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Abstract— High-fidelity computational human models pro-
vide a safe and cost-efficient method for the study of driver
experience in vehicle maneuvers and for the validation of
vehicle design. Compared to passive human model, an active
human model that can reproduce the decision-making, as well
as vehicle maneuver motion planning and control will be
able to support more realistic simulation of human-vehicle
interaction. In this paper, we propose a integrated human-
vehicle interaction simulation framework that can learn the
motion primitives of vehicle maneuver motions from human
drivers, and use them to compose natural and contextual
driving motions in simulation. Specifically, we recruit seven
experienced drivers and record their vehicle maneuver motions
on fixed-base driving simulation testbed. We further segmented
the collected data and classified them based on their similarity
in joint coordination. Using a combination of imitation learning
methods, we extracted the regularity and variability of vehicle
maneuver motions across subjects, and learned the dynamic
motion primitives that can be used for motion reproduction
in simulation. Our research efforts lead to a motion primitive
library that can be used for planning natural and contextual
driver motion, and will be integrated with the driving decision-
making, motion control, and vehicle dynamics in the proposed
framework for simulating human-vehicle interaction.

I. INTRODUCTION

The development of vehicle active safety and driver-
assistance technologies has motivated the high-fidelity mod-
eling of humans for driving tasks. Such human driver models
provide automotive system designers with effective methods
for investigating driver behavior as well as the dynamic phys-
ical interaction between driver and vehicle in a wide range
of driving scenarios [1]. These insights contribute to the im-
proved design and validation of active safety systems [1], [2],
the usability and intelligence of driver-assistance systems [3],
[4] as well as the vehicle ergonomics analysis [5], [6]. In
addition, studying human-vehicle interactions in high-fidelity
human models is usually preferred because the simulation
tests performed using real human drivers are costly, time-
consuming and strictly limited due to safety regulations.

To facilitate the study of human-vehicle interaction in
simulation, it is necessary to build a computational hu-
man model that can simulate a driver’s coordinated vehicle
maneuver motions in response to the vehicle dynamics.
For many driving tasks, a driver needs to coordinate the
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Fig. 1. Learning and reproducing natural vehicle maneuver motion.

motion for gas/braking pedaling with steering control, which
results in complex motion response ranging from passively
maintaining body posture to actively maneuvering the vehicle
according to traffic and road condition. So far, there has been
limited investigation on an integrated simulation framework
which enables realistic rendering of both driver task reason-
ing as well as whole-body posture and manipulation mo-
tion. Existing research in the development of human driver
models address either the task reasoning aspect, focusing
on what maneuvers to perform based on desired vehicle
motion, or physical interaction and considerations such as
posture and manipulation [7]. In [7], an integrated cognitive-
physical human model is proposed, based on the HUMOSIM
Ergonomics Framework [6], for investigating driver behavior
during in-vehicle tasks. Musculoskeletal models of human
arms have also been integrated with steering control al-
gorithms to render realistic steering manipulation [3], [4].
Howeyver, it is still unclear how to render realistic active
whole-body coordinated motion in vehicle maneuvering tasks
in response to the dynamics of the vehicle under maneuver.

In this paper, we propose a integrated motion planning
and control framework for render whole-body coordination
in physical interaction between human driver and the vehicle
in typical driving scenarios. This framework incorporates
an OpenSim human model [8] to simulate human body
dynamics and uses the dynamic movement primitives learned
from human drivers to compose coordinated vehicle ma-
neuver motions. Imitation learning has been successfully
implemented for transferring complex human motor skills
to robotic systems for reaching [9] and object manipu-
lation [10], [11]. In this study, we propose a systematic
approach for autonomously identify the vehicle maneuver
motion primitives, and integrate multiple imitation learning
methods to extract and reproduce the motion regularity
across experienced drivers (see Fig. 1).

The rest of the paper is organized as follows: Section II
presents related work in the development of digital hu-
man models, autonomous motion segmentation and learning
movement primitives from demonstrations. In Section III, we



introduce our proposed framework for computational human
driver model, and present our experiments for collecting
vehicle maneuver motion data and methods for data analysis.
Section IV describes the implementation of our framework
on the simulated driver model. Results are presented in Sec-
tion V.

