.0, substantially greater than the smoothness of the RMS 
signals which ranged from  −203.2 to  −38.7 and from  −239.7 
to  −107.8 for amputee and control subjects, respectively. 
Similarly, the error measured between the MU Drive signals 
and the actual limb movement of the control subjects ranged 

Figure 2.  A schematic diagram of the MU Drive processing stages (A)–(C) used to detect and translate motor unit firings in real-time 
into biomechanically informed signals. (A) The first stage verifies sensor placement and acquires a priori measurements of the motor unit 
action potentials (MUAPs) from an initial brief contraction (in this example data is shown from the finger extensors from a control subject 
during finger flexion/extension). (B) The detected MUAPs are used to resolve motor unit firings in real-time which are then translated into 
the MU Drive signal using a neuromuscular transfer function that convolves the motor unit firing instances with model estimates of muscle 
force twitch. (C) The characteristics of the MU Drive signal were analyzed and compared to those measured from signals derived using 
conventional amplitude-based measures of the signal.
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from 19.1% to 23.9%, substantially lower than the error meas-
ured between the RMS signals and the actual limb movement 
which ranged from 62.9% to 82.6%. In all cases, MU Drive 
provided smoother signals than RMS signals and better repli-
cated actual limb movement in control subjects.

MU Drive provides smoother signals

We segmented the sEMG signals at different window lengths 
to analyze the changes in the MU Drive and amplitude-based 
signal characteristics as a function of the window size and 
processing time required to obtain each signal. Results from 
amputee subjects indicate that the median smoothness of MU 
Drive manifested relatively small fluctuations with increasing 
delay, ranging from  −7.0 to  −6.1 in the finger flexors (figure 
5(A)), −11.5 to  −7.7 in the finger extensors (figure 5(B)) 
during finger extension/flexion, and  −10.3 to  −8.4 in the 
forearm supinator (figure 5(C)), and  −5.1 to  −4.4 in the 
forearm pronator (figure 5(D)) during forearm supination/
pronation. This contrasts with the median smoothness of the 
amplitude-based signals measured from the same muscles 
that progressively increased as a function of window size and 
processing time to a maximum smoothness of  −111.6 (RMS) 
and  −43.2 (MAV) in the finger extensors (figure 5(A)), 
−98.2 (RMS) and  −52.1 (MAV) in the finger flexors (figure 
5(B)), −75.3 (RMS) and  −33.1 (MAV) in the forearm supi-
nator (figure 5(C)), and  −113.4 (RMS) and  −36.8 (MAV) in 
the forearm pronator (figure 5(D)). In spite of the apparent 
improvement for each movement, the best amplitude-based 

smoothness metrics were all significantly lower than the 
smoothness of the MU Drive signals obtained with the least 
delay at 25 ms (p  <  0.001). Similar results can be seen from 
control subjects, where the MU Drive signals showed rela-
tively small fluctuations that ranged from  −9.4 to  −7.2 in 
the finger extensors (figure 5(E)), and  −11.2 to  −9.3 in the 
finger flexors (figure 5(F)) during finger extension/flexion, 
and  −9.0 to  −7.5 in the forearm supinator (figure 5(G)), 
and  −11.7 to  −8.5 in the forearm pronator (figure 5(H)) 
during forearm supination/pronation. This contrasts with the 
median smoothness of the amplitude-based signals measured 
from the same muscles which progressively increased as a 
function of window size and processing time up to  −97.4 
(RMS) and  −29.6 (MAV) in the finger extensors (figure 5(E)), 
−111.7 (RMS) and  −42.2 (MAV) in the finger flexors (figure 
5(F)), −46.3 (RMS) and  −27.8 (MAV) in the forearm supi-
nator (figure 5(G)), and  −60.3 (RMS) and  −21.8 (MAV) in 
the forearm pronator (figure 5(H)). Like the amputee subjects, 
the best amplitude-based smoothness for each muscle and 
movement tested in control subjects was significantly lower 
than the smoothness of the MU Drive signals obtained with 
25 ms delay (p  <  0.001). The smoothness measured from 
kinematics of the limb in control subjects during each move-
ment was  −4.6 in the finger extensors (figure 5(E)), −5.5 in 
the finger flexors (figure 5(F)), −4.9 in the forearm supinator 
(figure 5(G)), and  −3.9 in the forearm pronator (figure 5(H)). 
These data indicate the smoothness of the MU Drive signals 
is relatively closer than the amplitude-based signals to the 
smoothness measured from movement of the actual limb.

