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A Low-Dimensional Dissimilarity
Analysis of Unilateral and
Bilateral Stroke-Impacted
Hand Trajectories
In this paper, we propose a quantitative approach based on identifying hand trajectory
dissimilarities through the use of a multidimensional scaling (MDS) analysis. A high-rate
motion capture system is used to gather three-dimensional (3D) trajectory data of healthy
and stroke-impacted hemiparetic subjects. The mutual dissimilarity between any two
trajectories is measured by the area between them. This area is used as a dissimilarity
variable to create an MDS map. The map reveals a structure for measuring the difference
and variability of individual trajectories and their groups. The results suggest that the
recovery of hemiparetic subjects can be quantified by comparing the difference and vari-
ability of their individual MDS map points to the points from the cluster of healthy subject
trajectories. Within the MDS map, we can identify fully recovered patients, those who are
only functionally recovered, and those who are either in an early phase of, or are nonres-
ponsive to the therapy. [DOI: 10.1115/1.4033836]

1 Introduction

Stroke is the number one cause of long-term disability in the
U.S. [1]. While it is known that the functionality of the impaired
limb can be recovered through rehabilitation therapies, they come
with a high price; it is an annual cost of $34 billion each year [1].
Improving rehabilitation and streamlining it toward patient-
specific needs are important to expedite the recovery progress and
improve its outcome.

The difficulty of recovery progress tracking during rehabilita-
tion therapies is a major roadblock in establishing proper thera-
peutic plans [2]. Over the years, a wide spectrum of clinical
assessment tests and tools were developed to evaluate the current
state of a patient’s sensory and motor performance as well the out-
come of a rehabilitation treatment. Among the methods are action
research arm test [3,4], arm mobility arm test [5], ashworth scale
[6], assistive technology device predisposition assessment [7], box
and block test [4], Canadian Occupational Performance Measure
(COPM) [8], Fugl Meyer (FMA) [4,9], motor activity log [10],
motor assessment scale [11], nine-hole peg test [12], and wolf
motor function test (WMFT) [13]. These assessments are primar-
ily subjective assents [14–16] that may or may not require prior
training. In particular, the FMA assessment tool ranks the per-
formance of a patient during a series of tasks on a discrete scale of
0,1,2. The patient needs to improve by 33% in order to be ranked
higher on the scale. As such, this scale is not sensitive enough to
changes that may result from a rehabilitation treatment.

In tracking the changes, the sensitivity is not the only factor. A
method of tracking should be able to distinguish the progress in
the direction of recovery toward healthy motions [17,18] from the
direction in which subjects use compensatory strategies to achieve
motion goals. The latter is not the goal of successful recovery
plans, since though the subjects may be able to perform some
daily activities, their motions would be different from those of
healthy subjects.

In this paper, we present a quantitative approach to aid the
tracking of recovery during a rehabilitation process using high-
rate motion capture system data. The approach is focused on the
quality of movements and task performance of the end effector
[18]. In the process of developing the approach, we analyzed
reaching trajectories of healthy and stroke-impacted hemiparetic
subjects. The analysis relies on reaching trajectories, therefore, all
the subjects in our study were screened for their capability of per-
forming such tasks. We first focused on trajectory characteristics
in the vertical direction and used only the z-axis component of the
data. This provided information about the complexity of trajecto-
ries and showed that for a better insight into the data, a more com-
plete analysis of trajectories is required.

The method of analysis of the trajectories proposed in this
paper is MDS [19,20]. The MDS method has been used in various
studies as a tool for clustering and characterizing the evolution of
certain parameters [21–23]. It proved to be particularly useful for
the analysis of lab assays producing data on a real-valued approxi-
mate dissimilarity measure, which is of a type that is generally
considered unsuitable for quantitative analyses [24].