II. BACKGROUND AND RELATED WORK

Digital human models have found increasing applications
in various fields including computer animation [12], er-
gonomics research [6], biomedical studies [8], automotive
safety research [1], [13] and many more. This is because
they provide researchers will an effective means of analyzing
and predicting human behavior in a variety of scenarios.
Automotive researchers have employed digital human models
for predicting human driver’s maneuver behavior [1], [14],
injury outcomes from crash scenarios [13], validation of
driver-assistance systems [4], [3], analyzing driver comfort
and vehicle ergonomics [6], [15]. However, limited work has
been done on the development of a human driver model for
full active rendering of whole-body coordinated motion in
driving tasks.

Due to the complexity and sophistication of the multi-joint
coordinated movement of humans, it is very challenging to
plan and generate human-like motions in constrained con-
texts like driving. Therefore, we take the imitation learning
approach, and compose natural vehicle maneuver motions
based on the motion primitives learned from experienced
human drivers. Learning from demonstration (LfD) has be-
come a popular approach for the transfer of complex motor
skills from human actors to non-human actors - robots,
virtual models, etc. Various learning frameworks have been
proposed in the literature. A review of existing techniques
through a defined pipeline is presented in [16]. In order to
transfer motor skills, the demonstrations need to be broken
down into basic characteristic movement primitives (MP).
These basic MP are then defined in a mathematical repre-
sentation [17]. A summary of existing methods for learning
and encoding MP are addressed in [17]. These methods
include stochastic approaches such as hidden Markov Models
(HMM) [18], Gaussian Mixture Models [19], [10]; as well
as dynamical systems approaches [20].

Given the data collected from experienced drivers, efficient
and accurate motion segmentation method is required to
identify the driving motion primitives. Manual segmentation
can be tedious and inaccurate when dealing with human
motions that involve the coordination of many degrees of
freedom [21]. For autonomous data segmentation, we use
segmentation cues that can identify the transition points
between the vehicle maneuvers that are significantly dif-
ferent in joint coordination. Previous research efforts have
proposed many techniques that differ in application domain
and computational resources. Lin ef al. [21] describes online-
based techniques as those where segment transition points
are defined based on thresholding of some feature vector,
without need for pretrained models. These techniques include
Zero Velocity Crossing (ZVC) employed in [9], [22] to

automatically segment arm movement data for generation of
movement primitives, statistical methods such as Principal
Component Analysis (PCA), Probabilistic PCA and Guassian
Mixture Model (GMM) [23]. These techniques are computa-
tionally inexpensive and thus can be performed online. Other
segmentation techniques including Dynamic Time Warping
(DTW) [24], Viterbi Algorithm [25] and HMM [26] may
yield more accurate results, but are typically computationally
expensive and hence have to be performed offline [21].

III. METHODOLOGY

This section describes our proposed framework for com-
putational human driver model and our methods for learning
and reproducing vehicle maneuver motions from human
demonstration.

A. A Framework for Computational Modeling of Human-
vehicle Interaction

To investigate realistic whole-body coordination in phys-
ical interaction between human driver and vehicle, we
propose a framework which integrates a full-body human
driver model with a vehicle model in OpenSim [8], and
provides a closed-loop control to render realistic passive and
active driver motions. Shown in Fig. 2(a), the framework
of the computational driver model consists of four major
components. The driving task reasoning layer computes the
desired pedal angles 5;1 for longitudinal motion control and
the steering wheel angle 8¢, for lateral motion control [27],
while the coordinated motion planning layer computes
the corresponding joint torques T in the whole-body coor-
dination. The driver dynamics layer uses OpenSim whole-
body musculoskeletal model to simulate the human driver’s
forward kinematics and dynamics, and the resulted maneuver
motions. It also estimates the muscle-level actuation, which
can be used to analyze the comfort/potential injury resulted
from the driver’s reactive motion. The driver’s commanded
pedals &, and steering wheel &y, angles, resulting from the
maneuver motions computed in the driver dynamics layer,
are fed to the vehicle dynamics layer.