Figure 3.  (A) The sEMG signal (left-top, gray), the detected motor unit firings (left-bottom, black), MU Drive signal (right, black) and 
RMS signal (right, gray) measured from the forearm pronator during intended forearm pronation/supination of a representative amputee 
(subject A2). (B) Both MU Drive and RMS signals are plotted with the joint angle of the 2nd finger (right, black dashes) measured during 
finger flexion/extension from the finger extensor muscles of a representative control (subject C2). MU Drive consistently provides smoother 
signals that better replicate intended limb movement than the RMS signals.
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Because there were no systematic differences in smooth-
ness amongst the individual subjects, we grouped the smooth-
ness data across all amputee subjects and separately across 
all control subjects for each muscle tested. We analyzed the 
smoothness measured from the amplitude-based signals 
across the full-range of window lengths tested as a function 
of the latency with respect to the MU Drive signal obtained 
with 25 ms delay. (Note that negative latencies indicate the 
amplitude-based signal leads MU Drive while positive laten-
cies indicate that the amplitude-based signal lags behind 
MU Drive.) Across all four muscles the median smoothness 
of movement of MU Drive ranged from  −8.4 to  −6.9 (fig-
ures 6(A)–(D)) and  −11.7 to  −10.5 (figures 6(E)–(H)) for 
the amputee and control subjects, respectively. These values 
were significantly greater (p  <  0.001) than the best median 
smoothness of the RMS signals which ranged from  −117.0 
to  −68.1 for amputee (figures 6(A)–(D)) and from  −108.5 
to  −53.5 for control subjects. Although the MAV window 
function improved over the smoothness of the RMS across 
all muscles tested, MU Drive was still significantly smoother 
(p  <  0.001) than the best performing MAV signals which 
ranged from  −49.5 to  −31.7 for amputees (figures 6(A)–(D)) 
and from  −42.7 to  −26.5 (figures 6(E)–(H)) for control sub-
jects. Further analysis of figure 6 illustrates that the smooth-
ness of the RMS and MAV signals was directly related to the 
latency of the signals with MU Drive, indicating the best per-
forming windows for both functions lagged behind MU Drive 
with median latencies ranging from 49 to 171 ms and from 76 
to 143 ms for all muscles and subjects for RMS and MAV sig-
nals, and in most cases lagged behind the actual movement of 
the limb which had a median latency with respect to MU Drive 
that ranged from 61 to 159 ms (figures 6(E)–(H)). These data 

indicate that the smoothness of the amplitude-based measures 
can be improved, but at the expense of additional latency that 
results from increasing the window size.

MU Drive better replicates movement of intact limbs

We calculated the percent error between the MU Drive and 
amplitude-based signals with respect to the changes in joint 
angle during each movement of control subjects. Results from 
individual control subject indicate the median error of MU 
Drive manifested relatively small variations which ranged 
from 18.8% to 24.77% in the finger extensors (figure 7(A)) 
and 23.3% to 31.2% in the finger flexors (figure 7(B)) during 
finger extension/flexion, and 26.1% to 31.3% in the forearm 
supinator (figure 7(C)) and 24.5% to 31.2% in the forearm pro-
nator (figure 7(D)) during forearm supination/pronation. On 
the contrary, the median error of the amplitude-based signals 
from the same muscles improved as a function of increasing 
window size and processing time reaching minimum values 
of 30.6% (RMS) and 33.3% (MAV) in the finger extensors 
(figure 7(A)), 34.5% (RMS) and 31.9% (MAV) in the finger 
flexors (figure 7(B)), 36.5% (RMS) and 31.8% (MAV) in 
the forearm supinator (figure 7(C)), and 57.0% (RMS) and 
60.5% (MAV) in the forearm pronator (figure 7(D)). Yet even 
with this improvement, the minimum error measured from 
the amplitude-based signals for each muscle and movement 
studied was significantly greater than the error measured from 
the MU Drive signals at 25 ms delay (p  <  0.001).