In this paper, the area between hand trajectories is introduced
as an approximate measure of trajectory dissimilarities. Based on
the measure, the MDS produces a map in which each trajectory is
represented by a point. The distance between any two points of
the MDS map reflects the dissimilarity of the corresponding two
trajectories; therefore, the map reveals the structure of dissimilar-
ities among trajectories. In every MDS map depicting dissimilar-
ities among trajectories for reaching a specific target we are able
to identify a dense cluster of points corresponding to healthy tra-
jectories. Trajectories of hemiparetic subjects are usually spread
over the map and we can quantify their difference and variability
with respect to the cluster of healthy trajectories. In this way, the
difference and variability of trajectories are quantified and can be
followed on scales that are fully compatible with the observed
data. Our analysis includes trajectories from healthy and hemipa-
retic subject groups, and the results are compared to trajectories of
a single subject from the hemiparetic subject group.

The paper is organized as follows: The data collection and
experiment protocol are explained in Sec. 2. Section 3 describes
the methods and results of the vertical component analysis. The
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methods and results of the MDS analysis are detailed in Sec. 4.
Section 5 provides a discussion of our results and their interpreta-
tion. Section 6 concludes the paper.

2 Data Collection and Protocol

The data were captured using a Vicon motion capture [25] sys-
tem with ten cameras. Nine infrared reflective markers were
attached to the left and right arm of the subjects, see Fig. 1. Since
some stroke-impacted hands are characterized by flexed wrist and
clenched fist, the subjects held a T-shaped pointer with a marker
attached at the tip (Fig. 1(b)). Additional four markers were
attached to the subjects’ torsos and backs for a total of 24 markers.
The Vicon’s BODYBUILDER [26] software was used to create a bio-
mechanical model of the arms and torsos. The motion capture sys-
tem captured data at a sampling rate of 100 Hz with submillimeter
accuracy. The subjects were seated, and cameras were positioned
at the ceiling pointing directly toward the subjects. The experi-
ment protocol is approved by the University of California, Santa
Cruz Institutional Review (DHHS IRB Registration No.
IRB00000266, #HS 1821).

Ten subjects composed the control group, and nine unhealthy,
hemiparetic subjects participated in the experiments. Both subject
groups underwent a screening process prior to participating in the
study. For the control group, both arms had to be injury free and
without any pain or discomfort. The hemiparetic group was com-
posed of stroke survivors in their chronic phase with a disability
lasting more than 2 months since they had stroke. They were able
to perform reaching movements with observable impairment. Spe-
cifically, with their impaired arm, the subjects were capable of: (1)
bending the elbow at 90 deg without support and keeping it there;
(2) reaching up and touching their ears; (3) moving the wrist up
and down; (4) grasping objects; and (5) raising the arm in front at
90 deg with the thumb pointing up.

Out of the nine subjects, only eight were included in the analy-
sis. One of the subjects had difficulty of reaching the targets that
are above the shoulder (R3 and L3, see Fig. 2). Both subject
groups performed reaching tasks to targets in a 3D workspace.
The workspace and targets are shown in Fig. 2. During the experi-
ment, each subject sat on a chair with their torso straight and both
hands resting on the chair handles (Fig. 1(a)). The chair was posi-
tioned so that the subjects could comfortably reach all the ipsilat-
eral targets. According to the experimental protocol, the subjects
were instructed to start each arm movement from a position where
their hands were rested on the handles of the chair (Fig. 1(a)),
whereas the wrist positions of the hands were aligned with the end
of the chair handles. Two modes of reaching tasks were per-
formed: unilateral and bilateral. For the unilateral mode, the sub-
jects were asked to reach targets R1–R5 using their right hand,
and then L1–L5 using their left hand. For the bilateral reaching
mode, the subjects were instructed to reach simultaneously sym-
metric targets in the workspace. There were five repetitions for
each target in both modes for a total of 25 trajectories. This
resulted in 50 trajectories per subject for the right and left arms of
the control group, 50 trajectories per subject for the impaired and
healthy arms of the unhealthy, hemiparetic group, and 50 trajecto-
ries per subject for the bilateral reaching mode. In both unilateral
and bilateral modes, the subjects were instructed to perform the
reaching motion after a sound signal. Reaching motions were per-
formed at speed comfortable to the subjects. To avoid fatigue, the
subject were given time to rest between the reaching motions.