B. Learning and reproducing vehicle maneuver motions

Shown in Fig. 2(b), we propose to learn the coordinated
motion primitives for vehicle maneuver motions (e.g., wheel-
steering, pedal pressing) from human drivers, and apply them
to the motion planning of computational human model in
the simulation of human-vehicle interactions. To be specific,
we (1) collected vehicle maneuver motion data from ex-
perienced drivers in passive driving test bed, (2) clustered
the segmented motion data, (3) extracted the regularity and
variability of the same kind of vehicle maneuver motions
using imitation learning algorithms, and (4) built a motion
primitive library for reproducing contextual vehicle maneu-
ver motions in simulation. In this section, we will describe
our experiment for data collection and methods for data
analysis, motion learning and reproduction.
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Fig. 2. Framework for understanding driver-vehicle interaction in driving tasks. (a) shows the control framework for rendering whole-body coordination

in driving tasks. (b) shows the motion learning and reproduction framework.

Fig. 3. A subject is driving in fixed-base simulation testbed within motion
capture laboratory. (Left): Experimental setup. (Right): Screen capture of
the driving simulator game

C. Experiments

Our experiment collected data of natural vehicle maneuver
motions in daily driving tasks. We recruited 6 healthy sub-
jects without vision, motor disability and with at least two
years of licensed driving experience. During the experiment,
the subject drove in a fixed-base driving simulation test bed
(see Fig. 3). The operator console supports the control of
a vehicle within a driving simulation environment (City Car
Driving v1.5 Gaming Software) using Logitech G920 driving
hardware, and displays the simulated driving context via a
21” monitor.

a) Task description: Our subjects were asked to drive
in three different driving contexts: highway, city/town road,
and country road. The subjects drove under each condition
for six minutes. These contexts were selected to capture
a wide range of driving behaviors under various road and
traffic conditions. To avoid fatigue, subjects were allowed to
take breaks between driving sessions.

b) Intake Survey: After giving informed consent, sub-
jects were asked to complete a survey to collect demographic
information (age, gender) and a description of their driving
experience, style and video gaming experience.

¢) Practice session: The subjects were required to
pass a practice session before participating in the study.
For each condition, the subject was allowed a maximum

of 10 attempts to complete 3 successful practice runs. A
practice run is considered successful if the subject drives for
2 minutes without getting into an accident or accumulating
more than 30 driving errors including driving against traffic,
lane changing without signaling, etc. (reported by the gaming
software). Failure to pass the practice session would exclude
the subject from participating in the rest of the study.

d) Post-Session Surveys: At the end of the study,
subjects were asked to evaluate their experience in the
driving study. The survey included the NASA-Task Load
Index (NASA-TLX) on a five-point Likert scale to evaluate
perceived workload as well as questions to evaluate the level
of realistic rendering of driving provided by the simulator.

e) Data Collection: We attached passive reflective
markers to the subject and record his/her whole-body mo-
tions using Vicon motion capture system at 100 Hz fre-
quency. We simultaneously recorded the subject motions
using video camera and driving context using screen cap-
turing, to facilitate data segmentation and labeling, and to
match driver’s motions to the driving context. Data for
actual steering wheel and gas/break pedals motions were tele-
metered at a rate of 100Hz. A 2nd-order low-pass butterworth
filter with a cutoff frequency of SHz was used for removing
the high frequency noise from the data.

D. Data Analysis

1) Autonomous Data Segmentation: In this paper, we
focus on learning and producing the motion primitives that
address the lower-extremity joint coordination during pedal
pressing. To extract representative vehicle maneuver motions,
we need to segment the long, continuous sequence of driving
motion data into smaller components and cluster those with
shared, distinct features. We use a feature vector thresholding
method based on the characteristics of our movement data.
In vehicle maneuvering tasks, drivers typically perform two
basic foot movements: switching from one pedal to another,
and pressing on a pedal. Our objective is to extract data



segments when the foot is in the switching movement. To
do this, we define a simplified feature vector as the position
of the foot. Based on knowledge of the fixed positions of
the pedals, threshold values are set to define the segment
transition points in the data.