Because there were no systematic differences in the 
error measured from the individual subjects, we grouped 
the data across all control subjects for each muscle and 
movement tested and analyzed the error measured from the 

Figure 4.  MU Drive signals (black) compared to RMS signals (gray) measured from the finger extensors (A) and (E), the finger flexors 
(B) and (F), the forearm supinator (C) and (G) and the forearm pronator (D) and (H) of amputee ((A)–(D), subjects: A2, A3, A4, A5) and 
control subjects ((E)–(H), subjects: C2, C3, C4, C5) during finger flexion/extension ((A), (B), (F) and (E)), forearm pronation/supination 
((C), (D), (G) and (H)). MU Drive provides similar performance across the subjects and muscles tested.
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amplitude-based signals across the full range of window 
lengths tested as a function of latency with respect to the MU 
Drive signal at 25 ms delay. The median error of MU Drive 
was 22.8%, 25.9%, 25.6% and 34.3%, significantly lower 
(p  <  0.001) than the measured median error of the RMS 
signals of 28.9%, 33.1%, 35.9% and 47.8% in the finger 
extensors, finger flexors, forearm supinator and forearm pro-
nator, respectively (figures 8(A)–(D)). The median error of 
MU Drive was also significantly lower (p  <  0.001) than the 
measured median error of the MAV signals of 30.1%, 40.4%, 
38.3% and 51.6% in the same finger extensors, finger flexors, 
forearm supinator and forearm pronator muscles during the 
same movements tested. Importantly we observed the percent 
error of amplitude-based signals were inversely related to the 
latency of the response with respect to MU Drive: the best 
performing sEMG window length incurred median latencies 
ranging from 84 to 171 ms and 82 to 143 ms for RMS and 
MAV functions, respectively. These data give clear evidence 
that MU Drive signals are more responsive and more closely 
replicate the kinematics of the intact limb.

Discussion

We set out to design a new, noninvasive neural interface that 
uses the firings of individual motor units to derive a biome-
chanically informed signal that could be used as an input for 
prosthetic control. This study provides a critical proof-of-con-
cept towards achieving this goal prior to actual implementa-
tion in a prosthesis. Our tests across four different muscles 
and as many movements established, for the first time, that 
the MU Drive neural interface is able to track the firings of 

individual motor units in both amputee and control subjects, 
and the detected firings could be successfully translated into 
time-varying biomechanically informed signals that were 
responsive, smooth and a close approximation of the actual 
movement of intact limbs. Additionally, our results demon-
strate that residual muscles, despite disuse and changes to 
their morphology due to surgery or congenital formation, can 
still provide responsive, smooth, and proportional MU Drive 
signals that are similar in control characteristics as those mea-
sured from intact limbs. When comparing the characteristics 
of the MU Drive signals with traditional amplitude-based 
myoelectric signals, we found that MU Drive provided several 
significant improvements discussed in further detail below.

MU Drive provides smoother signals

As the activation of different muscles increased and decreased 
throughout the movements tested, the MU Drive signal pro-
vided proportional increases and decreases that were signifi-
cantly smoother than changes in the amplitude-based signals. 
The relatively poorer smoothness of amplitude-based signals 
may contribute to the reason why current commercially avail-
able myoelectric prosthetic controllers rely on preset thresh-
olds that limit proportional gradations of amplitude-based 
control. On the contrary, MU Drive extracts the relevant 
neural information from the variable electrical activity of the 
myoelectric signal by separating discrete motor unit control 
increments to provide a more natural, smooth and proportion-
ally varying biomechanically informed signal. The end result 
demonstrates in both amputee and control subjects that MU 
Drive signals are closer in smoothness to the kinematics of 
actual movement of intact limbs (figure 5).

