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Spatial Map of Synthesized Criteria for the
Redundancy Resolution of Human Arm Movements

Zhi Li, Dejan Milutinovic, Member, IEEE, and Jacob Rosen

Abstract—The kinematic redundancy of the human arm enables
the elbow position to rotate about the axis going through the
shoulder and wrist, which results in infinite possible arm postures
when the arm reaches to a target in a 3-D workspace. To infer
the control strategy the human motor system uses to resolve
redundancy in reaching movements, this paper compares five
redundancy resolution criteria and evaluates their arm posture
prediction performance using data on healthy human motion. Two
synthesized criteria are developed to provide better real-time arm
posture prediction than the five individual criteria. Of these two,
the criterion synthesized using an exponential method predicts
the arm posture more accurately than that using a least squares
approach, and therefore is preferable for inferring the contribu-
tions of the individual criteria to motor control during reaching
movements. As a methodology contribution, this paper proposes
a framework to compare and evaluate redundancy resolution
criteria for armmotion control. A cluster analysis which associates
criterion contributions with regions of the workspace provides a
guideline for designing a real-time motion control system appli-
cable to upper-limb exoskeletons for stroke rehabilitation.
Index Terms—Arm motion control, kinematic redundancy reso-

lution, upper limb exoskeleton.

I. INTRODUCTION

T HE HUMAN arm is kinematically redundant with respect
to reaching and grasping tasks in a 3-D workspace. As a

result, an upper limb exoskeleton designed for stroke rehabili-
tation requires a motion control strategy that can render natural
arm postures. For this purpose, this paper studies reaching
movements to infer the motor control strategy used by the
healthy human arm, and to apply it to the real-time motion
control of the EXO-UL7 upper limb exoskeleton [Fig. 1(a)].
Conventionally, motion control has been viewed as a matter

of the structure and function of the central nervous system.
Studies from the perspective of neuroanatomy have focused
on relating motor functions to different cortical, sub-cortical,
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Fig. 1. (a) EXO-UL7, a dual arm exoskeleton with seven DOFs in each
arm. This system exhibits kinematic redundancy identical to the human arm.
(b) Given a 3-D wrist position, the arm plane formed by the positions of
the shoulder , the elbow , and the wrist can move around an
axis that connects the shoulder and the wrist due to kinematic redundancy.
Redundant DOF can be represented by a swivel angle .

and spinal subsystems [1], [2]. From the perspective of neu-
rophysiology, Donders' law has been applied to arm postures
in reaching movements, yet it is violated when pointing at a
target with the elbow flexed [3]. On the other hand, the equi-
librium-point (EP) hypothesis specifies physiological variables
used by the central nervous system (CNS) as control variables,
to address the redundancy problem (i.e., the behavior of the un-
controlled manifold) in the human motor system at the muscle
level [4]. Unlike the neurophysiological perspective, a robotic
viewpoint considers the human body, particularly the muscu-
loskeletal system, as a mechanical system with kinematic and
kinetic properties. The behaviors of this mechanical system are
constrained by its physical structures and the laws of physics.
The neural system does not so much to dictate the movement of
this mechanical system as to enhance the compatibility of the
system with the environment so that the task can be completed
according to the requirements and with satisfactory perfor-
mance [5], [6]. In this context, the redundancy of the human
arm is resolved by control criteria which optimize performance
variables used in mechanical engineering. Such criteria have
been applied to human motor control processes such as motor
planning, control, estimation, prediction, and learning [7], [8].
When executing a movement plan on a robot with redundant

degrees of freedom, it is necessary to resolve the ill-posed
inverse kinematics and kinetics to determine the mapping from
the planned trajectory to joint motions, and then to joint torques.
The problem of controlling redundant degrees of freedom
(DOFs), i.e., redundancy resolution, has been considered in
the control of robot manipulators. Resolution methods utilize
task dependent constraints [9], [10], or more commonly, per-
formance criteria. The latter include manipulability [11]–[14],
energy consumption [3], [15], smoothness of movement
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[16]–[19], task accuracy [20], and control complexity [21].
However, there is no general framework that compares and
evaluates these criteria.
Redundancy resolution that synthesizes multiple movement

control criteria has addressed the characteristics of movement
behavior to a better extent. For instance,Miyamoto et al. studied
reaching movements in a 2-D workspace without end-point
boundary conditions. By adding a signal dependent noise to the
movement controls, a linear combination of criteria maximizing
the task achievement and minimizing the energy consumption
resulted in a good match to the experimentally-measured hand
trajectories [22]. Biess et al. broke down the motion control
task into independent spatial and temporal motor planning. A
control criterion that restricts the arm dynamics to geodesic
paths is combined with a control that minimizes the squared
jerk along the selected end-effector path. The resulting reaching
movements in a 3-D workspace are close to those which
minimize the change in joint torques and the peak value of
kinematic energy [23]. Kim et al. studied the movements of
reaching to a sequence of targets and predicted the arm postures
in real-time by integrating a biological-based kinematic control
criterion that maximizes the motion efficiency with a dynamic
criterion that minimizes the work in joint space, showing that
the kinematic criteria outperforms the dynamic one [24]. A
study of the tradeoff between minimizing the angular joint
displacement and averaging limits of the shoulder joint range
[25] showed that a linear combination of arm
posture predicted by these two criteria leads to a satisfactory
redundancy resolution.
From the robotic perspective, this paper proposes a general