2) Clustering Motion Segments using DMP: The resulting
sequence of motion segments are clustered in order to real-
ize the characteristic motion primitives that address lower-
extremity motion in driving. The characteristic features of
each data segment are modeled by the Dynamic Movement
Primitives (DMP) framework and encoded as the weighting
coefficients of the Gaussian basis functions [20].

We use an unsupervised learning method—K-means
clustering—to partition the respective weighting coefficients
into k clusters. To learn the motions for pedal operation tasks,
we set k = 3, to represent gas-to-brake foot motion, brake-
to-gas foot motion and pedal pressing motion.

3) Learning Movement Primitives for Motion Reproduc-
tion: The next step is to extract the regularity and variabil-
ity of respective vehicle maneuver motions using imitation
learning algorithms and encode them as motion primitives.

a) Learning motion regularity and variability: we use
GMM/GMR to learn an averaged behaviour (i.e. trajectories
of the coordinated DOFs) from the clustered demonstrations
of the same pedal operation task [10]. Note that GMM is
used as a parametric model of the probability distribution
of the clustered motion data [28]. This model is represented
as a weighted sum of M Gaussian component densities. The
parameters of the mixture model, {wi,ui,Ei}ﬁ-‘i | - mixture
weights, mean vector and covariance matrix of the i-th
Gaussian distribution respectively - are estimated iteratively
using the expectation-maximization (EM) algorithm [29].
The choice of M can be estimated based on the value
which maximizes the Bayesian Information Criterion (BIC)
[30]. This criterion computes a score that describes the
optimal number of components required to accurately fit
the data. On the other hand, a Gaussian mixture regres-
sion (GMR) [31] process is implemented on the mixture
model to retrieve a generalized trajectory [10]. This averaged
trajectory, £ = {% ;, £}, representing temporal values and
the corresponding spatial values respectively are estimated
through regression [10]. By combining GMM with GMR, we
can extract the averaged motion for all the coordinated lower
extremity joints, with the variability along the trajectory.

b) Learning and reproducing averaged behaviors: We
further encode the averaged trajectories of the coordinated
joint using DMP model [11]. The resulting generalized
trajectory, £(¢), is encoded by the DMP framework using
a second-order differential equation which is interpreted as a
linear spring-damper system perturbed by a non-linear forc-
ing term [11], [20]. Specifically, the non-linear forcing term
is a weighted Gaussian basis function with w weights which
is used to encode the generalized trajectory. The desired
non-linear forcing function, fy.(s), for a given behavior is
computed by inserting the generalized trajectory, £(¢), and
its derivatives v(¢) and v into the differential equation. Then
a linear regression problem is solved to define the weights w;

that minimize the error criterion to drive the f(s) to fyes(s).
The most common method used is the locally weighted
regression (LWR). The weights, parameters of the DMP,
are stored in the motion library. To reproduce a motion,
a movement plan which includes a sequence of basic foot
movements is defined to achieve the desired coordinated
motion. These basic movements, which are already encoded
as motion primitives in the motion library, can then be reused
for different start and end positions for all the degrees of
freedom [11].

IV. IMPLEMENTATION

This section introduces our implementation of the compu-
tational driver model for high-fidelity simulation of human-
vehicle interactions, and describes how to use the motion
primitives learned from human drivers for planning contex-
tual vehicle maneuver motions.

1) Motion Planning and Control: Our work in this pa-
per implements the Coordinated motion planning layer
in Fig. 2(a). This layer compiles a movement plan, sequence
of motion primitives, which achieves the desired vehicle ma-
neuver motion (pedal task) and defines the task specifications
(start and goal positions for all the DOFs in the task space).

The OpenSim leg model includes 6 active DOFs actu-
ated with ideal torque actuators and one passive joint on
the foot (see Fig. 4). To guarantee the trajectory tracking
performance, a task-space controller is used to command
joint torques to the model joints.