Figure 5.  Smoothness measurements at different window lengths used to estimate and compare MU Drive (black), RMS signals (gray), 
and MAV signals (gray dashes) measured from the finger extensors (A) and (E), the finger flexors (B) and (F), the forearm supinator (C) 
and (G) and the forearm pronator (D) and (H) of amputee ((A)–(D), subjects: A1, A2, A3, A6) and control subjects ((E)–(H), subjects: 
C3, C6, C7) during finger extension/flexion ((A), (B), (E) and (F)) and forearm supination/pronation ((C), (D), (G) and (H)). The median 
smoothness values are represented by the solid traces, while the shaded regions represent the 5th to 95th percentiles. Across all subjects and 
muscles tested, MU Drive consistently provided smoother signals compared to the amplitude-based signals.
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Figure 6.  Smoothness measurements from RMS (gray), and MAV signals (gray dashes) plotted as function of median latency with respect 
to the MU Drive signal (black), measured from the finger extensors (A) and (E), the finger flexors (B) and (F), the forearm supinator (C) 
and (G) and the forearm pronator (D) and (H) of all amputee (A)–(D) and control subjects (E)–(H) during finger extension/flexion ((A), (B), 
(E) and (F)), forearm supination/pronation ((C), (D), (G) and (H)). Negative latencies indicate that a signal leads MU Drive, while positive 
latencies indicate that a signal lags it. The smoothness data from MU Drive signals at 25 ms delay are plotted as the median values (black 
circle) plus and minus the 25th and 75th percentiles (black error bars). For the control subjects ((E)–(H)) the smoothness measurements 
of kinematic data are plotted as the median values (black x) that spans the 25th and 75th percentiles at the x-axis corresponding to their 
median latency with the MU Drive signals (black). The median smoothness of the amplitude-based signals is represented by the solid 
traces, while the shaded regions indicate the 25th to 75th percentiles. Across all four muscles in both subjects sets, the MU Drive signals 
maintained significantly greater smoothness than the amplitude-based signals at every latency.
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MU Drive better replicates kinematics of intact limb

When compared to the kinematic changes in limb move-
ment measured from control subjects, MU Drive provided 
significantly less error than the amplitude-based signals at 
all filtering windows tested. These results indicate that tradi-
tional amplitude-based myoelectric signals poorly replicate 
natural movement of the actual limb, perhaps contributing 
to the relatively high incidence of prosthesis abandonment 

among myoelectric prosthesis users (Biddiss and Chau 2007). 
To increase the accuracy of amplitude estimation, other 
approaches have been proposed to condition the sEMG signal 
prior to amplitude-based calculations (Clancy et al 2006, Liu 
et al 2013, Dai et al 2017). While these approaches have had 
some success in decreasing error of the amplitude estimates 
used for predicting torques of the elbow during constant-pos-
ture, force-varying contractions, their efficacy during dynamic 
human movements, such as those tested in this study, has yet 

Figure 7.  Error measurements at different window lengths used to estimate and compare MU Drive (black), RMS signals (gray), and MAV 
signals (gray dashes) measured from the finger extensors (A), the finger flexors (B), the forearm supinator (C) and the forearm pronator (D) 
of control subjects during (subjects: C3, C5, C8) finger extension/flexion (A) and (B), forearm supination/pronation (C) and (D). Median 
error values are represented by the solid traces, while the shaded regions represent the 5th to 95th percentiles. The MU Drive signals 
consistently provide significantly less error than the minimum error measured from the amplitude-based signals.