Our trajectory data are sequences of all the trajectory point
coordinates from the initial hand position to the time point at
which the subject touched the target with the tip of the pointer.

Fig. 1 Marker placement: (a) nine reflective markers are
attached to each of the left and right arms (light gray circles).
Four markers are attached to the torso (dark gray circles). (b)
Subject holds a T-shaped pointer with a marker attached at the
tip.

Fig. 2 Target workspace setup: (a) front and (b) top view of the
target workspace. The left workspace is composed of targets
L1–L5, and the right one is composed of targets R1–R5. (c) The
subject’s shoulders are aligned with the center of the left and
right workspaces.
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The subjects were oriented to face the positive y-axis with their
right side toward the positive x-axis direction of the reference
coordinate frame. Examples of the collected trajectory data are
shown in Fig. 3.

3 Analysis of the Vertical (z-Axis) Component of

Human Hand Trajectories

Unconstrained human reaching trajectories to a target are not
straight lines. From the collected data, one of the observed charac-
teristics is that some subjects put more emphasis on upward
motion at the beginning of their trajectories and then move their
hands toward the target. Because of that, we first analyzed the z-
axis profile of hand trajectories using two methods. The first is the
area ratio method, which is based on the ratio of the areas above
and below the trajectory (see Fig 4). The second is the polynomial
fit method, which is based on a polynomial model of the hand
trajectory.

For the area ratio data analysis, the data are first normalized
based on the task completion measured by the travel distance to
reach the target. The areas aa above and ab below the trajectory
are calculated as a sum of products of the increments DSk of the
traveled distance S in the xy-plane between trajectory data points
and the height ha

k above and hb
k below the trajectory, see Fig. 4.

The area ratio is calculated as the ratio of the two areas

Ratio ¼ aa

ab
¼

XN

k¼1

DSkha
k

XN

k¼1

DSkhb
k

; DSk ¼ Sk � Sk�1 (1)

Polynomial Fit: The normalized data are averaged per trajec-
tory groups. A polynomial model of the travel distance in the
xy-plane S versus the height h is estimated. The degree of the

polynomial is chosen based on the model that fits the trajectory
group best.

The results of vertical component data analysis of our data are
presented in Sec. 5.

4 MDS Analysis

In order to compare the trajectories based on their 3D shapes,
here we introduce a measure of trajectory differences and apply
the method of MDS. The method is capable of visualizing data in
a lower dimensional space and is used for exploratory data
analyses.

We apply the classical MDS method, which is based on the
measure of difference aij between the trajectories i and j. The
measure must be: (1) zero if the trajectories i and j are identical;
(2) non-negative; and (3) symmetric, which means that the differ-
ence aij is the same as the difference aji. As a result of the MDS
method, every two trajectories i and j are mapped into the points
Ti and Tj of the lower dimensional space with the distance that
corresponds to aij. Mathematically, the trajectories are mapped
into the points as the result of the following minimization:

J ¼ min
Ti;Tj

X
i

X
i6¼j

ðaij � jjTi � TjjjÞ2 (2)

where jj � jj corresponds to the euclidean norm of the lower dimen-
sional space. To measure the difference between the two trajecto-
ries, we use the area between them, which can be approximated
based on sampled trajectory points. This area is depicted in Fig. 5
together with the trajectories i and j and sampled points.

Figure 6(a) depicts two pairs of subsequent sampled trajectory
positions from the trajectories i and j. The area among them can
be approximated as the area S0k of the two triangles that have the
common side connecting the points ðxi

kþ1; y
i
kþ1; z

i
kþ1Þ and

ðxj
k; y

j
k; z

j
kÞ. This approximation is

S0k ¼
1

2
jjri

k;kþ1 � ri
k;kjj þ

1

2
jjri

kþ1;kþ1 � r
j
k;kþ1jj (3)

where� denotes the vector product, and jj � jj the euclidean norm
of a vector. However, the same area can be approximated as the
area S00k of the two triangles that have the common side connecting
the points ðxi

