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arm (1) DOFs with similar task-relevance are synergisti-
cally coordinated; and (2) such synergy breaks when a task-
relevant DOF is close to its joint limit without necessarily 
reaching the limit. This study provides a motion analysis 
method to reduce the control complexity for reach-to-grasp 
tasks, and suggests using dynamic coupling to coordinate 
the hand and arm of upper-limb exoskeletons.

Keywords  Arm motion control · Task-relevance · Upper 
limb exoskeleton · Human-like robot

Introduction

Wearable robots (e.g., upper-limb exoskeletons for stroke 
rehabilitation) must render natural arm postures kinemati-
cally compatible with their human operators. Rendering 
such postures is also preferred for humanoid robots, since 
human-like motions are more predictable and acceptable to 
a human partner and, therefore, facilitate smooth and com-
fortable human–robot interactions (Glasauer et  al. 2010; 
Kupferberg et al. 2011). Previous research has studied how 
to render natural arm postures for reaching motions (Scia-
vicco 1987, 1988; Asada and Granito 1985; Yoshikawa 
1985, 1990; Kim et al. 2011; Soechting et al. 1995; Kang 
et al. 2005; Hogan 1984; Flash and Hogan 1985; Uno and 
Suzuki 1989; Nakano et  al. 1999; Milutinovic and Rosen 
2014). In this paper, we further investigate posture differ-
ences between reaching and reach-to-grasp motions, to 
reveal the underlying arm control strategy when grasping 
is involved.

Human arm has kinematic redundancy which allows dif-
ferent arm postures given a specific hand position and ori-
entation. This kinematic redundancy enables the rotation of 
the elbow position around the axis connecting the centers 

Abstract  Reach-to-grasp arm postures differ from those 
in pure reaching because they are affected by grasp posi-
tion/orientation, rather than simple transport to a posi-
tion during a reaching motion. This paper investigates this 
difference via an analysis of experimental   data collected 
on reaching and reach-to-grasp motions. A seven-degree-
of-freedom (DOFs) kinematic arm model with the swivel 
angle is used for the motion analysis. Compared to a widely 
used anatomical arm model, this model distinguishes 
clearly the four grasping-relevant DOFs (GR-DOFs) that 
are affected by positions and orientations of the objects to 
be grasped. These four GR-DOFs include the swivel angle 
that measures the elbow rotation about the shoulder–wrist 
axis, and three wrist joint angles. For each GR-DOF, we 
quantify position vs orientation task-relevance bias that 
measures how much the DOF is affected by the grasping 
position vs orientation. The swivel angle and forearm supi-
nation have similar bias, and the analysis of their motion 
suggests two hypotheses regarding the synergistic coor-
dination of the macro- and micro-structures of the human 
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of the shoulder and the wrist joints, such that the motions 
of reaching to grasp an object have very different arm pos-
tures compared to the reaching motions that simply trans-
port the hand to the same position. When reaching to grasp 
an object, arm postures are affected by both the grasping 
position and orientation, not only at the moment of grasp, 
but also as the hand approaches the object. The motor con-
trol strategies that have successfully explained the arm pos-
tures in reaching motions cannot explain or predict such 
posture differences. For instance, Donders’ law (Haustein 
1989), which is valid for reaching motions, is not obeyed 
by reach-to-grasp arm motions (Tillery et  al. 1995; Soec-
hting and Flanders 1993). The jerk minimization strategy, 
which can render the hand paths of reach-to-grasp motions, 
cannot address the arm posture differences between reach-
ing and reach-to-grasp motions (Smeets and Brenner 1999).

Previous works have studied how grasping orientation 
causes reach-to-grasp motions to deviate from pure reach-
ing motions. When approaching a target, the arm move-
ment directs the thumb to match the hand orientation with 
the target to grasp (Haggard and Wing 2001; Smeets and 
Brenner 1999). The rotation of the arm plane (formed by 
the positions of the shoulder, elbow and wrist) about the 
shoulder–wrist axis is coordinated with the supination 
of the forearm, to achieve the desired hand orientation. 
If the target orientation is perturbed when the hand is 
still approaching to the target, the hand path will remain 
approximately the same, while the hand orientation will be 
gradually turned from the one that matches the original tar-
get orientation to the one that matches the new target ori-
entation (Fan and Tillery 2006). The smooth adaption to 
the perturbed target orientation, while maintaining the hand 
path, implies that a reach-to-grasp motion may be a super-
position of the transportation (reaching) and manipulation 
(grasping) components, in which case the arm posture of 
a reach-to-grasp motion can be constructed by adding a 
grasping component to the arm posture of a pure reaching 
motion.

In this paper, we focus on the arm posture difference 
between matched reaching and reach-to-grasp motions, 
which cannot be addressed by the methods that can accu-
rately predict arm postures in pure reaching motions 
(Sciavicco 1987, 1988; Asada and Granito 1985; Yoshi-
kawa 1985, 1990; Kim et al. 2011; Soechting et al. 1995; 
Kang et  al. 2005; Hogan 1984; Flash and Hogan 1985; 
Uno and Suzuki 1989; Nakano et  al. 1999). We collected 
arm motion data in a three-dimensional (3D) workspace 
from nine participants. In a typical motion trial, a partici-
pant started with pointing at a common start position and 
ended with either pointing to a target or grasping the han-
dle attached to the target in a specific orientation. We found 
that the hand paths of matched reaching and reach-to-grasp 
motions were highly similar, which indicates that not all the 

DOFs of the human arm are affected by grasping an object. 
In the arm motion analysis, we used an arm model which 
can directly measure the rotation of the arm plane (i.e., the 
swivel angle), to identify the DOFs that behave differently 
in matched reaching and reach-to-grasp motions. We found 
that among the seven DOFs of the human arm, the swivel 
angle and three wrist angles contributed significantly to the 
arm posture differences. We, thus, consider them as highly 
grasping-relevant degrees of freedom (GR-DOFs) and 
focus on their coordination in reach-to-grasp motions.