Figure 8.  Error measurements from RMS signals (gray), and MAV signals (gray dashes) as a function of median latency with respect to the 
MU Drive signal (black), measured from the finger extensors (A), the finger flexors (B), the forearm supinator (C) and the forearm pronator 
(D) of all control subjects during finger extension/flexion (A) and (B), forearm supination/pronation (C) and (D). Negative latencies 
indicate that a signal leads MU Drive, while positive latencies indicate that a signal lags it. The error data from MU Drive signals at 25 ms 
delay are plotted as the median values (black circle) plus and minus the 25th and 75th percentiles (black error bars). The median errors of 
the amplitude-based signals are represented by the solid traces, while the shaded regions represent the 25th to 75th percentiles. Across all 
four muscles and at every latency the MU Drive signals maintained significantly less error than the amplitude-based signals.
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to be proven. In contrast to amplitude-based signals, MU 
Drive uses physiological mechanisms of motor unit-based 
control that capture natural changes in excitation from the 
nervous system translated by empirically-derived motor unit 
force twitch responses inherent to the muscle. The resulting 
biomechanically informed signals lead to more natural and 
faithful replication of actual limb movement that hold promise 
for improving precision and functionality of prosthetic con-
trollers. Despite significantly improving the median error over 
amplitude-based signals, MU Drive retained some error with 
respect to the limb movement—likely resulting from the fact 
that normal voluntary movements of the hand typically result 
from not one but multiple synergist and antagonist muscles 
contributing to movement. Further investigation of multi-
muscle mapping of MU Drive signals to movement patterns 
of the hand and arm will be an important step for improving 
MU Drive control of prosthetic devices in future research.

MU Drive provides responsive real-time processing

The improved signal characteristics of MU Drive required 
only a 25 ms delay in processing time and showed minimal 
changes in performance when testing increased delays from 
processing longer duration windows. The amplitude-based 
signals on the contrary showed an inherent tradeoff, illus-
trated in figure 9, between signal performance and processing 
time: increases in smooth signals that better replicate actual 
limb movement could be obtained from larger filtering win-
dows that require increased delay to compensate for inherent 
variability in the myoelectric signal amplitude. This poses an 
inherent limitation in the degree of natural proportional con-
trol that can be obtained from amplitude-based signals while 
maintaining a 100–125 ms upper-limit responsiveness before 
the perceived delay affects the function of the prosthesis for 
users (Farrell and Weir 2007). Additional experimental testing 
of low-pass filtering techniques to improve performance the 

amplitude-based signals, shown in appendix B, further dem-
onstrated the tradeoff between smoothness, latency and error 
inherent to amplitude-based myoelectric control methods. 
Furthermore, these results also demonstrated that it is fea-
sible to aggressively low-pass filter amplitude-based signals 
to achieve comparable smoothness and latency to that of MU 
Drive (figure B1(X)), but at a compromise of increased error 
(figure B1(U)), that could translate into a reduced ability of 
prosthesis users to control a desired joint trajectory. Because 
MU Drive signals do not require significant filtering, they 
overcome the inherent tradeoff between performance and 
delay by providing smooth control that naturally replicates 
actual limb movement in a responsive configuration. In fact, 
the relatively low 25 ms delay of MU Drive increases its via-
bility for integration with additional control algorithms that 
could combine multiple MU Drive signals across muscle 
synergies for increased multi-degree-of-freedom capabilities; 
thereby surpassing the current state-of-the-art while main-
taining responsive performance.

These three improvements in the signal characteristics of 
MU Drive over conventional amplitude-based myoelectric 
alternatives establish a vital proof-of-concept for the function-
ality of our motor-unit-based neural interface. The advance-
ments afforded by MU Drive justify further development and 
testing within a prosthesis to evaluate the degree to which the 
improved signal characteristics translate into natural, intui-
tive prosthetic control that could potentially increase function 
for a greater number of people with congenital or traumatic 
limb-loss.

Technical Advantages

The improved performance characteristics of MU Drive are 
supported by key aspects inherent to the engineering design 
of high-fidelity noninvasive sensors and real-time recognition 
algorithms. The technical attributes of the MU Drive system 

Figure 9.  MU Drive control advantages over amplitude-based myoelectric control methods.
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provide distinct advantages over alternative approaches for 
advancing prosthetic control.