k; y
i
k; z

i
kÞ and ðxj

kþ1; y
j
kþ1; z

j
kþ1Þ, see Fig. 6(b), in which

case

Fig. 3 Sample of the collected trajectory data relative to the
motion-capturing system coordinate frame. The relative posi-
tion and orientation of the target workspace with respect to the
chair on which the subjects sat were kept unchanged. (a) Unilat-
eral mode trajectory data of subject 2 from the control group.
Both right and left trajectories are shown. (b) Bilateral mode tra-
jectory data of subject 2 from the control group. (c) Unilateral
mode trajectory data of subject 1 from the hemiparetic group.
Both healthy (light gray) and unhealthy (dark gray) trajectories
are shown. (d) Bilateral mode trajectory data of subject 1 from
the hemiparetic group.

Fig. 4 Area ratio calculated as the ratio of the areas above and
below the trajectory: S axis represents the traveled distance in
the xy-plane, and DSk are increments of the traveled distance
between trajectory data points
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S00k ¼
1

2
jjrj

k;kþ1 � r
j
k;kjj þ

1

2
jjrj

kþ1;kþ1 � ri
k;kþ1jj (4)

with the obvious relations ri
k;k ¼ �r

j
k;k and ri

kþ1;kþ1 ¼ �r
j
kþ1;kþ1

that are not exploited for the sake of clarity. Using the expressions
for S0k and S00k , we define the measure of difference between the tra-
jectories i and j as

aij ¼
XN�1

k¼1

S0k þ S00k
2

(5)

which is the sum of average of the two approximations, and N is
the number of sample points of each trajectory.

The measure aij defined by expression (5) is zero only if all the
sampled points of the trajectories i and j are equal. It is also non-
negative and symmetric in all the cases, including the situation in
which the initial and final trajectory points are not the same. How-
ever, the final trajectory points are always the same since the sub-
jects reach the same targets. Moreover, to compensate for the
variability of human subject body sizes and variability of the chair
position (see Fig. 1(a)), we preprocess the trajectories to match
the trajectory initial points. First, the final trajectory points are
translated to the origin. Then, the trajectories are scaled by divid-
ing each data point coordinate by the absolute value of the length
of the trajectory along each axis

xi
k ¼

x̂i
k

jx̂i
N � x̂i

1j
; yi

k ¼
ŷi

k

jŷi
N � ŷi

1j
; zi

k ¼
ẑi

k

jẑi
N � ẑi

1j
(6)

where x̂i
k; ŷi

k, and ẑi
k denote the originally recorded coordinates of

the trajectory i points.
Once we compute all the mutual differences aij for a specific

target, we use the MATLAB command “cmdscale” to compute an
MDS map of the trajectory data for each target.

5 Results

In this section, we present data analysis results using the meth-
ods of vertical component and multidimensional scaling trajectory
analyses described in Secs. 3 and 4, respectively.

5.1 Vertical Component Data Analysis. The results of the
area ratio analysis of the subject groups are summarized in Fig. 7.
The polynomial fit analysis results are shown in Fig. 8.

For all the targets and all the subject groups, the area ratio is
below one with a 95% confidence interval. The ratios of trajecto-
ries from the hemiparetic subjects are smaller than the ratios of
corresponding trajectories from the healthy subjects except in the
case of targets 2 and 5 in the bilateral mode. Targets 2 and 5 have
the highest median in the bilateral mode for the healthy group. In
addition, there is a significant difference between the unilateral
and bilateral reaching modes of the hemiparetic group for targets
2, 4, and 5 with consistently higher ratios for the bilateral reaching
mode trajectories.