Our study on the coordination of the GR-DOFs intends 
to reveal the general strategy that human arm regulates 
its kinematic redundancy, and to inspire the control of 
arm-compatible/arm-like robotic manipulators. Generally 
speaking, controlling a (highly) redundant robotic system 
is challenging because the computational cost increases 
exponentially with the dimension of the problem. One way 
to overcome the curse of dimensionality, is to distinguish 
redundant inputs by their task-relevance, and emphasize 
the regulation of the task-relevant ones while leaving the 
task-irrelevant ones uncontrolled. In a sit-to-stand task, 
human motor system could distinguish controlled from the 
uncontrolled manifolds, and impose more control effort on 
the center of mass in the sagittal plane than on the hori-
zontal head position and the position of the hand (Scholz 
and Schoner 1999). For the context of a (robotic) system, 
the variances of a system’s output are different in response 
to the same amount of perturbations to the system inputs 
in the task-relevant and -irrelevant directions (Todorov and 
Jordan 2002; Todorov 2004). Given the redundancy in con-
trol variables, the human motor system prefers to minimize 
intervention, by allowing a tolerable level of the variability 
of task-irrelevant variables and tightly controlling the task-
relevant variables. Other research suggested that synergis-
tic coordination of DOFs is a preferred method of control 
given the redundancy in the human motor system (Latash 
2008). If the elements of a system are synergistically coor-
dinated, the overall performance of the system will be sta-
ble, and will be higher than if all of elements work indepen-
dently. In a synergistic coordination, the DOFs are coupled 
and, thus, act almost as a single unit (Turvey 2007; San-
tello et al. 2013). For instance, the synergistic coupling of 
the major finger joints, reflected by their high correlations, 
reduces the control complexity (Santello et al. 1998; Mason 
et  al. 2001; Ingram et  al. 2008). Studies on the arm joint 
coordination found that for arm motions in free space, the 
swivel angle deviates more from its posture in pure reach-
ing motions as the wrist angles approach their joint limits. 
However, the weighting coefficients from the regression 
of the swivel angle with respect to the wrist angles varied 
largely across participants, and cannot address the arm pos-
tures’ changes in structured arm motions with more rigid 
task constraints (Kim 2014).
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In our arm motion analysis, we found that redundant 
DOFs were synergistically coordinated by their similar-
ity in task-relevance. A method for quantifying the task-
relevance was first proposed in our previous work (Li 
et  al. 2014), for measuring the task-relevance of the arm 
joints. In other research, the task-relevance of input vari-
ables was quantified and compared using their variances 
(Todorov and Jordan 2002; Todorov 2004; Latash 2008). 
Such comparison ignores that input variables can differ in 
ranges and/or units, and their variances cannot be com-
pared directly. Therefore, we propose to normalize the vari-
ance of a variable with respect to its value range (referred 
as the ratio of active motion range, i.e., R-AMR value). For 
reach-to-grasp motions, the R-ARM values of the four GR-
DOFs indicate their task-relevance bias, which means if 
they are more sensitive to changes in grasping position or 
orientation. Our statistical analysis shows that among the 
GR-DOFs, the radial deviation is most sensitive to changes 
in target position, while forearm supination is most affected 
by target orientation. The swivel angle and forearm supina-
tion are both strongly biased towards grasping orientation 
in task-relevance and, therefore, are synergistically coordi-
nated. Their synergy breaks when the forearm supination 
approaches its joint limit, for which their coupling should 
be modeled differently when they are in and out of synergy.

Experiment

We collected data of pure reaching and reach-to-grasp 
motions in a three-dimensional workspace from nine par-
ticipants (three males and six females, six right-handed and 
three left-handed, of average age 22.9 ± 3.2). During the 
experiment, the participants sat in a chair with a straight 
back. The chair was placed so that the participant could 
comfortably point to each target with the elbow naturally 
flexed. As shown in  Fig.  1a, the workspace was adjusted 
so that the center of the workspace was always aligned 
with the participant’s right shoulder. The participant’s right 
arm was free to move, while the participant’s body was set 
against the chair back to minimize shoulder displacement. 
Passive reflective markers were attached to the torso and 
right arm of the participant, as shown in Fig. 1b. A Vicon 
motion capture system recorded the participant’s motions at 
the rate of 100 Hz. Each motion trial was recorded individ-
ually, from 5–10 ms before the experimenter verbally gave 
a “start” command to the participant, to 20–30 ms after 
the subject’s hand stabilized in pointing to or grasping the 
target.

The participants were instructed to use their right arms 
to conduct four sessions of reach-to-grasp motions and 
one session of reaching motions. Each session consisted of 
the motions from the common start point to eight different 

targets (arranged as shown in Fig. 1c), with five repetitions. 
In total, each participant completed 5 × 8 × 5 = 200 trials. 
The participants were asked to perform all the motions at 
the speed of daily life activities and at a comfortable pace. 
In reaching trials, the participants pointed from the start 
point to the instructed target, with their index fingers in line 
with their forearms. In reach-to-grasp trials, the participants 
started by pointing to the start point and then reached to 
grasp the handle at the instructed target with a firm power 
grasp. The target handles were at orientations of 0◦, 45◦, 
90◦, and 135◦ with respect to the direction of gravity in the 
four reach-to-grasp sessions, respectively (see Fig. 1d). The 
hands of the participants traversed no more than 1.5 m in 
our experiments. A typical reaching/reach-to-grasp motion 
took 0.6–1.2 s. The time interval between two subsequent 
trials was about 20–30 s. Typically, it took a subject 1–2 h 
to complete the experiment. To avoid fatigue, the partici-
pants rested after each session and at their requests, during 
which their arms could rest on the chair arms. All our par-
ticipants completed the five sessions within 2 h, including 
time for resting.