framework to compare and evaluate motion control strategies
that predict arm posture in reaching movements. In this frame-
work, the arm posture predictions of each candidate criterion are
tested against experimental data collected from point-to-point
reaching. By combining these candidate criteria according to
their arm posture prediction accuracies, synthesized criteria are
developed. The candidate criteria that better predict arm posture
are assigned larger coefficients in the synthesized motion con-
trol criteria, and are therefore recognized as the ones that dom-
inate the arm motion. For control of an upper limb exoskeleton
in robot-assisted stroke rehabilitation, real-time motion control
criteria are preferred, since unlike off-line motion control cri-
teria (e.g., minimum jerk principle [17]), real-time criteria (e.g.,
bounded jerk criterion [26]) do not need to know about future
states (e.g., the end position of the movement). Without the con-
straint of pre-planned movements, the upper limb exoskeleton
can deal with unexpected tasks and encourages self-initiated
movements on the part of the stroke patients.
In the rest of this paper, Section II describes a human arm

model compatible with the EXO-UL7 upper limb exoskeleton.
After introducing the real-time redundancy resolution criteria in
Section III, themethods used for criterion contribution inference
and the experimental protocol for data collection are presented
in Section IV and Section V, respectively. According to the data
analysis results in Section VI, discussion in Section VII infers
the contribution of each criterion to the control of arm motion
and presents a map that associates the dominant motion control
strategy with different task space regions.

II. MODELS OF HUMAN ARM

A. Kinematic Model
The kinematic model of human arm has seven DOFs (three

DOFs for the shoulder, three DOFs for the wrist and one DOF
for the elbow motion). The forward kinematics, including the
Denavit-Hartenberg (DH) parameters, is described in [27]. The
three shoulder joint and one elbow joint are actively involved in
reaching movements. As a result, the orientation of the hand in
the arm model is pre-specified by locking the three DOFs at the
wrist joint.
Given the wrist position in 3-D workspace, the human arm

has one redundant DOF which allows the elbow to move
around an axis that goes through the center of the shoulder and
the wrist joints. This redundant DOF can be represented by a
swivel angle [see Fig. 1(b)]. Given a fixed wrist position in a
3-D workspace, the arm plane formed by the positions of the
shoulder , the elbow , and the wrist can move
around an axis that connects the shoulder and the wrist due to
the kinematic redundancy. The direction of the elbow pivot
axis (denoted by ) is defined as

(1)

A plane orthogonal to can be determined given the position
of . The point of intersection between the orthogonal plane
and the vector is . is the projection of the
upper arm on the orthogonal plane. is the projection
of a normalized reference vector onto the orthogonal plane,
which can be calculated as

(2)

The swivel angle , representing the arm posture, is defined
by the angle between the vector and . If the reference
vector is , then the swivel angle when the
elbow is at its lowest possible point [28].

B. Dynamic Model
The dynamic models of the left and right human arms are ren-

dered via the Autolev software package [29]. The motion equa-
tions generated by Kane's method [30] integrate the estimates
of mass, the center of mass, and the moment of inertia with the
kinematic model of the arm. Given the initial arm condition, the
dynamic model can respond to external forces (such as gravity)
and provide an analytical calculation of the joint space vari-
ables (i.e., joint angles, velocities, and accelerations), as well as
the kinetic energy and potential energy. When customizing the
dynamic model for each individual subject, the center of mass
is estimated according to the distribution of the center of mass
(COM) in [31]. On average, the arm contributes 4.8% of the total
body weight. The mass of arm segments and their inertia ma-
trices are calculated based on the weight of subjects according
to the regression in [32].

III. CRITERIA FOR REDUNDANCY RESOLUTION
The EXO-UL7 exoskeleton is designed to assist self-initi-

ated arm movements in unexpected tasks. Therefore, it requires
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Fig. 2. (a) Criterion 1 maximizes motion efficiency by maximizing the projec-
tion of the longest principle eigen-vector of the manipulability ellipsoid on the
direction from the hand to the virtual target . Corresponding elbow position
falls on the plane formed by , and . (b) Criterion 2 intends to maintain
the arm posture close to the equilibrium arm posture by placing the elbow on
the plane formed by the wrist position and the direction of the equilibrium
vector .

real-time motion control rather than pre-planned motion con-
trol, and thus redundancy resolution based on local (instead of
global) optimization. In this section, three kinematic and two
dynamic motion control criteria are presented, which have been
successful in resolving the kinematic redundancy of the human
arm in reaching movements [3], [14]–[17], [33], [34]. The cri-
teria designed for pre-planned motion control are modified as in
[15] to provide real-time arm posture prediction.