MU Drive uses a miniaturized, noninvasive sensor.  Our sen-
sor design is unique among decomposition techniques in that it 
requires only a single, noninvasive, dry miniature sensor-array 
that allows discrimination of motor unit action potential shapes 
from sEMG signals. Because of its relatively small 5  ×  5 mm 
electrode footprint, one or more of these arrays could be tai-
lored for multi-muscle use within a prosthetic socket. In fact, 
prior work with similar sensors developed by our group found 
that those sensors were able to be integrated into a clinically 
available suction socket with only limited modifications (Hef-
ferman et al 2014). This contrasts with alternative approaches 
for measuring motor unit firings that require relatively large 
patches of sensor arrays with as many as 64 electrodes that 
have difficulty maintaining consistent contact with the skin 
(Holobar et al 2009, Barone and Merletti 2013) even with the 
application of conductive gel paste to each of these electrodes. 
Although used in a limited set of bench-top laboratory con-
ditions, the requirement for people with congenital or trau-
matic limb-loss to don these large arrays one or more times 
per day not only presents a practical burden to the user that 
will not only hinder compliance with the prosthetic device, 
but risk dermatological irritation caused by electrode gel on 
the already sensitive skin of the residual limb that ultimately 
depreciates the amputee’s functionality with the prosthesis 
(Bowker and Michael 1992). In contrast, our MU Drive sen-
sor’s small form factor and dry-contact interface makes our 
system likely more amenable for future integration into the 
prosthetic socket with virtually no additional burden to the 
prosthesis donning procedure for the user.

MU Drive integrates real-time motor unit measurements.  MU 
Drive presents the first noninvasive, high-yield, real-time 
implementation of sEMG decomposition algorithms for mea-
suring motor unit firings. Real-time extraction of motor unit 
firings from the sEMG signal during voluntary movements 
provides responsive, proportional signals that are based on 
the natural physiological increments of force and movement. 
Prior attempts at real-time decomposition by other groups 
(Glaser et al 2013) in the field required approximately 600 ms 
of processing time for every 1 s of data to track a limited sub-
set of up to four active motor units, during constrained sta-
tionary contractions. In contrast, our MU Drive algorithms 
measured the firing behavior of typically 20–30 motor units 
during non-stationary voluntary movements with only 5 ms 
delay for every 20 ms segment of data. The improved yield 
and computational processing of MU Drive provides respon-
sive, data rich signal sources, which can be further integrated 
into existing prosthetic controllers or next-generation biome-
chanical control models while maintaining a responsive per-
formance for prosthesis users.

MU Drive outputs biomechanically informed signals.  By 
extracting motor unit firing times and translating them into bio-
mechanically informed signals using motor unit force twitch 
estimates, MU Drive is able to provide a smooth, proportional 

signal that approximates the physiological changes in joint 
position produced by the natural force production of a muscle. 
This differs from conventional myoelectric approaches that 
use amplitude-based window filtering to infer, but not directly 
measure, how the electrical activation translates to mechani-
cal output from a muscle. Consequently, current myoelectric 
prostheses are subject to the sources of variability inherent to 
the sEMG signal amplitude including noise in the signal base-
line, the spatial filtering of MUAPs as the distances between 
motor units and recording electrodes change during voluntary 
contractions, among other factors (Basmajian and De Luca 
1985, De Luca 1997). Because the biomechanically informed 
MU Drive output is based on discrete motor unit firings that 
are robust to these sources of electrical noise, MU Drive is 
able to better replicate natural physiological movements when 
compared to kinematic measurements from the intact limb.