(a) (b)

(c) (d)

Fig. 1   Experimental setup: a the right shoulder of the participant 
is aligned with the center of the spherical workspace; b markers are 
attached to the right arm and the torso for position tracking; c eight 
targets are involved in the reach-to-grasp experiment; d in the four 
reach-to-grasp sessions, the handles are oriented at 0◦, 45◦, 90◦, 135◦ 
in the plane faced by the participant, with respect to the direction of 
gravity
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Note that in both reaching and reach-to-grasp motions, 
unnecessary wrist motions were intentionally reduced by 
natural wrist muscle tension resulting from the hand ges-
tures that our experiment protocol required. In reaching 
sessions, participants were asked to point to the targets with 
their index fingers extended and their other fingers flexed 
into a fist, which naturally resulted in wrist muscle tension 
and, thus, kept the wrist straight. Similarly, in the reach-to-
grasp sessions, a participant started with the same point-
ing gesture and then grasped the target handle with a firm 
power grasp, both of which also prevented the subject’s 
wrist from being floppy. Since unnecessary wrist motions 
were minimized, the wrist angle differences between 
matched reaching and reach-to-grasp motions could mostly 
be attributed to (1) the natural opening and closing of the 
hand when grasping a handle, and (2) matching the hand 
orientation to the target handle orientation.

Motion analysis methodology

Kinematic modeling of the human arm

Traditionally, the analysis of joint coordination in reach-
to-grasp motions uses a kinematic model, which is based 
on the anatomical joints of the human arm. As shown 
in  Fig.  2a, the seven DOFs are: shoulder abduction �1, 
shoulder flexion �2, shoulder rotation �3, elbow flexion �4, 
forearm supination �5, wrist flexion �6 and radial deviation 
�7.

The swivel angle model (see  Fig.  2b) we use in our 
motion analysis also has seven DOFs: three for the wrist 
position, three for the wrist orientation, and one for the 
swivel angle. The swivel angle measures the rotation of the 
elbow position about the shoulder–wrist axis, given a fixed 
hand position and orientation [for the details of the algo-
rithm to compute the swivel angle, see Li et  al. (2014)]. 

Using the swivel-angle arm model, grasping a target han-
dle instead of pointing to it affects the four DOFs (i.e., 
three wrist joints and the swivel angle) that are relevant 
to the control of arm postures, but not the three DOFs that 
account for the hand position.

Using the swivel angle can simplify the motion analysis 
and control. In swivel-angle arm model, the changes in arm 
posture only affect one DOF (i.e., the swivel angle), while 
in the anatomical arm model, the change of arm posture 
will affect all the seven DOFs. Note that the swivel-angle 
arm model is for motion analysis but not what the human 
motor system uses for motion control. It can be used to ana-
lyze general arm motions in 3D workspace, including, but 
not limited to, reach-to-grasp and reaching motions.

Compared to a matching reaching motion, a reach-to-
grasp motion has a similar hand path, but significantly dif-
ferent arm posture. As shown in  Fig.  3, the swivel-angle 
arm model distinguishes the three DOFs affected by hand 
position from the four GR-DOFs. In the following sections, 
we will use the swivel-angle arm model to reduce the com-
plexity of motion control analyses, and focus on the four 
GR-DOFs, i.e., the swivel angle and the three wrist joint 
angles.

Data normalization and component separation

We computed the trajectories of the seven arm joints from 
the recorded marker trajectories. For the four GR-DOFs, 
the trajectories were normalized relative to the percentage 
of the path length traversed by the hand (instead of time) 
and averaged based on five repetitions of the same motion. 
We computed the grasping-related differences between 
matched reaching and reach-to-grasp motions, and referred 
to them as the grasping components of the reach-to-grasp 
motions. The reaching and grasping components were sep-
arated for four GR-DOFs: the swivel angle and the three 
wrist angles.

(a) (b)

Fig. 2   Two kinematic models for the arm motion analysis [(rendered 
from Li et al. (2014)] Fig. 3   Comparison between the two kinematic arm models
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Figure 4 shows an example of the data normalization of 
the swivel angle in the trials collected from a representative 
participant. In Fig. 4a, swivel angle trajectories to a single 
target are normalized with respect to hand path length. The 
averaged trajectory of five repetitions of each motion is 
shown in  Fig.  4b. With reference to the reaching motion, 
each reach-to-grasp motion to the same target is separated 
into a reaching component (Fig. 4c) and a grasping compo-
nent (Fig. 4d), which is computed as the difference between 
the reaching motion and the reach-to-grasp motion to the 
same target in a specific orientation.

Quantification of task‑relevance

The ratio of the active motion range (R-AMR) was pro-
posed to quantify the task-relevance of each GR-DOF 
(Li et al. 2014). At a specific percentage of the hand path 
length, we computed the standard deviation of the value 
of each GR-DOF across a set of motions. The R-AMR at 
this percentage of the hand path is the ratio between this 
standard deviation and a half of the motion range of the 
GR-DOF. As shown in Fig. 5, the R-AMR can be computed 
across different motion sets, including motions to targets 
at a particular position or in a particular orientation. For a 
motion set, a large R-AMR value indicates that that particu-
lar DOF is sensitive to the task parameters that vary within 

that motion set. For example, the R-AMR of a DOF across 
reach-to-grasp motions towards a particular target posi-
tion with different orientations indicates the sensitivity of 
that DOF to target orientation. Likewise, the R-AMR of a 
DOF across motions to different targets that share the same 

Fig. 4   A representative exam-
ple of the data normalization 
[rendered from Li et al. (2014)]. 
a The swivel angle trajectories 
are normalized with respect to 
the percentage of path length. 
b The averaged trajectories are 
shown with their time-varying 
standard deviation. With refer-
ence to the averaged trajectory 
of the reaching motion, the 
reach-to-grasp motions can be 
separated into c the reaching 
component and d the grasping 
component (a) (b)

(c) (d)

Fig. 5   R-AMR values are computed over a set of motions as the ratio 
between the standard deviation of the joint angles and half of the 
joint’s motion range, to measure task-relevance
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orientation indicates the sensitivity to target position. These 
across-target-orientation and across-target-position R-AMR 
values were computed and multiple comparisons were 
applied to analyze the task-relevance of each GR-DOF.