Assuming that the trajectory height could be modeled as the
second-order polynomial, this would be an indication that the tra-
jectory tends to have more of an upward motion at its onset. The
results of the polynomial fits of the height versus distance are
shown in Fig. 8. The trajectories from the healthy subjects can be
modeled with the second- to the fifth-order polynomials. In both
unilateral and bilateral reaching modes, the trajectories to target 2
show the lowest polynomial order, while the highest polynomial
order is for trajectories in bilateral reaching mode to target 4. The
trajectories from the hemiparetic subjects are more complex with
polynomial orders ranging from the fourth to the eighth. The tra-
jectories to target 2 in the bilateral mode and to target 5 in the uni-
lateral mode are with the fourth-polynomial order. The highest
eighth polynomial order is for the trajectories to target 4 of the
hemiparetic subjects. These findings show that in general the tra-
jectories cannot be modeled as the second-order polynomials. The

Fig. 5 Two 3D trajectories with the same number of points.
The coordinates of the kth sample point of the ith and jth trajec-
tories are ðxi

k ;y
i
k ; z

i
k Þ and ðxj

k ; y
j
k ; z

j
k Þ, respectively. The measure

of difference between the trajectories is based on the area
between the trajectories (shaded).

Fig. 6 Approximations of the area between two trajectories: (a)
the area is approximated as a sum of two triangles sharing the
side connecting ðxj

k ; y
j
k ; z

j
k Þ and ðxi

k11; y
i
k11; z

i
k11Þ and (b) the

area is approximated as a sum of two triangles sharing the side
connecting ðxi

k ;y
i
k ; z

i
k Þ and ðxj

k11;y
j
k11; z

j
k11Þ

Fig. 7 Boxplots of the area ratio per target for two reaching
modes and two groups of subjects. A ratio less than one means
that there is an upward motion at the start of the trajectory fol-
lowed by a forward motion toward the target.
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trajectories to targets 2 and 5 of the hemiparetic subjects have the
largest differences (which are two) in the polynomial order between
the trajectories from the unilateral and bilateral reaching modes.

The trajectories of healthy subjects tend to follow a straight line
toward a target in both unilateral and bilateral reaching modes.
The trajectories to target 4 are excluded from this since they are
somewhat similar in shape to the trajectories of hemiparetic sub-
jects to the same target. In general, the hemiparetic trajectories are
more curved, which supports the findings from the analysis of the
area ratio.

5.2 MDS Analysis. The results show that most of the maps
can be represented in one dimension. For a better visualization,
we choose to display the maps in two dimensions.

The MDS maps of the trajectories for the five targets are shown
in Fig. 9. For each target, the points corresponding to the trajecto-
ries of healthy subjects form a distinctive cluster of points in one
area of the map. Instead of plotting all the points of the cluster, we
depict the cluster using ellipses representing the 95% area for the
points in the cluster. For each target, the ellipses are elongated
and, in the case of target 2, the cluster of healthy subject trajecto-
ries is practically a line.

The points corresponding to the arm trajectories of hemiparetic
subjects are spread over the map, which indicates their variability
across all the subjects. The distance between a point from these
subjects and the center of the healthy subject trajectory cluster can
be used as a measure of how much the trajectory is “unhealthy”
and to follow the progress of rehabilitation. Because of the natural
variability of healthy subject trajectories, their cluster is elongated
in one direction. When computing the distance, this direction
needs to be taken into account with a smaller weight.

Let us consider a given target and denote all the healthy subject
trajectory points with two-dimensional vectors Ti

h; i ¼ 1; 2; :::Nh,
where Nh is the number of healthy subject trajectories. Then, the
center, i.e., the mean lh value and 2� 2 covariance matrix Rh of
the cluster, can be estimated as

l̂h ¼
1

Nh

XNh

i¼1

Ti
h and R̂h ¼

1

Nh � 1

XNh

i¼1

Ti
h � l̂

� �
Ti

h � l̂
� �T

(7)

where^denotes the estimated value, i.e., l̂h � lh; R̂h � Rh, and T

denotes the transpose of the vector. Based on the singular value
decomposition (SVD), we know that the covariance matrix esti-
mation can be represented as