A. Criterion 1: Maximizing the Motion Efficiency

Criterion 1 provides real-time arm posture prediction bymax-
imizing the motion efficiency of self-feedingmovements. Given
the role of the head as a cluster of sensing organs and the im-
portance of arm manipulation to deliver food to the mouth, the
arm postures are determined by the humanmotor control system
for efficiently retracting the hand to the head region. Proposed
in [14], Criterion 1 determines the swivel angle by maximizing
the motion efficiency to a virtual target in the head. A good can-
didate for the position of the virtual target is the position of the
mouth, which is supported by intra-cortical stimulation exper-
iments [35], [36]. When evoking coordinated forelimb move-
ments in conscious primates, each stimulation site produced a
stereotyped posture by which the arm moved to the same final
position regardless of its posture in the initial stimulation. In the
most complex example, a monkey formed a frozen pose with its
hand in a grasping position in front of its open mouth, which im-
plies that during the arm movement toward an actual target, the
virtual target point at the head can be set so that the potential
retraction of the hand to the mouth can be efficient.
Criterion 1 specifies a unique arm posture for each wrist po-

sition in a 3-D workspace. As shown in Fig. 2(a), when the
elbow falls on the plane formed by the positions of the shoulder
, the wrist and the virtual target , the projection of

the longest principle eigen-vector of the manipulability ellip-
soid on the direction from the hand to the virtual target
is maximized. In the direction of the longest principle axis of
the manipulability ellipsoid, the efficiency of the velocity-force
transmission between the joint space and the task space is max-
imized. The end-effector of the manipulator can move fastest in

this direction given the velocity inputs in the joint space. If the
position of is set to be the position of mouth, the designated
arm postures can be the most efficient ones for self-feeding.

B. Criterion 2: Maintaining the Equilibrium Posture
Criterion 2, the rotational axis method proposed in [33],

prefers equilibrium postures at which periarticular shoulder
muscle actuation is minimized. At such postures, the upper arm
is aligned with the equilibrium vector, which points out from
the center of the shoulder along the axis of the circumduction
cone. Criterion 2 stipulates that the axis of rotation of the arm
plane (i.e., the plane formed by the positions of the shoulder,
elbow, and wrist) should be the equilibrium vector. The wrist
position and axis of rotation determine the arm plane which
fixes the elbow position.
The direction of the equilibrium vector for the upper arm

has been experimentally investigated by NASA [37]. In mi-
crogravity, the estimated shoulder flexion is about 36 and the
shoulder abduction is about 50 . Given the direction of this axis,
the position of the elbow always falls on the plane formed by
the rotational axis and the wrist position . As shown in
Fig. 2(b), is the vector component of the rotational axis di-
rection perpendicular to , i.e., the vector rejection of from
. Given that is parallel with the vector , the swivel

angle is

(3)

C. Criterion 3: Minimizing Joint Angle Change
The human motor system prefers motion smoothness. Kine-

matic criteria that minimize the jerk in joint space and task space
were proposed to account for the straight paths and bell-shaped
velocity profiles observed in reaching movements [16], [17],
[34], while dynamic criteria that minimize the change in joint
torque [18], [19] further explained the mild curvature in the
roughly straight task space trajectories. However, these avail-
able control strategies for motion smoothness are mostly de-
signed for off-line motion control. Therefore, this paper pro-
poses to a real-time motion control strategy based on local op-
timization.
Similar to Kang's minimization of the work in joint space

[15], Criterion 3 determines the arm postures in the following
way: given the expected positions of the wrist and the
shoulder , Criterion 3 explores the possible swivel an-
gles for the next time step and selects the one that min-
imizes the norm of the change in the joint angle vector. Experi-
mental data from [15] as well as data collected in this research
show that the swivel angle never changes more than 0.5 per
0.01 s. Given the current swivel angle , Criterion 3 searches
within the range of with a step of

, and the swivel angle for the next time step
is

(4)
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In (4), is the joint angle
vector for current time step. is the joint angle vector
for the next time step computed from a possible value.
Since this algorithm is generally applicable to local optimization
of various performance indices, in Section III-D it is also used to
generate real-time control criteria that minimize kinetic energy.