Figure  6 illustrates the computation of R-AMR values 
with two examples. In Example 1 of  Fig.  6, we compute 
R-AMR values for the reaching component at swivel angle 
� at different stages of the motion, measured by the per-
centage of hand path length. We consider a set of motions 
(Sm) from a single participant, defined as:

In  Expression  (1), “targ” refers to target position (cho-
sen from 1 to 8); “type” refers to the motion (component) 
type and has the options of “R” for pure reaching motions 
(which are also reaching components), “G” for grasping 
components, and “R2G” for reach-to-grasp motions. For 
all reaching motions, the grasping orientation parameter 
is not available (N/A). Given the set of motions, we first 
compute the standard deviation of the swivel angle values 
in reaching motions at 20% of the path length, denoted by 
�20%,m(targ,type), for each motion m(targ, type) ∈ Sm. With 
this standard deviation, denoted by ��20%,Sm

, we compute 
the R-AMR value at 20% of the motion for this motion set, 
denoted by R-AMR20% as:

 where R� is the motion range of swivel angle. The R-AMR 
values for other percentages (i.e., 60, 100%) can be com-
puted similarly.

In Example 2 of  Fig.  6, we compute the R-AMR100% 
of the grasping components of swivel angle, for motions 
with different grasping orientations. When computing 

(1)
Sm = {m(targ, type)|targ = 1⋯ 8, ort = N∕A, type = R,G, R2G}.

(2)R-AMR20% =
��20%,Sm

1

2
R�,

,

R-AMR100% for grasping at 135◦, we consider the set of 
motions from a single participant, which is:

In Eq.  (3), “ort” refers to target orientation, which can be 
0◦, 45◦, 90◦, and 135◦. Given the set of motions, the stand-
ard deviation is computed for the swivel angle values of the 
grasping component at 100% of the path length, denoted by 
�100%,m(targ,ort,type, for each motion m(targ, ort, type) ∈ Sm. 
This standard deviation, denoted by ��100%,Sm

, is further nor-
malized with respect to the half of the swivel angle motion 
range such that for this set of motions Sm,

The significance of task‑relevance measurement

In biological systems, motor synergy is found among 
motor control variables coordinated towards the same 
goal (e.g., fingers’ contact forces in grasping). This syn-
ergy is task-dependent and can be validated if the sum of 
variances of the input variables is larger than the variance 
of the output variable (Latash 2008, 2010). For biologi-
cal systems which are usually highly redundant, elimi-
nating the control variables with no task-relevance can 
simplify the motion and control analysis. Previous stud-
ies on motor synergy measured and compared the task-
relevance of controlled variables using their variance 
(Todorov 2004; Latash 2008). However, for controlled 
variables with largely different value ranges and/or units, 
it is not valid to compare their task-relevance using their 
variance. Therefore, our proposed method normalizes the 
task-relevance measurement, so that task-relevance can 
be compared regardless of the variables’ value ranges and 
units.

For a task with multiple goals, comparing a variable’s 
task-relevance to different goals can identify its bias in 
task-relevance. For instance, the task of supporting an 
object with two hands has only one goal, so that the two 
controlled variables, i.e., the supporting forces from two 
arms, do not have bias in task-relevance. On the other 
hand, the task of reaching to grasp an object has two 
goals, i.e., matching the hand orientation and position to 
those of the target. By computing the task-relevance to 
each goal, we can identify the joints whose angles vary 
more with target orientation(position). These joints are 
considered to be biased in task-relevance towards target 
orientation (position). Joints of similar task-relevance 
bias are more likely to form synergistic coordination.

(3)
Sm = {m(targ, ort, type)| targ = 1⋯ 8, ort = 135◦;type = G}.

(4)R-AMR100% =
��100%,Sm

1

2
R�.

Fig. 6   Examples: the R-AMR values computed for the reaching and 
grasping components, respectively. Left the R-AMR values during the 
motion are denoted by their percentages. Right an example of R-AMR 
values computed for motions to different target positions but of the 
same grasping orientation
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Synergy and correlation analysis

In the presence of redundant DOFs, their control complex-
ity can be reduced by leaving the task-irrelevant DOFs 
uncontrolled. Furthermore, redundant DOFs can be syner-
gistically coupled to improve overall motion performance. 
In the task of reaching to grasp a cylindrical object with 
a power grasp, human arm has two redundant DOFs. The 
arm kinematics has seven DOFs, while the grasping task 
only strictly constrains five DOFs: three for the hand posi-
tion and two for grasping orientation. The arm can rotate 
freely about the shoulder–wrist axis (measured by the 
swivel angle), and the hand can rotate about the cylindrical 
target’s central axis (corresponding to the motion at wrist 
flexion). By analyzing the the task-relevance of the four 
GR-DOFs, we found that in reach-to-grasp motion, (1) the 
DOFs with low task-relevance are uncontrolled and main-
tained close to their neutral positions with a small variance, 
and (2) the DOFs with high task-relevance and similar bias 
are synergistically coupled, which can be verified using the 
synergy and correlation analysis.

The synergy analysis compares the sum of the inputs’ 
variances and the output variance (Latash 2008). Given a 
system with inputs xi (i = 1,… , n) and output y, if the n 
inputs are in synergy, then the standard deviations of the 
inputs (�xi for xi) and output (�y) should obey:

Synergy analysis can identify whether the coordination 
of input variables results in system performance improve-
ment. On the other hand, correlation coefficient (r) can be 
used to identify if several input variables are controlled in 
coupling (Ingram et al. 2008; Liu and Xiong 2014). A pair 
of joints are coupled if their joint variables have strong cor-
relation ( |r| ∈ [0.5, 1]) (Cohen 1988). In this study, using 
both synergy and correlation analyses, we find that the 
swivel angle and forearm supination are synergistically 
coupled. We propose to apply a similar method to control 
the arm–hand coordination of arm-compatible robots (e.g. 
upper-limb exoskeletons for stroke rehabilitations), as well 
as the coordination of macro- and micro-structures of arm-
like manipulators.