R̂h ¼ UKUT ¼ U k1 0

0 k2

h i
|fflfflfflffl{zfflfflfflffl}

K

UT; UTU ¼ I (8)

where I is the unity 2� 2 matrix, U is the matrix composed of unit
intensity vectors aligned with the minor and major axes of the
ellipse, while

ffiffiffiffiffi
k1

p
and

ffiffiffiffiffi
k2

p
are their lengths. Therefore, to mea-

sure the distance d(p) between a point p of the MDS map and the
center of the healthy subject cluster, we formulate the distance as

dðpÞ ¼ jjð
ffiffiffiffi
K
p
Þ�1UTðp� l̂hÞjj;

ffiffiffiffi
K
p
¼

ffiffiffiffiffi
k1

p
0

0
ffiffiffiffiffi
k2

p
� �

(9)

which can be written as

dðpÞ ¼ ðp� l̂hÞT U ð
ffiffiffiffi
K
p
Þ�1ð

ffiffiffiffi
K
p
Þ�1

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{K�1

UT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R�1

h

ðp� l̂hÞ

0
BB@

1
CCA

1=2

(10)

and because of UTU ¼ I and R̂
�1

h ¼ ðUKUTÞ�1 ¼ UTK�1U, we
obtain

dðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� l̂hÞTR̂

�1

h ðp� l̂hÞ
q

(11)

If we introduce l̂uni and l̂bi as the centers of the clusters of
hemiparetic subject trajectories in unliateral and bilateral reaching
modes, then their center distances to the center of healthy subject
trajectory cluster are dðl̂uniÞ and dðl̂biÞ, respectively.

These distances are presented in Fig. 10(a) for each target.
From it, we can find that the largest one is for target 3 and that in
all the other cases, the distances are comparable, which is in
agreement with Fig. 9 showing that the points corresponding to
hemiparetic subject trajectories in unilateral and bilateral modes
overlap with the healthy ones except in the case of target 3, where
the unilateral mode trajectories are dispersed all over the map, see
Fig. 9(c).

To get a quantitative insight into the variability of trajectories,
we compute the standard deviations of trajectory points over a
certain distance from the center of the healthy subject trajectory

Fig. 8 The polynomial order per target for the trajectories from
two reaching modes and two groups of subjects

Fig. 9 The MDS maps for all the trajectories for targets 1–5 are
depicted in (a)–(e), respectively: the ellipse with the shaded
area describes the 95% area for the cluster of the trajectories of
healthy subjects, and the points corresponding to the trajecto-
ries of hemiparetic subjects in unilateral (�) and bilateral (�)
reaching modes
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cluster. We first compute dðTiÞ for any point representing a trajec-
tory from the group of unilateral trajectories and then compute the
standard deviation runi of the distance

runi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nuni � 1

XNuni

i¼1

ðd Tið Þ � �duniÞ2
vuut ; �duni ¼

1

Nuni

XNuni

i¼1

d Tið Þ

(12)

where �duni is the mean value of the distance. Similarly, we com-
pute the standard deviation rbi of the distance

rbi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nbi � 1

XNbi

i¼1

ðd Tið Þ � �duniÞ2
vuut ; �dbi ¼

1

Nbi

XNbi

i¼1

d Tið Þ (13)

for bilateral trajectories. The standard deviations for each target
are presented in Fig. 10(b). We note that the dispersion of the
points in the healthy subject cluster is the smallest, which is also
supported by Fig. 9 across all the targets. We can also confirm
that the dispersion of target 3 unilateral trajectories is comparable
to their distance in Fig. 10(a), which is also in agreement with the
map in Fig. 9(c).

From Fig. 10(b), it follows that the variability of trajectories is
comparable among unilateral and bilateral trajectory types for tar-
gets 1 and 4. A significant difference in the variability in these
types of trajectories is observed in target 5 with the pattern of
more variable bilateral trajectories than unilateral trajectories. The
same pattern can be also clearly seen for targets 2 and 3. However,
targets 3 and 4 have consistently high variabilities in both modes,
which means that for these targets the hemiparetic subjects consis-
tently express a high level of unhealthy synergies in their motion.