D. Criterion 4: Minimizing the Change in Kinetic Energy

Energy-efficiency is another possible consideration. Since ac-
tivities of daily living are well adapted to gravity, unless the dy-
namics of the human body are under additional load, the human
motor system may be more concerned with the kinetic energy
than potential energy. Regarding armmotion control, Soechting
et al. suggested predicting the arm posture in reaching move-
ments by minimizing peak kinetic energy [3]. Alternatively,
Biess et al. minimized kinetic energy by looking for a geodesic
path in the Riemannian configuration space. The resulting joint
space trajectories demand less muscular effort since the sum of
all configuration-speed-dependent torques vanishes along this
path [23].
The aforementionedmethods are for pre-plannedmotion con-

trol. For real-time applications, Criterion 4 determines the arm
posture by local minimization of kinetic energy. With the dy-
namic model, kinetic energy for each time step is com-
puted given the states of the arm. The algorithm described in
(5) is similar to that of Criterion 3: given the kinetic energy for
the current time step , Criterion 4 explores the possible
swivel angles for the next time step within the range
of by the step of . The
expected kinetic energy demanded at the next time step

is extracted from the dynamic armmodel. The swivel angle
that minimizes the change in kinetic energy will be selected as
the swivel angle prediction for the next time step

(5)

E. Criterion 5: Minimizing the Work in Joint Space

Minimizing the work in joint space is proposed by Kang as a
real-time dynamic control criterion [15]. The work in the joint
space at each time step depends on (1) the joint torques and (2)
the difference in joint angles, which can be extracted from the
dynamic model given the states of the arm. As (6), Criterion 5
explores in the neighborhood of the current swivel angle
and determines the swivel angle for next time step to
be the one that demands the least work in joint space

(6)

In (6), denotes the work to be done by the th joint.

IV. METHODS OF INFERENCE OF CRITERION CONTRIBUTIONS
The five arm motion control criteria presented in

Section III account for different performance considerations,

including motion efficiency, muscle actuation efficiency, mo-
tion smoothness, and energy consumption. Their prediction
performance has been tested against data collected from dif-
ferent experimental setups, but not against a common baseline.
As a result, comparing their performance is difficult, and the
relative contributions of these criteria to arm motion control
have not been evaluated.
Individual contributions of different criteria inferred from

experimental data provide an important guideline to coeffi-
cient assignment when combining multiple control criteria.
However, methods of inferring criterion contributions have not
been well explored. Kashi et al. inferred criterion contributions
using brute-force search within a limited number of coefficient
combinations [25]. This inference is neither precise enough
to distinguish the behavior of different subjects, nor efficient
enough to compare more control criteria within the same scale.
Kim et al. applied least squares regression to infer the criterion
contribution of the two control criteria in comparison. The
inferred criterion contributions for each recorded movement are
constant, which reflects behavior differences between subjects,
but not how criterion contributions change during movement.
In order to provide real-time inference of criterion contribu-
tions, this paper proposes (1) a modified least squares method
and (2) an exponential method, both of which can compare and
evaluate large numbers of criteria efficiently.

A. The Least Squares Method
The least squares method infers criterion contributions during

a period. Considering the five candidate criteria presented in
Section III, given the individual swivel angle prediction of each
criterion for a time step (denoted by , ), the
prediction of swivel angle for that time step (denoted by )
is

(7)

is the criterion contribution inferred for the th
criterion. Using recent swivel angle measurements (twenty con-
tinuous time steps in measurement history before and including
the current time step), the criterion contribution of each crite-
rion for the next time step are computed by

(8)

where is the prediction history from the five criteria

...
. . .

... (9)

is the measurement history

... (10)

and is the pseudo-inverse of matrix using the least
squares method.
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The coefficients that indicate the contributions are further
normalized as

(11)

With reference to (7), these coefficients will used to generate the
th swivel angle prediction.

Note that for the least squares method, the more criteria being
evaluated the more measurements the least squares method re-
quires to render the estimation for current time step. The preci-
sion of the inference can be improved by involving more mea-
surements from previous time steps. However, as the older mea-
surements are involved, the inferred contributions become less
sensitive to the temporal variation of the criterion contributions.
As a result of this tradeoff, this paper tentatively proposes using
the last twenty measurements when inferring the contributions
by the least squares method. In experimental data, a typical trial
in the reaching movement experiments lasts for 150–250 time
steps at the sampling rate of 100 Hz.

B. The Exponential Method
An alternative method of inferring contribution is the expo-

nential method [38]. This method evaluates the contribution
coefficient of a criterion based on the difference between the
experimentally recorded swivel angle and the swivel
angle predicted by this criterion. At time step , each of the
five candidate criteria provides an individual
swivel angle prediction, denoted by . The norm of the pre-
diction error for each criterion is computed as

(12)

Based on the five prediction errors, the standard deviation
among the prediction errors (denoted by ) can be computed.
According to the principle of maximum entropy, the proba-

bility of the criterion can be expressed as

(13)

(see Section IV-A). Since the maximum entropy principle does
not result in the probability distribution providing bias towards
any model, the experimental outcomes from all the models are
assumed possible. Therefore, the standard deviation of the pre-
diction errors is the property shared among the models, which
results in the criterion contribution computed as

(14)

The criterion contributions are then normalized

(15)

which will be used to generate the swivel angle prediction at
time step .
Because it does not rely on as much history, the exponential

method is expected to outperform the least squares method for
real-time contribution inference, particularly when the contribu-
tions of various criteria change during movement. Furthermore,

Fig. 3. (a) and (b) Top and front views of the spherical workspace, respectively.
(c) Eight targets are selected among all the available targets (denoted by blue
dots in circles). (d) Subject is performing the instructed reaching movements,
withmarkers attached to her right arm and the torso for position tracking. (a) Top
View. (b) Front View. (c) 3-D spherical workspace. (d) Attached markers.

the exponential method has no limit on number of the criteria it
can process in parallel.