Results

This section presents results from the motion analysis of 
the arm posture difference between pure reaching and 
reach-to-grasp motions. Prior to computing the R-AMR 
values for each GR-DOF as explained above, the data 

(5)𝜎y
2 <

n∑

i=1

𝜎xi
2.

collected on reach-to-grasp motions were normalized and 
separated into reaching and grasping components. The 
correlation between matched reaching and reach-to-grasp 
motions at each DOF demonstrates their similarity in hand 
path and the low grasping-relevance of the three DOFs for 
wrist positions. As a result, we focus on the four GR-DOFs, 
which are responsible for the arm posture difference. Com-
ponent separation is applied to the reach-to-grasp motions 
at each GR-DOF [for details, refer to  Li et  al. (2014)]. 
We further computed the R-AMR values for reaching and 
grasping components to compare the task-relevance of dif-
ferent GR-DOFs during the motion and particularly at the 
end of the motion. Among the four GR-DOFs, the swivel 
angle and forearm supination collaboratively adjust the 
hand to match the target handle orientation that changes 
on the plane that the participants are facing to. Given their 
similar task-relevance, we further analyze their synergy 
and investigate their coordination for controlling the corre-
sponding joints of an upper-limb exoskeleton.

Hand path similarity between reaching 
and reach‑to‑grasp motions

Here, we compare the corresponding reaching and reach-
to-grasp motions to show their similarity in hand path. We 
first compute correlations of each reach-to-grasp motion 
to its paired reaching motion, and then compare the statis-
tics among the seven DOFs in the swivel-angle arm model. 
In Fig. 7a, DOFs 1–3 correspond to the wrist position (PX ,

PY, PZ). DOF 4 refers to the swivel angle. DOFs   5-7 are 
the three wrist angles �5, �6, and �7, respectively. Among 
DOFs 1–3, the correlations are close to 1 with very small 
variations in the X and Z dimensions (i.e., DOF 1 and 3, 
respectively) , while in the Y-dimension (DOF 2), the cor-
relation is relatively low, but still much higher than in the 
four GR-DOFs (DOFs 4–7). This similarity in hand path is 
consistent among the participants. As presented in Table 1, 
the four-way ANOVA analysis found significant differences 
between matched reaching and reach-to-grasping motions 
for the factors of target position, motion session (pointing 
to or grasping a target posed in different orientations), and 
DOFs in the arm models, but not among the participants.

In   Figs.  8 and 9, we depict motions of a participant 
with their starting point and target handles. In the X, Y, 
and Z dimensions, we plotted each reach-to-grasp motion 

Table 1   Four-way ANOVA analysis compared matched reaching and 
reach-to-grasp motions. Significant differences in arm configurations 
were found for the factor of target position, motion session, DOF in 
the swivel arm model, but not among the participants

Target position Motion session DOF Participant

p value 0.0000 0.0000 0.0000 0.2454
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against its matched reaching motion, using a solid dot to 
indicate the beginning of a motion. As shown in  Figs.  8 
and 9, matched reaching and reach-to-grasp motions in the 
Y-dimension are highly collinear until the hand is close 
enough to grasp a target. As a participant started to grasp 
the blue handles, the wrist position increased in the positive 
Y direction. The Y-dimension has a larger dissimilarity in 
hand path than the X- and Z-dimensions. This is because 
at the end of a reaching trial, the participant pointed to 
one end of the target handle (shown as yellow dots). The 
extended index finger kept the wrist position further away 
from the target. Figure  7b further shows the effect of 
motion distance on the linearity of matching motion plots, 
measured by coefficient of determination R2. The matched 
reaching and reach-to-grasp motions are highly collinear 
(R2 > 0.85) if motion distance in this dimension is more 
than about 10 cm. As shown in   Figs. 8 and 9, compared 
to the motions to other targets, motions ending at Targets 1 
and 8 have smaller motion distances in the X-dimension, 
and therefore, their matching plots in the X-dimension 
have worse linearity. To sum up, the relatively low correla-
tion in Y-dimension is due to the wrist position difference 
introduced by the extended index finger with respect to the 
small motion distances in Y-dimension.

The reaching and reach-to-grasp motions requested in 
our experiments are neither complex nor difficult. Such 

motions are widely observed in daily life and were per-
formed by our subjects effortlessly without any training. 
Here, we found no significant difference among motions 
performed by the left-handed and right-handed subjects 
using their right arms. We randomly picked up three right-
handed subjects and compared their motions with the 
motions of another three right-handed subjects, and with 
the three left-handed subjects. As shown in  Fig.  7c, the 
correlation between matching motions of the R–R (right-
handed V.S. right-handed) group is not significantly differ-
ent from that of the R–L (right-handed V.S. left-handed) 
group at any DOF.

The task‑relevance during the motions

The statistical analysis of the R-AMR values during reach-
to-grasp motions demonstrates that different GR-DOFs are 
not used to the same extent. Although human arm starts 
to adjust its posture to match the target orientation at an 
early motion stage, the wrist joint, which is responsible for 
the final adjustment, is not actively used until the hand is 
close to the target. As the use of a GR-DOF increases, the 
joint angle variance (due to the variance in target position 
and orientation) increases, reflected by the increase in its 
R-AMR value. To investigate the task-relevance of a GR-
DOF during the motion, R-AMR values were computed 

Fig. 7   a The three DOFs for 
wrist position (DOFs 1–3) 
demonstrate a high correlation 
between matched reaching and 
reach-to-grasp motions, which 
indicates their similarity in 
hand path. b Hand paths are 
more similar in a dimension 
if the motion distance in this 
dimension is large. The hand 
paths in Y-dimension are less 
similar among the three wrist 
DOFs, due to the wrist position 
differences introduced by the 
extended index finger pointing 
to the targets. c Comparison 
of motion similarity between 
left-handed and right-handed 
subjects

(a) (b)

(c)
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at each 0.5% of the hand path length. For a reaching com-
ponent, R-AMR values are computed based on the stand-
ard deviations across target positions, while for a grasping 
component, R-AMR values are computed based on the 
standard deviation across target position and target orienta-
tion, respectively.