Conclusion

MU Drive shows, for the first-time, that it is possible to mea-
sure, in real-time, the firings of individual motor units from a 
residual limb without sensor implantation on a nerve or within 
a residual muscle. The detected firing information can be con-
volved with mathematically derived motor unit force twitches 
to create biomechanically informed signals that promise more 
responsive, smooth, proportional control that better replicates 
the movement of intact limbs. By establishing this proof-of-
concept, this study demonstrates the significant advantages 
of MU Drive over traditional amplitude-based myoelectric 
approaches and provides the foundation for motor-unit-based 
prosthetic controllers that can leverage multiple MU Drive 
control signals across muscle synergies to enable multi-
degree-of-freedom upper-limb prosthetic control. These 
technological advancements signify a paradigm shift in the 
development of MU Drive neural interfaces to meet imme-
diate health needs in the field of prosthetics and advance 
human-machine interfaces more broadly for exoskeleton con-
trol, assistive devices, and robotic rehabilitation.

Acknowledgments

We are grateful to Matt Albuquerque, CPO, and the staff at 
Next Step Bionics & Prosthetics, Inc. for useful discussion in 
planning the experiments and facilitating recruitment and data 
collection. Additional support in identifying appropriate sub-
jects for this study was provided by Greig Martino, CP from 
United Prosthetics, Inc., the Amputee Coalition, and Dennis 
Amtower, CPO. We are grateful to all the subjects for their 
voluntary participation in the experiments, and for those with 
limb loss we thank them for the valuable insight they provided 
in guiding our research. The authors have confirmed that any 
identifiable participants in this study have given their consent 
for publication.

Research reported in this paper was supported in part by 
the De Luca Foundation, Delsys Inc., and by a grant from the 
National Institute of Neurological Disorders and Stroke under 
award number R43NS093651 and the Eunice Kennedy Shriver 

J. Neural Eng. 16 (2019) 016012



M D Twardowski et al

13

National Institute of Child Health and Human Development 
under award number R44HD094626 of the National Institutes 
of Health.

Appendix A. Transformation of motor unit firings 
into biomechanically informed signals

To estimate the mechanical contribution of each active motor 
unit we adapted an existing computational model of empiri-
cally-derived motor unit force twitches computed as a func-
tion of time, the firing properties of each motor unit, and the 
motor unit firing history (Raikova and Aladjov 2002, Contessa 
and De Luca 2013). For each motor unit i, we modeled the 
force twitch profile fi (t) using three force twitch parameters 
as a function of motor unit size (figure 2(B)): amplitude (Pi) 
defined as the peak value, rise time (Tr,i) defined as the time 
from the beginning of the force twitch to the peak value, and 
half relaxation time (Thr,i) defined as the time from the peak 
value to a point where the amplitude is one-half of the peak 
value

fi (t) = ptme−kt� (A1)

where p, m and k are obtained using:

p = Pi

Å
e

Tr,i

ãkTr,i

� (A2)

m = kTr,i� (A3)

k =
ln (2)

Thr,i − Tr,i ln
Ä

1 + Thr,i
Tr,i

ä .� (A4)

We tailored a set of generalized force twitch parameters from 
a range of empirical and simulated values listed in Contessa 
and De Luca (2013) using a genetic algorithm for physi-
ologically realizable parametric optimization. These values 
resulted in P  ranging from 1 to 1.5, Tr ranging from 70 to 
90 ms, and Thr ranging from 40 to 130 ms. In general, smaller 
motor units were modeled with longer rise times, longer half 
relaxation time, and lower peak force values than larger motor 
units. Gain factors gij ( f nij) were calculated to attenuate 
sequential force twitches based on firing history of each motor 
unit, where IPIij  indicates the inter-pulse interval between the 
jth and jth  −  1 firings of the ith motor unit, using the force 
twitch parameters of each motor unit and values r = 0.85 and 
c = 2.13 determined by Contessa and De Luca (2013)

gij ( f nij) =




1, 0 < f nij � 0.4
0.4

f nij(1−r)

[
1 − re

0.4−f nij
c

]
, f nij > 0.4� (A5)

where f nij  is the normalized instantaneous firing rate of the 
jth firing of the ith motor unit found by:

f nij =
Tr,i

IPIij
.� (A6)

Gain adjusted force twitch profiles were convolved with the 
firing instances of each motor unit from each window segment 

and summated across all active motor units to obtain a signal 
representation of the MU Drive from each muscle.