C. Criterion Synthesization
The two proposed methods infer criterion contributions in

real-time, which can be used to compare the candidate criteria.
These inferred contributions can also be used as coefficients for
criterion synthesis to improve arm posture prediction accuracy,
because no individual control criterion can fully account for arm
postures in reaching movements.
Arm motion control is adapted to various environmental con-

straints and is therefore subject more than one performance con-
sideration. Synthesizing multiple control criteria takes this com-
plexity into account. The contribution-inference/criterion-syn-
thesis methods presented here are not limited to the five candi-
date criteria presented in Section III. Instead, these methods are
proposed as general frameworks for control criteria comparison
and evaluation. By inferring the contributions of different con-
trol criteria, a limited number of “major” components that are
significant to the motor control strategy will be distinguished
from the “minor” components that are less prominent consider-
ations in arm motion control. The synthesized arm motion con-
trol criteria aim to capture the important factors that influence
the motor control system, rather than generate good arm posture
predictions by over-fitting the experimental data with too many
variables.

V. EXPERIMENT PROTOCOL
The arm posture predictions of motion control criteria are

tested against experimental data collected on point-to-point
reaching movements. In this experiment, ten healthy subjects
(six males and four females) are instructed to conduct reaching
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Fig. 4. Swivel angle prediction performance for each candidate criterion. and denote the mean and the standard deviation of the prediction error. (a) Criterion
1. (b) Criterion 2. (c) Criterion 3. (d) Criterion 4. (e) Criterion 5.

movements with their right arms to each of the eight targets
specified in the spherical workspace (Fig. 3). Each subject
performs eight reaching movement sessions, one for each
target. The reaching movements in each session start from one
of the remaining seven targets. A complete session consists
of five repetitions of seven different movements. The total
number of trials for each subject is . During the
experiment, the subject sits in a chair with a straight back. The
chair is placed such that the subject can point at the targets with
comfort and with his/her elbow naturally flexed. The height
of the workspace center is adjustable and is always aligned
with the right shoulder of the subject. The subject's right arm
is free for reaching movements, but the body of the subject is
set against the chair back to minimize shoulder displacement.
During the reaching movements, subjects keep the pointing
fingers in line with the forearm to minimize wrist flexion.
Subjects are asked to point with the index finger tip at a com-

fortable pace. At the beginning of each trial, the subject is in-
formed of the targets that the trajectory starts with and ends at,
i.e., the start and end targets. After receiving a “start” command,
the subject moves his/her index finger from the start target to the
end target. Amotion capture system records a single file for each
trial at a sampling rate of 100 Hz. As shown in Fig. 3(d), passive
reflective markers are attached to the torso and the right arm of
the subject. The recording starts from the time when the sub-
ject points the index finger to the start target and ends after the
index finger tip becomes steady at the end target. To minimize
the effect of fatigue, subjects take a rest after completing each
session. With the recorded data of shoulder, elbow, and wrist
positions, the swivel angles profiles are extracted for each trial.

VI. RESULTS

This section presents the results of the arm posture predic-
tion performance of the five candidate criteria, as well as the
performance of the synthesized criteria using the least squares
and exponential methods. The comparison shows that the least
squares method results in prediction performance comparable
to the candidate criteria with good prediction performance,
while the exponential method infers the criteria contribution
more accurately and therefore generates much better arm pos-
ture predictions. Further data analysis clusters the computed
coefficients to identify characteristic combinations of motion
control criteria. The dominant regions of each characteristic
combination are presented in a map that associates the clusters
with wrist positions in task space.

Fig. 5. Swivel angle prediction performance of the synthesized criteria using
(a) the least squares method and (b) the exponential method. and denote
the mean and the standard deviation of the prediction error. (a) Least squares
method (LSQ). (b) Exponential method (EXPR).

A. Prediction Performance of the Criteria
Figs. 4 and 5 show the means and standard deviations

of the prediction errors for all the valid trails (2674 out of 2800)
conducted by 10 subjects. Fig. 4 shows the prediction perfor-
mance of the five candidate criteria. Fig. 5 shows the prediction
quality of the synthesized criteria using the least squares method
and the exponential method, respectively. Comparison between
Figs. 5 and 4 shows that the predictions of the synthesized cri-
teria using least squares is more accurate than Criterion 1 and
2, comparable to Criterion 3 and 4, and worse than Criterion 5,
while the synthesized criteria using the exponential method is
much more accurate than any candidate criterion. For the expo-
nential method, 79.32% of the trials have both and