Overall, Figs. 9 and 10 show that the major difference between
the trajectories of hemiparetic and healthy subjects is in a strong
consistency of the second ones for each target, which is illustrated
well by their MDS map clusters of points. In other words, all the
healthy subject trajectories are similar to each other. Such a level
of similarity does not exit among the hemiparetic subject trajecto-
ries since they are typically dispersed over the MDS maps.

However, once we focus on a specific subject from the hemipa-
retic group, we can find its MDS trajectory points less dispersed
over the map, which indicates consistency in motion. For exam-
ple, subject 2’s MDS maps per target are shown in Fig. 11. The
maps for targets 1–5 show an obvious dissimilarity of the sub-
ject’s trajectories in unilateral and bilateral reaching mode since
the corresponding MDS points are easily separable. In the case of
targets 3 and 4, the MDS trajectory points for both modes, with a
few exceptions, overlap with the clusters of the healthy subject
trajectories. If this happened for all the targets, we would con-
clude that subject 2 is fully recovered. However, the MDS maps
for targets 1, 2, and 5 show that the subject’s reaching trajectories
for these targets are different from the healthy. Interestingly
enough, subject 2 belongs to the group of hemiparetic subjects
and, for targets 3 and 4, the group shows consistently the largest
dispersions of the MDS map points in both reaching modes. This
indicates the importance of individual therapy plans since the high
level of unhealthy synergies of the hemiparetic group for targets 3
and 4 is not characteristic of subject 2’s trajectories.

From this, for example, we can conclude that subject 2 should
have a therapy that would emphasize motions necessary to reach
targets 1, 2, and 5. In that case, we would also give a slight prefer-
ence to a therapy that engages two arms simultaneously because
of considerably larger distances of the MDS map points for target
2 in the bilateral reaching mode.

Naturally, the impact of our analysis to therapy planning is
speculative in nature and should be further investigated. However,

Fig. 10 The distances of the centers of points corresponding
to the unilateral and bilateral hemiparetic trajectories to the
center of the healthy subject cluster (a) and the standard devia-
tion (b) of the distance to the center of the healthy trajectory
cluster. The bar graphs show the distances and standard devia-
tion per type of the trajectory and target.

Fig. 11 Subject 2 map for all the targets are shown in (a)–(e).
(�) represents the bilateral trajectories, and (�) represents the
unilateral reaching trajectories of subject 2. The dashed lines
illustrate the separation between the unilateral and bilateral tra-
jectories. The ellipses with the shaded areas describe the 95%
area for the cluster of healthy trajectories.
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we clearly show that for a specific subject our analysis can pin-
point specific targets creating problems in reaching motions.

6 Discussion

Although the polynomial fit method indicates that z-axis profile
trajectories are more complex than the second-order polynomials,
both area ratio and polynomial fit analyses are in agreement that
trajectories tend to move upward on the onset and then forward.
Based on the area ratio, the trajectories to targets 2 and 5 have the
biggest departure from that pattern especially in bilateral reaching
mode. While the position of targets plays a critical role, the latter
can be explained only by a higher demand on subject’s attention
[27], which impacts visual and proprioceptive feedbacks contrib-
uting to reaching motions. The z-axis profile analyses also show
that the trajectories of hemiparetic subjects have a higher-order
polynomial model than the trajectories of healthy subjects. The
highest-order polynomial model is required for hemiparetic bilat-
eral reaching mode trajectories. This can be explained by both
muscular weakness and unhealthy synergies [16,28–31] that result
into more complex reaching trajectory patterns. While these may
be useful results, the overall attempt to analyze the data along the
z-axis does not show the potential to reveal characteristics of indi-
vidual subject trajectories.

With the aim to use complete 3D data about the trajectories, we
introduced the area between two trajectories as a measure of their
dissimilarity and explored the data using the MDS method. The
method was applied to hemiparetic and healthy subject trajecto-
ries in both reaching modes and resulted in the MDS maps with
up to two dimensions for each target. The MDS maps showed
that, contrary to the healthy subject trajectories, the hemiparetic
subject trajectories did not group into distinctive clusters, which
means that they are all different from each other.