1-DOF
Knee Joint

3-DOF
Hip Joint

2-DOF
Ankle Joint

Passive
MTP Joints

Fig. 4. Driver leg model with 6 active joints and one passive joint.

V. RESULT

Here we present the results from motion learning and
reproduction on pedal operation tasks. From the motion data
collected from human drivers, we have learned the motion
primitives for switching between gas and brake pedals.

A. Data Segmentation

Fig. 5 plots the foot position in X-direction against time
for a section of a driving demonstration. The motion data
within each segment is interpolated to a fixed length of
200 elements in order to align the different demonstrations.
Also, the amplitude of the data is normalized for ease of
combination from different demonstrations.
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Fig. 6. Raw time-aligned trajectory data (position and orientation) from the
motion segmentation section for both brake-to-gas and gas-to-brake motions

B. Learning Motion Regularity and Variability

Fig. 6 shows the time-aligned {x,y,z} position and
{gx,qy,qz,qw} quaternion orientation trajectories of the clus-
tered pedal switching motions. The orientation trajectories
segmented were not as smooth as the position trajectories
due to the range of the motion. This is reflected in the shape
of the mixture models generated using GMM (see Fig. 7).
Fig. 8 shows the result of the regression process on the
mixture model. The resulting trajectories are a generalized
representation of the different trajectories obtained from
multiple demonstrations.

C. Learning and Reproducing Averaged Behavior

This generalized trajectories are then encoded using the
DMP framework for ease of reproduction in new task specifi-
cations. Fig. 9 shows a plot of the generalized trajectory in 3-
D space along with the DMP-reproduced trajectory for both
the brake-to-gas and gas-to-brake motions. These trajectories

Brake-to-Gas motion
= (Gas-to-Brake motion

1
> 05 % o
o —
0 20 40 60 80 100 120 140 160 180 200
1 —
> 05 = =i
0 i I | I |
u 20 % 100 120 140 10 180 200

Nosﬁ / \

80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200
1 e——
Foo - — :
0 20 40 80 100 120 140
1
L E——— %
o
20 40
’—:z’/"—‘
20 F %
—————— —
40 100 120 140 160 180 200
frames
Fig. 7. Derivation of the mixture model describing the probability

distribution of the segmented data trajectories.
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Fig. 8.  Derivation of a generalized trajectory for pedaling task from
multiple demonstrations using the GMR method.
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Fig. 9.  Generalized and reproduced 3-D foot trajectories using DMP
framework. (Top): brake-to-gas motion (Bottom): gas-to-brake motion. The
gas and brake pedals are depicted as the red and orange balls respectively.



are reproduced from the DMP weights stored in the motion
library.

For implementation on the digital driver model, a move-
ment plan must be generated. To do so, a sequence of desired
motions is defined based on the desired pedal angles from the
Driver Task Reasoning Layer (see Fig. 2). For instance, if the
foot is at the brake pedal position and the desired gas pedal
angle is positive (meaning the gas pedal is to be engaged),
the sequence of motions will be brake-to-gas motion then
gas-press motion. To implement the brake-to-gas motion, the
brake-to-gas motion primitive is selected from the library.
Then the current pose of the foot is set as the start pose of
the DMP and the end pose is set as the gas position. This
defines a feasible human-like pedal switching trajectory to
be implemented by the motion controller.

VI. CONCLUSION

This paper proposed a framework that integrates active
human model with vehicle dynamics model, to render high-
fidelity simulation of human-vehicle interaction. In partic-
ular, we proposed a systematic approach to extract the
regularity and variability of vehicle maneuver motion across
subjects. We further use the dynamic motion primitives that
represent the averaged behavior of experienced drivers for the
motion planning in simulation. Using the proposed approach,
we learned the motion coordination for pedal activation
motion from the demonstrations and reproduced it on a
digital driver model in the OpenSim platform. Our future
work will construct a motion primitive library to support
the motion planning module in the proposed framework for
simulating human-vehicle interaction.
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