Figure  10a shows the mean R-AMR values of the 
reaching component during the motion. The mean 
R-AMR of the swivel angle quickly becomes much larger 
than that of the other DOFs. Figure  10 plots the mean 
(across participants) of the across-target-orientation 
R-AMR values against the mean of the across-target-posi-
tion R-AMR values. Among the four profiles in Fig. 10, 
the slopes of the swivel angle and forearm supination are 

greater than one, which implies that the swivel angle and 
forearm supination are more sensitive to changes in target 
orientation than to changes in target position. The across-
target-orientation R-AMR increases roughly linearly with 
the across-target-position R-AMR, except for the profile 
for the wrist flexion. The turning in the profile for the 
wrist flexion is due to the natural opening and closing 
of the hand in preparation for grasping the target. Close 
to the end of the motion, the hand grasps the target han-
dle with a firm power grasp. The muscle tension at the 
wrist naturally straightens the wrist flexion joint, so that 
in Fig. 10, the wrist flexion profile falls on the reference 
line that indicates equal sensitivity to both target position 
and orientation.

Fig. 8   Comparison between the hand paths (represented by the 3 DOFs for wrist positions) of matched reaching and reach-to-grasp motions to 
Targets 1–4 from a representative participant
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Fig. 9   Comparison of reaching motions and reach-to-grasp motions to Targets 5–8, continued from Fig. 8

Fig. 10   The normalized 
R-ARM values across tar-
get position and orientation, 
rendered from Li et al. (2014). 
a The mean R-AMR of the 
reaching component w.r.t the 
percentage of the path length; b 
the progression of R-AMR val-
ues of the grasping component 
during the motion: across-
target-position vs. across-target-
orientation R-AMR for each 
GR-DOF starting from the 
bottom left

(a) (b)
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The task‑relevance at the end of the motions

The R-AMR100% value for a set of motions is the R-AMR 
computed at the end of the task. Figure  11 depicts 
R-AMR100% values for reaching and grasping compo-
nents separately for each participant, and compares them 
using multiple comparison. For all of the GR-DOFs, 
the R-AMR100% of the grasping component is signifi-
cantly larger than that of the reaching component. The 
swivel angle, which has the largest reaching-component 
R-AMR100%, exhibits the smallest difference between the 
reaching and grasping components. Among the grasping 
components, the forearm supination and radial deviation 
are much higher than the other two GR-DOFs. The wrist 
flexion has the lowest R-AMR100% for both the reaching 
and grasping components, which coincides with its limited 
motion due to the wrist tension in power grasps.

In Fig.  12, across-target-position and across-target-ori-
entation R-AMR100% values are computed without compo-
nent separation. In Fig. 12a, the radial deviation has signifi-
cantly higher R-AMR100% across the target positions than 
the other GR-DOFs, which implies high task-relevance to 
the changes in target position. Figure 12b shows that fore-
arm supination is the most relevant GR-DOF to the changes 
in target orientation, while wrist flexion is the least rel-
evant. The swivel angle, which adjusts hand orientation by 
moving the whole arm, has much lower task-relevance than 
forearm supination.

In  Fig.  13, we compare the swivel angle and the fore-
arm supination by their end values and across-target-posi-
tion grasping-component R-AMR100% values at different 
target orientations. Comparing  Fig. 13a, b, the end values 
of the swivel angle increase significantly when the target 
orientation changes from 90◦ to 135◦, while the changes in 
the forearm supination are small. Before the target orien-
tation reaches 90◦, the forearm supination changes more 
with the target orientation than the swivel angle. Compar-
ing  Fig. 13c, d, the R-AMR100% values of the swivel angle 
are consistently low for different target orientations, while 
the R-AMR100% of the forearm supination is significantly 
reduced as the target orientation increases and settles down 
when the target orientation reaches 90◦.

The synergetic coordination of the swivel angle 
and forearm supination

During the experiment, the target orientation only changed 
in the plane that the participant faced (i.e., the X − −Z 
plane in   Figs. 8, 9). The swivel angle � and the forearm 
supination �5 cooperatively adjusted the hand orientation 
about the Y-axis. The previous task-relevance analysis indi-
cated these two DOFs were highly biased in their task-rel-
evance towards the target orientation. When the target ori-
entation was greater than 90◦, the swivel angle was largely 
used to provide comfortable grasping postures.

Fig. 11   Multiple comparison 
of the R-AMR values at the 
end of the motions (i.e., the 
R-AMR

100%) between the reach-
ing and grasping components, 
rendered from Li et al. (2014). 
a The swivel angle. b The 
forearm supination. c The wrist 
flexion. d The radial deviation

(a) (b)

(d)(c)

(a) (b)

Fig. 12   Multiple comparison of R-AMR
100% values for reach-to-grasp tasks. GR-DOFs 1–4 refer to swivel angle, forearm supination, wrist flex-

ion, and radial deviation, respectively, rendered from Li et al. (2014). a Across target position. b Across target orientation
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Synergy and correlation analyses

Both the swivel angle and forearm supination have high 
task-relevance to grasping tasks and are biased toward 
target orientation. We conducted synergy and correlation 
analyses to examine whether the swivel angle and forearm 
supination are synergistically coupled. For each individual 
reach-to-grasp motion, we computed the end value vari-
ances for (1) the swivel angle �, (2) the forearm supination 
�5, and (3) the hand orientation � in X–Z plane over five 
motion repetitions. As shown in Eq. (6), the variance differ-
ence Δ� was computed as the difference between the sum 

of the first two variances (denoted by �� and ��5, respec-
tively) and the third variance (denoted by ��):

Figure  14b shows the distributions of the variance dif-
ferences Δ� for the four grasping orientations. We use a 
paired-samples T test to further compare the sum of end 
variances of swivel angle and forearm supination with 
the variance of hand orientation. According to the p val-
ues in Table 2, when the grasping orientation � = 45◦ , the 
former is significantly larger than the latter at a confidence 

(6)�var = �2
�
+ �2

�5
− �2

�
.