, and only 3.37% trials have either or
. For the least squares method, 15.78% of the trials

have both and . 71.20% trials have ei-
ther or .
The exponential method infers the variance of the criterion

contributions better than the least squares method. As shown in
Fig. 6, the contribution coefficients assigned by the exponential
method vary more than the those assigned by the least squares
method. In Fig. 6, the swivel angle and the coefficients were nor-
malized relative to the percentage of the path length traversed
by the hand (instead of time), since in the reaching experiments
each subject moved at his/her own pace. The coefficients corre-
sponding to the candidate criteria are denoted by , where

. “Exp” denotes the measured (experimental) swivel
angle profiles, and “Est” denotes the swivel angle predicted (es-
timated) by the synthesized criteria. Although both methods for
inferring criteria contribution coefficients result in the predic-
tions that follow trends of the measured swivel angle, the pre-
diction errors of the exponential method are much smaller. This
may be because the exponential method uses the most recent
data sample, while the least square method depends on the last
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Fig. 6. Swivel angle predictions of candidate criteria, as well as their inferred
contributions. to refer to the candidate criteria. Est refers to the synthesized
criteria. Exp refers to the swivel angle measurements. (a) Least squares method
(LSQ). (b) Exponential method (EXP).

20 data samples. Comparison of the coefficient profiles shows
that the criteria with large prediction errors are suppressed ef-
ficiently by the exponential method, which result in a bigger
spread of coefficient values.

B. Characteristic Combinations of Motion Control Criteria

The previous subsection has shown that healthy reaching
movements can be best explained by synthesizing multiple
criteria using the exponential method. The coefficient assigned
to each criterion indicates the time-varying contribution of
that criterion. In the following section, K-means clustering
will be applied to the contribution coefficients inferred by the
exponential method to identify the characteristic combinations
of motion control criteria, which can be further mapped to task
space the wrist positions.
1) K-Means Clustering of Coefficient Vectors: For each step

during the movement, the exponential method has inferred the
criterion contribution coefficients, which forms coefficient vec-
tors . Regardless of the sequences of con-
secutive steps, each coefficient vector is considered as an in-
dividual data point in the K-means clustering. In order to de-
cide the number of clusters, the sum of the squared distances
from each point to the center of its cluster (denoted by ) is
computed. This sum decreases as the number of clusters in-
creases. Fig. 7 shows the normalized with respect to for

. At , the ratio between and is re-
duced to 5%, which is appropriate for clustering. The percent-
ages of vector coefficients in each cluster for is shown
in Fig. 7(b). Cluster 1 has about 30% of the coefficient vectors,
while the population in every other cluster is less than 15%.
2) Results of K-means Clustering: Shown in Fig. 8(a)–(i),

the K-means clustering of the coefficient vectors has identified
characteristic combinations of contribution coefficients. With
five candidate criteria, a threshold coefficient value of 0.2 is set

Fig. 7. Sum of the squared distances to the cluster centroid is computed
for increasing cluster number . When the ratio between and is re-
duced to 5%, the clustering is stabilized, at . (a) Clustering threshold.
(b) Cluster distribution, .

Fig. 8. Characteristic combinations of contribution coefficients are identified
by K-means clustering. With respect to the threshold coefficient value 0.2, the
dominant criteria are distinguished from the non-dominant ones. (a) Cluster 1.
(b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5. (f) Cluster 6. (g) Cluster
7. (h) Cluster 8. (i) Cluster 9.

to distinguish between the dominant and nondominant criteria.
As a result, the characteristic combination of coefficients can be
encoded a five digit binary string. For instance, the characteris-
tics of movements in Cluster 1 [see Fig. 8(a)] can be encoded as
00111, indicating that Criteria 3, 4, and 5 are the dominant cri-
teria, whereas Criteria 1 and 2 make no significant contribution.



LI et al.: SPATIAL MAP OF SYNTHESIZED CRITERIA FOR THE REDUNDANCY RESOLUTION OF HUMAN ARM MOVEMENTS 1027

In Fig. 8, the clusters are ordered by point populations. Clus-
ters 1, 2, 3, and 6, which in total have about 70% of the point
population, are dominated by multiple criteria, while each of the
remaining five clusters has only one dominant criterion. This ex-
plains the higher performance of the synthesized criteria: most
of the data can only be predicted using multiple criteria. It also
explains how individual criteria can have good prediction per-
formance in some cases: some parts of the data are best ex-
plained by a single criterion.
3) Associating Clusters With Task Space Wrist Positions:

The clusters of coefficient vectors, which indicate the charac-
teristic combinations of motion control criteria, can be mapped
to wrist position in the task space. As shown in Fig. 9(a)–(i), the
3-D task space is divided into cells with a grid on
the plane the subject is facing (i.e., the x-z plane). Every data
point (i.e., coefficient vector) falls into a cell according to its as-
sociated wrist position. The frequency of a cluster in a cell is the
ratio between the number of points from that cluster within that
cell and the total number of points in that cell. Given a specific
cluster that represents a characteristic combination of criteria,
arm postures are more accurately predicted by that cluster in
the regions where it has higher frequency.
Clusters 1, 2, 3, and 6 correspond to characteristic combina-

tions with multiple dominant criteria. For instance, the domi-
nant criteria of Cluster 1 minimize the joint angle change, the
kinetic energy and the work in joint space. In Fig. 9(a), Cluster
1 has high frequency in the lower half of the task space, and
in the top-right corner. Cluster 2 is like Cluster 1 except that it
does not minimize kinetic energy. It only has high frequency
in the lower-right of the task space. Both Clusters 3 and 6 are
dominated by the rotational axis criterion. Cluster 3 also min-
imizes the joint angle change and works best in the top-left of
the task space, while Cluster 6 also minimizes the work in joint
space and works best when the wrist is on the left side of the
task space.
The remaining clusters correspond to the combinations dom-

inated by single criteria. As a result, their frequency graphs in-
dicate the task space regions in which individual criteria have
good arm posture prediction. Cluster 4 minimizes the change in
joint angle and works best for the right side of the task space.
Cluster 5 minimizes the kinetic energy and works well in the
lower left of the task space. Cluster 7 emphasizes Criterion 1
and has high performance predicting arm posture when the hand
reaches the leftmost edge of the task space or moves around the
top-right of the task space. Cluster 8 is dominated by only the ro-
tational axis method and works well for the top half of the task
space. Cluster 9 minimizes the work in joint space and works
best for the top-right and bottom-left regions.
Fig. 9(j) is a combination of the individual frequency graphs.

In Fig. 9(j), each cell in the task space is filled with the color
of the cluster with the highest frequency in that region. This
colored map reflects the most frequent combinations of criteria
in different regions of the task space.

VII. DISCUSSION

This paper has analyzed recorded data from reaching move-
ments and inferred the contributions of various criteria to arm

Fig. 9. Images (a)–(i) present the clusters' frequencies in the task space. Image
(j) compares the graphs for the nine clusters and illustrates the most-frequent
combination of motion control criteria for each cell in the task space. (a) Cluster
1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5. (f) Cluster 6. (g) Cluster
7. (h) Cluster 8. (i) Cluster 9. (j) Color Map.

motion control. Five criteria (three kinematic and two dynamic)
are investigated, and are compared by their the swivel angle
prediction performance. Inference based on synthesized criteria
using the exponential method predicts the arm postures more
accurately than inference using the least squares method. Using
the exponential method, among 2674 valid trials collected from
ten healthy subjects, the mean and standard deviation of the pre-
diction errors during movement was less than 5 for 79% of the
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trials, and only 3% of trials had either a mean or standard devi-
ation of the prediction error of more than 10 .
Using K-means clustering, the contribution coefficient vec-

tors are grouped into nine clusters with distinguishable coeffi-
cient value distributions, which indicate the characteristic com-
binations of motion control criteria. The clusters are mapped to
wrist positions in the 3-D workspace, and their high-frequency
regions are presented in a colored map. Based on the results
presented in Section VI, this section will provide further dis-
cussion that highlights the new findings regarding the strategies
of healthy arm motion control. Both the methodology contri-
bution (i.e., the general framework that synthesizes, evaluates,
and compares motion control criteria that resolve the kinematic
redundancy of human arm) and its application to the real-time
control of an upper limb exoskeleton will be addressed.

A. Regional Motion Control Strategies in the Task Space

The data analysis has shown by synthesizing a limited
number of control criteria that address different aspects of
motion characteristics, the kinematic redundancy of the human
arm can be resolved to render natural human arm postures in
reaching movements. The redundancy resolution according
to the combined control criteria outperforms all of its indi-
vidual components. The method used to combine the criteria
is critical to getting good estimations of arm posture. The arm
postures are not be well-predicted by the least squares method,
which assigns the contribution coefficients based on the overall
prediction performance within a relatively long history. The
higher performance of the exponential method, which assigns
contribution coefficients only based on the prediction of the
last time step indicates that the contribution of each individual
criterion is time-sensitive. Indeed, the contribution coefficient
assigned to each individual criterion varies during the reaching
movement, instead of maintaining a constant value for the
whole movement. In previous research, Kashi et al. integrated
two kinematic control criteria and suggested constant partial
contributions to combine these two criteria: 70% for the cri-
terion that minimized angular displacement and 30% for the
criterion that averaged the limits of the shoulder joint range
[25]. Kim et al. combined a criterion that maximized motion
efficiency (Criteria 1) with one that minimized the work in
joint space (Criteria 5) using least squares and claimed that the
contribution of the dynamic criterion is negligible compared
with the kinematic criterion [14]. Biess et al. suggested a global
path planning method that defines the temporal properties of the
movement by minimizing the squared jerk along the selected
end-effector path, and the spatial properties of the movements
by finding the geodesic path in joint space [23]. According to
this method, there exists a single control criterion that dictates
the spatiotemporal properties of reaching movements. These
results are all challenged by our findings that 1) the contribution
coefficients of combined criteria should be time-varying instead
of constant, and 2) no single control criterion can accurately
model arm movements from the beginning to the end.
Clustering the contribution coefficient vectors showed the

spatial dependence of the criterion contributions in addition to
its temporal dependence. A combined map of cluster frequency