The differences between unilateral and bilateral reaching mode
trajectories of the hemiparetic subject group are evident from
Fig. 10(b). It shows that unilateral mode hemiparetic subject tra-
jectories are consistently closer to the healthy than the trajectories
from the bilateral mode. Also, the farther ipsilaterally the target is,
the higher the variability of unilateral mode trajectories of the
hemiparetic subjects is. The highest variability of trajectories is in
bilateral reaching mode of the hemiparetic subjects for target 5.
However, targets 3 and 4 have consistently high variabilities in
both modes. This characteristic does not show in the analysis of
subject 2 that belongs to the hemiparetic group and based on this
we can conclude that the therapy for subject 2 cannot be equal to
the other subjects of the same group. By this, we underline the
importance of individual subject analyses and therapy plans.

MDS analyses not only reveal the dissimilarity structure of the
trajectory groups but also provide an insight into the variability of
subject trajectories per target by measuring the dispersion of the
MDS points per trial of a subject. The significance of variability is
in the evaluation of the strategy that an individual is using in the
process of recovery. The strategies can be compensatory in nature
or reflect true recovery. Compensatory strategies are employed to
accomplish daily activities, however, this hinders true recovery in
that it disregards the training of natural joint configurations
[32–34].

When multiple trajectories of one patient to a specific target are
represented in the MDS map, they form a set which can be com-
pared to the cluster of points corresponding to the healthy sub-
jects, and there are three outcomes that can be identified: (1) the
patient’s set has a low dispersion and overlaps with the cluster of
healthy subjects, which indicates the fully recovered patient; (2)
the patient’s set has a low dispersion and it does not overlap with
the cluster of healthy subjects, which indicates that the patient is
functionally recovered, i.e., has consistent trajectories, but uses a
compensatory motion strategy resulting in trajectories that are dif-
ferent from those of the healthy subjects; and (3) the patient’s set
has a high dispersion, with or without the overlap with the cluster
of healthy subjects, which indicates the inconsistency of motion

associated with an early phase of or nonresponsiveness to the ther-
apy. The size of overlap between the patient’s set and the cluster
of healthy subjects measures only a degree of dissimilarity of the
patient’s trajectories to the healthy subject trajectories.

In spite of the data reduction resulting from the MDS map, a
therapist may have access to the original trajectory while compar-
ing it with trajectories of healthy subjects. The z-axis component
of the trajectory may provide an insight regarding muscle strength
compensating gravitational loads, while the xy-components of the
trajectory provide information regarding the muscular coordina-
tion during the reaching task. Assessing in this context may affect
the treatment regime that is unique to each patient under evalua-
tion. As the patient progresses through the rehabilitation treat-
ment, it is anticipated that the dispersion of the MDS points will
provide a quantitative measure of the progress, while their dis-
tance to the cluster of healthy trajectories will indicate the direc-
tion of the progress toward a full or functional recovery.

7 Conclusion

Our aim to quantitatively analyze hand trajectories has led us to
the novel method of characterizing the trajectories by using the
MDS. With the MDS, we were able to generate the map that visu-
alizes dissimilarities between the trajectories in a two-dimensional
space. In the map, each trajectory is represented by a point and
the healthy subject trajectories are mapped into a distinctive clus-
ter of points. The analysis of the MDS points provided us the valu-
able insight into the differences among the trajectory groups and
the variability of group trajectories. In order to identify the level
of accuracy of this quantitative, data-driven objective tracking in
the context of standard expert-based, subjective assessment meth-
ods such as FMA, or WMFT, it is necessary to perform a larger
study, which can be a part of our future work.

Quantifying the differences and variabilities of trajectory
groups is significant because it can guide therapists in establishing
different therapeutic plans. For example, a high variability of tra-
jectories in a reaching task to a target can be used to emphasize
the part of therapy that will decrease their variability. After a
period in the therapy, the therapist can use the MDS map to detect
if the subject uses compensatory strategies or shows the progress
toward true recovery. With this, the effectiveness of the therapy
can be evaluated and the therapist can potentially use it to steer
the direction of the rehabilitation plan.
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