Fig. 13   Multiple compari-
son of across-target-position 
R-AMR

100% values among 
different target orientations, 
rendered from Li et al. (2014). 
a The swivel angle. b The fore-
arm supination. c The swivel 
angle. d The forearm supination

(a) (b)

(d)(c)

Fig. 14   The distribution of 
variance difference Δ� for each 
grasping orientation: a one 
representative participant and b 
for all participants. c and d are 
the results from the synergy and 
correlation analyses, respec-
tively

(a) (b)

(c) (d)
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level of 95%, which indicates the synergistic coordination 
of these two GR-DOFs. We also computed the correlation 
coefficient for each individual motion trial instead of the 
averaged motion. Table  2 shows that the correlation was 
high for the grasping orientation of 45◦(|r| ∈ [0.5, 1]), and 
moderate for the grasping orientations of 0◦, 90◦ and 135◦ 
(|r| ∈ [0.3, 0.5]) (Cohen 1988).

Both the synergy and correlation analyses show that the 
swivel angle and forearm supination are synergistically 

coupled when grasping the target handles at 45◦ (see   
Fig. 14c, d). At this grasping orientation, neither of the two 
DOFs is close to its limits of motion ranges. When grasp-
ing the handles at 0◦, the swivel angle is close to its lower 
limit of motion range, while grasping handles above 90◦, 
pushes the forearm supination to its upper range limit. 
These results imply that the joints of high task-relevance 
and similar task-relevance bias are synergistically cou-
pled. Furthermore, the synergy of coordinated joints breaks 
down when the joints are close to their motion range limits.

Coupling coefficients

In this section, we investigate the coupling coefficient 
between the swivel angle and forearm supination. Fig-
ure 15a shows the result of linear regression of the fore-
arm supination over the swivel angle for a single par-
ticipant, while Fig.  15 shows the result using data from 

Table 2   Results of the synergy and correlation analyses. For each 
grasping orientation �, a significant difference exists if p value < 
0.05, while the correlation is strong if |r| ∈ [0.5, 1]

 � 0◦ 45◦ 90◦ 135◦

p value 0.3141 0.0152 0.4787 0.1333
|r| 0.4285 0.7143 0.4052 0.4819

Fig. 15   Plots of swivel angle–
forearm supination pairs and 
their linear regressions for 
different grasping orientations: 
a one representative participant 
and b all participants. Dis-
tribution of linear regression 
parameters across participants: 
c linear regression slope k; d 
determinant of coefficient R2 for 
fitting quality. e, f Are results of 
multi-comparison

(a) (b)

(e) (f)

(c) (d)



1640	 Exp Brain Res (2017) 235:1627–1642

1 3

all the participants. In  Fig.  15c, the slope of the linear 
regression increases before the grasping orientation 
reaches 90◦. For grasping orientation above 90◦, the fore-
arm supination and swivel angle maintain in small but 
approximately constant proportion.

The linear regression slopes indicate the ratio of joint 
angle change in swivel angle and forearm supination.

Equation (7) denotes the change in time as �t. As �t → 0,

k indicates the ratio of controlled velocities. Figure  15e 
further shows the significant difference found by the multi-
comparison of k at different grasping orientations. The joint 
coordinations for grasping orientations 0◦ and 45◦ are sig-
nificantly different from those for the grasping orientations 
of 90◦ and 135◦. Between 45◦ and 90◦, the slope k increases 
faster as the forearm supination approaches its joint limit, 
while the linearity of the regression, measured by the coef-
ficient of determinant R2, dropped significantly.

The above results show that the coordination of the 
swivel angle and forearm supination needs to be two 
distinct mode. In  Table  3, we summarize the mean and 
standard deviation of slope k with corresponding R2. We 
estimate the mean value of k as a linear function of grasp-
ing orientation � for grasping orientation between 0◦ to 
90◦, and as a constant for grasping orientation above 90◦ 
[see Eq. (8)].

The threshold of 90◦ for distinct coupling modes was also 
suggested by our task-relevance analysis. Figure  13 has 
shown that above these thresholds, the swivel angle and 
forearm supination have very different task-relevance. The 
synergy and correlation analyses further show that when 
grasping at 45◦, the swivel angle and forearm supination 
are in synergistic coupling. The result of this section sug-
gests that the synergistic coordination of the swivel angle 
and forearm supination needs to be modeled using a vary-
ing coupling coefficient, while constant coupling coeffi-
cient can be used when their coordination is not in synergy.

(7)k =
�5(t + �t) − �5(t)

�(t + �t) − �(t).

(8)k =

{
0.0141𝛼 − 1.5299 if 0◦ < 𝛼 < 90◦

−0.2307 if 90◦ < 𝛼 < 135◦

Discussion

Comparing GR‑DOFs by their task‑relevance

In reach-to-grasp motions, arm posture is significantly 
affected by the grasp orientation. Given the similarity in 
matched reaching and reach-to-grasp motions, we focus 
on the four grasping-related DOFs that account for the dif-
ferences in arm posture. To determine the control effort 
needed at different GR-DOFs, we compute the ratio of 
active motion range (R-AMR) values to measure their 
task-relevance. When grasping targets of different position 
and orientations, forearm supination and swivel angle are 
more sensitive to target orientation than to target position, 
while the other GR-DOFs are more task-relevant to target 
position.

In Kim (2014), the swivel angle deviation was found to 
be affected by the displacements of the wrist joints from 
their neutral positions. However, it is not clear why the 
forearm supination has a stronger effect on the swivel angle 
than the other two wrist joints. Our analysis of task-rele-
vance provides a possible explanation to this observation: 
the swivel angle and forearm supination both have task-rel-
evance to grasping task. They also have similar task-rele-
vance bias (towards the grasping orientation in our grasping 
task) and, therefore, are coordinated more closely. Compar-
ison between the grasping components of the swivel angle 
and the forearm supination further shows that, the forearm 
supination is more task-relevant than the swivel angle when 
the target orientations are under 90◦. This is because the 
swivel angle adjusts the hand orientation by moving the 
whole arm, which consumes more energy. Before reach-
ing the forearm supination’s joint limit, it is more energy-
efficient to adjust the hand orientation by changing forearm 
supination.