[Fig. 9(j)] shows that the lower part of the workspace is dom-
inated by cluster 1 (represented by red). Cluster 1 is signifi-
cantly affected by criteria 3, 4, and 5: the kinematic criterion
that minimizes the joint angle change, as well as the two dy-
namic criteria that minimize the change in kinetic energy and
the work done in joint space. A possible explanation for the high
frequency of Cluster 1 in this region is that when reaching for
targets in the lower part of the workspace, the arm is far away
from the center of the stereoscopic visual range. Without seeing
the movements of the whole arm, motion control may be more
dependent on proprioceptive feedback. Low elbow postures in
accordance with the direction of gravity do not block the view
for reaching movement in this region, and therefore may be pre-
ferred for less energy consumption. In addition, when reaching
to the lower-left part of the workspace, these energy-saving
elbow postures may be preferred since the arm motion range
is constrained by the torso.
In the upper-right part of the workspace, Cluster 3 is the

most frequent [represented by yellow in Fig. 9(j)]. According
to Fig. 8(c), the control strategy of cluster 3 is strongly affected
by two kinematic criteria: maintaining the equilibrium posture
(criterion 2) and minimizing the joint angle change (criterion
3). With the shoulder position aligned with the center of the
workspace, the upper part of the workspace is about even with
eye-level. The equilibrium posture may be preferred since it nat-
urally brings the hand into the stereoscopic visual range, and
results in less work for the periarticular muscles. Note that the
dynamic model used simulates the human arm as linked rigid
bodies. Without simulating muscular forces, dynamic criteria
are less useful than the equilibrium posture criterion in pre-
dicting motions in this area. The criterion that minimizes the
joint angle change demonstrates a strong impact in Clusters 1
to 4. Considering the fraction of the coefficient vectors in these
four clusters (62.56%) and the area of the workspace where they
have high frequency [see Fig. 9(a)–(d)], this criterion that em-
phasizes smoothness of motion is generally applicable to the
whole workspace.

B. Methodology Contribution
As a methodology contribution, this paper proposes: 1) a gen-

eral framework for the comparison of real-time motion control
criteria and 2) methods for criterion synthesis and contribution
inference. By synthesizing a highly-accurate motion control cri-
terion out of several candidate criteria, themethod followed here
is able to infer the contribution of each candidate criterion to
arm motion control, and the temporal and spatial variation of its
contribution. Clustering is used to determine which criteria are
related, and find characteristic combinations of criteria that best
explain arm motion in different areas of the task space. This al-
lows for high-fidelity analysis of the criterion contributions, and
a computationally efficient cost function which ignores criteria
with negligible contributions could be constructed as a result.
This framework could also be used to evaluate more candidate
criteria besides those presented in this paper.
Within the proposed general framework, the least squares and

the exponential methods are investigated. Section VI-A presents
the prediction quality of the synthesized criteria using these
methods, as well as the prediction quality of each candidate
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criterion. Compared to the least squares method, the proposed
exponential method is preferable for criterion synthesis and
contribution inference: it predicts the arm posture more ac-
curately than all of the individual candidate criteria, while
the least squares method predicts no better than the criterion
with the best individual performance. The main difference
between the two synthesis methods is that the least squares
method considers the last 20 steps of history and tries to find
a set of constant coefficients which maximize prediction accu-
racy during that period, whereas the exponential method only
considers prediction error in the last step and adjusts the coeffi-
cients at each step accordingly. The least squares method would
be able to predict arm posture accurately if the contribution of
each candidate criterion were relatively constant, but the more
accurate prediction rendered by the exponential method shows
that the contributions of candidate criteria are not constant. As
shown in Fig. 6–Fig. 9(j), the contribution coefficients vary in
time and space.

APPENDIX

The entropy of the discrete probability distribution
at the time step is

(16)

The distribution satisfies the constraint

(17)

Furthermore, based on the observed quantities, the variance
of the distribution should be equal to the experimentally ob-
served variance, that is

(18)

According to the maximum entropy principle [38], the least
informative prior distribution is defined by the set of values

that maximize the entropy [(16)] under the above two
constraints. This maximization problem can be solved using La-
grange multipliers and as an unconstrained maximization
problem of the cost function

(19)

The maximum is defined by for
and for , which yields

(20)

and the resulted probability is computed as

(21)

According to the constraint on the sum of the probability, the
probability needs to be normalized as (22) such that the
constant can be canceled

(22)

Given the prediction error based on the criterion
, is a common property of , which is the

the probability density function of . These probability density
functions satisfy

(23)

such that 1) is the exponential distribution and 2) it is
independent of the criterion and therefore is the same for all .
Since , we can set to obtain

(24)
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