Appendix B. The trade-offs of low-pass filtering 
myoelectric control signals

To characterize the performance of amplitude-based myoelec-
tric signals, we investigated the use of alternate low-pass fil-
tering functions of the sEMG data. Three separate low-pass 
filters were tested: (1) a rectangular window—similar to that 
used in standard MAV calculations, (2) a Hanning window—to 
improve the low-pass filtering characteristics, and (3) an asym-
metrical window—to test the low-pass filtering characteristics 
similar to that of a motor unit force twitch. Each window was 
normalized by its area to achieve DC unity gain and convolved 
with the rectified sEMG signal. A range of low-pass cutoff fre-
quencies were tested for each filter, corresponding to window 
lengths ranging from 25 to 500 ms. Examples of the time 
and frequency domain representations of a 25 ms and 500 ms 
window for each filter is shown in figure B1 ((A)–(F) and (G)–
(L) respectively) and examples of each filtered signals are also 
shown (figures B1(M)–(R)). Changes in the smoothness and 
error metrics for different window filter lengths were analyzed 
as a function of the latency measured by finding the point of 
maximum cross correlation of each filtered amplitude-based 
myoelectric signal with respect to the MU Drive signals. (Note 
that negative latencies indicate the filtered signal leads MU 
Drive while positive latencies indicate that the filtered signal 
lags behind MU Drive.) The resulting data was compiled into 
a single group from all control subjects and all muscles tested.

Results indicated that the rectangular window, similar to 
that used in standard MAV calculations, achieved a median 
error of 40.0% (figure B1(S)), a median smoothness of  −31.2 
(figure B1(V)) and a median latency of 117 ms with respect 
to MU Drive. When improving the low-pass filtering char-
acteristics using a Hanning window, the median smooth-
ness improved to  −2.8 (figure B1(W)) with a similar median 
latency of 118 ms, but with an increase of the median error 
to 47.6% (figure B1(T)). By skewing the window asym-
metrically to approximate the filtering characteristics of a 
motor unit force twitch, the median latency with respect to 
MU Drive was decreased to 0 ms, with a smoothness of  −4.3 
(figure B1(X)) but with an increased median error of 50.8% 
(figure B1(U)).

These results demonstrate the inherent trade-off between 
smoothness, latency and error of sEMG amplitude-based 
methods of myoelectric control. Specifically, the desired per-
formance of smoothness and error of the filtered sEMG signal 
is adversely related to the signal latency, with longer dura-
tion windows providing improved smoothness and error at the 
expense of the latency of the response. While changing the 
window function can improve the smoothness and latency, 
the resulting filtered signal has increased error with respect to 
actual kinematics of the intact limb. Because MU Drive is not 
subjected to the trade-offs inherent to filtered amplitude-based 
myoelectric signals, it is able to consistently maintain smooth, 
responsive control signals that better replicate the movement 
of the intact limb.
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Figure B1.  Performance of amplitude-based myoelectric signals low-pass filtered using a rectangular window (S) and (V), a Hanning 
window (T) and (W), and an asymmetric window (U) and (X) as a function of median latency with respect to MU Drive (black), measured 
from the finger extensors, the finger flexors, the forearm supinator and the forearm pronator of all control subjects collectively, during 
finger extension/flexion, forearm supination/pronation. The impulse response of a 25 ms window filter and a 500 ms window filter (A)–(F) 
is shown, along with their respective frequency responses (G)–(L) and examples of filtered signals (M)–(R). The performance data from 
MU Drive signals at 25 ms delay are plotted as median values ((S)–(X); black circle) plus and minus the 25th and 75th percentiles ((S)–(X); 
black error bars). The median error and median smoothness of the amplitude-based signals are represented by the solid traces, while the 
shaded regions represent the 25th to 75th percentiles. All low-pass filtering techniques demonstrated an inherent trade-off: increasing the 
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