The task-relevance analysis of the GR-DOFs of the 
human arm should inform the algorithms for controlling 
arm-compatible and arm-like robots. Control effort should 
be distributed based on task-relevance. Given the system 
redundancy, task-relevant elements should be regulated 
with more control effort, while task-irrelevant elements can 
be loosely monitored or even left uncontrolled (Todorov 
2004). In our experiment, the target orientation varied in 
the plane that the participant faced. Therefore, both the 
swivel angle and the forearm supination have high task-
relevance and task-relevance bias toward target orientation. 
To reduce the control complexity, the DOFs of high task-
relevance and similar task-relevance bias can be coupled. 
The radial deviation also has high task-relevance with bias 
toward grasping orientation, and it is largely used when 
grasping is involved and varies more when grasping higher 
and lower targets. The wrist flexion has low task-relevance 
and no task-relevance bias when the hand grasps the target. 

Table 3   Results of linear regression (�-grasping orientation, k-linear 
regression slope, R2 coefficient of determination)

 � 0◦ 45◦ 90◦ 135◦

 k −1.45 ± 0.46 −1.05 ± 0.31 −0.18 ± 0.38 −0.28 ± 0.27
 R2 0.55 ± 0.35 0.52 ± 0.21 0.28 ± 0.21 0.30 ± 0.27
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The DOFs of low task-relevance and weak task-relevance 
bias can be left uncontrolled and maintained at a neutral 
position.

The synergistic coordination of the macro‑ 
and micro‑structures

The analysis of the R-AMR values further shows that 
given similar task-relevance bias, the forearm supination is 
used more actively than the swivel angle for matching the 
hand-to-target orientation. Applied to the control of arm-
like robotic manipulators, the macro- and micro-structures 
of the robots can be assigned different control priorities. 
Previous research has suggested similar control strategies 
to coordinate the macro- and micro-structures of arm-like 
manipulators. In Nakamura et al. (1987), a flexible macro-
structure that moves quickly over a wide range of motion 
is mainly responsible for the task, while a rigid micro-
structure compensates for tracking errors. In the context 
of reach-to-grasp motions, one way to segment the macro/
micro structures refers to the arm as a macro mechanism 
and the hand as a micro mechanism. As such, the arm 
can be used as a gross positioner to maximize the dexter-
ity of the hand for accomplishing a task (Khatib 1995; 
Huang et  al. 2010). To adjust the hand orientation, since 
the swivel angle (macro) and the supination angle of the 
forearm (micro) can serve the same purpose, it is more 
energy-efficient to adjust the supination angle of the fore-
arm as opposed to the swivel angle if the target orientation 
is within the forearm’s range of motion.

In the synergy and correlation analyses, we further found 
that the swivel angle and forearm supination have similar 
task-relevance bias and, therefore, are in synergistic coupling 
when they are far from their joint limits. In the human motor 
system, synergy is preferred since coupling redundant ele-
ments can reduce the control complexity. Moreover, synergis-
tic coordination can exploit the variability of the coordinated 
components to ensure task stability. When components are 
in synergy, the deviation of one component variable can be 
compensated by adjusting the contributions of the other com-
ponents (Bernstein 1967; Scholz and Schoner 1999; Davids 
et  al. 2006). Studies on motor synergies have investigated 
synergistic coordination at different levels of a motor activ-
ity (neural, muscular, dynamic, kinematic, etc.), particularly 
in the coordination of a large number of DOFs (for review 
see “Zoo of motor synergies” in Latash (2010)). However, in 
arm and hand motion analysis, the synergistic coordination of 
multiple joints was modeled using a constant coupling coef-
ficient (Yang et al. 2002; Simkins et al. 2014; Ingram et al. 
2008). Control algorithms for robot manipulators also used 
static couplings to mimic such joint synergy (Catalano et al. 
2014). In this study, we found that the synergistic coordi-
nation of the joints of the human arm and arm-like robotic 

manipulators should be modeled using a varying coupling 
coefficient. If any of the joints in coordination approaches to 
its joint limit, the synergy breaks down and their coupling can 
be modeled using a constant factor.

Conclusion

We studied the arm posture difference between reaching 
and reach-to-grasp motions to reveal the arm motion con-
trol strategy of the human motor system in reaching and 
grasping tasks. We found that the hand paths of matched 
reaching and reach-to-grasp motions were highly similar, 
indicating that not all the arm DOFs are relevant to grasp-
ing tasks. Using the swivel angle model instead of the 
traditionally used anatomical arm model, we were able to 
identify the four DOFs that accounted for the arm posture 
differences, which reduced the motion analysis and control 
complexity. We further proposed the quantifier to measure 
the task-relevance of those GR-DOFs. Our analysis showed 
that among the four GR-DOFs, the wrist flexion has low 
task-relevance to both target position and orientation and, 
thus, can be left uncontrolled, to reduce the control com-
plexity. The forearm supination and swivel angle both have 
strong task-relevance bias, which indicates that they might 
be controlled in synergistic coordination. The radial devia-
tion has high task-relevance but no strong bias; so, it is not 
a candidate for coupling. Our synergy and correlation anal-
yses revealed that the swivel angle and forearm supination 
are in synergy when grasping targets at 45◦, but not at other 
orientations. The coupling between these two DOFs varies 
as the synergy forms and breaks down in the coordination. 
The coupling for grasping orientations above 90◦ changes 
significantly, after the forearm supination approaches its 
joint limit. Where synergy does exist, the relation between 
the two DOFs is much more linear. Our motion analysis 
suggests the control strategies for arm-compatible robots, 
e.g. upper-limb exoskeletons for stroke rehabilitations. For 
power-grasping tasks, the DOFs with low task-relevance 
can be maintained at their neutral positions, while the high 
task-relevant DOFs require more control effort. When coor-
dinating the robot hand and arm, dynamic coupling is nec-
essary when the synergy of the swivel angle and forearm 
supination exists. This guideline can be generally applied 
to coordinating the macro- and micro-structures of arm-like 
robotic manipulators.
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