This lecture will be recorded!!!

Welcome to

DS595 Reinforcement Learning Prof. Yanhua Li

Time: 6:00pm –8:50pm W Zoom Lecture Spring 2022

Project 4 Due 4/25 M mid-night

•<u>https://github.com/yingxue-zhang/DS595-RL-</u> <u>Projects/tree/master/Project4</u>

•Important Dates:

•Project Proposal: 3/30/2022

•Project Progress: 4/13/2022

Brief intro of your project progress today if time allows.

•Final Project: Monday 4/25/2022

•Project report due on 4/25/2022 midnight on Canvas discussion board.

•Self-and-cross evaluation form due 4/27/2022 midnight on canvas.

Poster session on 4/27/2022 on Zoom

Project 4 Poster Session Next Wed Each project has an ID.

- 1. Training Agent w/ RL to race in TrackMania 2020
- 2. Playing Doom with a Deep Recurrent Q Network
- 3. Robotic Grasping with Reinforcement Learning
- 4. Comparisons of Deep Q-learning (DQN) with Proximal Policy Optimization (PPO) on Lunar Lander
- 5. AlphaGomoku: Mastering The Game of Gomoku using The AlphaZero Learning Method
- 6. Comparison of Reinforcement Learning models applied to MineRL challenge
- 7. Reinforcement Learning for Autonomous Driving using CARLA Simulator
- 8. Super Mario Bros (w/ A2C, PPO, DQN, etc.)
- 9. Continuous & Mapless Navigation for robots using Policy Gradient Algorithm
- 10. Training Agent w/ RL to the puzzle video game: Minesweeper

• 11. Comparison of Discrete and Continuous Action Spaces in Car Racing Environment https://github.com/yingxue-zhang/DS595-RL-Projects/tree/master/Project4

11 Teams (Last offering in Fall 2020: 9 teams) Final report due 4/25/2022 M, submit it to Canvas discussion board in teams.

- <u>https://github.com/yingxue-zhang/DS595-RL-</u> <u>Projects/tree/master/Project4</u>
- We will host a poster session next Wed on 4/27/2022 with breakout rooms for group "posters". ☺
- •We will let participates to choose a breakout room
- Intro of breakout room feature.
- •https://www.youtube.com/watch?v=GDKJM6JhyUY

Team project #4 (on 4/27)

Final Poster Session in Zoom breakout rooms.

	Breakout room #1	Breakout room #2	Breakout room #3
6pm- 6:25pm	Team 1	Team 4	Team 7
	TA: Yingxue Zhang	PhD student: Xin Zhang	Prof Yanhua Li
6:30pm- 6:55pm	Team 2	Team 5	Team 8
7:00pm- 7:25:pm	Team 3	Team 6	Team 9
7:30pm- 7:55:pm	Team 10	Team 11	Closed

8pm-8:50pm Breakout rooms all closed. Free discussion in the main Zoom meeting room.

Let's try breakout rooms now

Team project #4 Survey

1. How many people do you have in your group? 4 or 5?

Example answer: 5

Due 4/27 W on Canvas

Answer:

2. List all people names of your group, and indicate how much each groupmate (including yourself) contributes to the team project, in percentage (from 0% to 100%)?

Note that if you have a group of 5 people, and everyone contributes equally, each groupmate should contribute 20%. Please make sure that the sum of all contributions to be 100%.

(Optionally, you can also provide more details (if you want), about the details of the contributions made by each individual, such as ``programming", ``data collection", ``report writing", ``analyzing and plotting the figures", ``come up with the idea of using XYZ feature for analyzing the popularity", or anything, you name it.)

Example answer: A(mvself): 20%. B: 20%. C: 20%. D: 20%. E: 20%

Final Grading

The grading system for this course is A,B,C,D,F (without +/-).

Oral Work: 10%,

Project #4 poster presentation.

Quizzes/Exams: 30% 5 counted quizzes (Done)

Class projects: 60% Project 1 for 5%, (Done) Project 2 for 10%, (Done) Project 3 for 15%, (Done) Project 4 for 30% (On-going)

	Reinforcement	Inverse
	Learning	Reinforcement Learning
Single Agent	Tabular representation of rewardModel-based controlModel-free control(MC, SARSA, Q-Learning)	Linear reward function learning Imitation learning Apprenticeship learning Inverse reinforcement learning
	Function representation of reward 1. Linear value function approx (MC, SARSA, Q-Learning) 2. Value function approximation	
	(Deep Q-Learning, Double DQN,	Non-linear reward function learning
	Prioritized DQN, Dueling DQN) 3 Policy function approximation	Generative adversarial
	(Policy gradient, PPO, TRPO)	Initation learning (GAIL)
	4. Actor-Critic methods (A2C,	Adversarial inverse reinforcement
	A3C, Pathwise Derivative PG)	learning (AIRL)
	Advanced topics in RL (Sparse Rewards)	https://arxiv.org/abs/1710.11248
	Review of Deep Learning	Review of Generative Adversarial nets
	approximation (used in 2-4).	as bases for non-linear IRL
Iultiple Agents	Multi-Agent Reinforcement Learning Multi-agent Actor-Critic etc.	Multi-Agent Inverse Reinforcement Learning MA-GAIL
≥ ≺	Meta-RL	

This Lecture

- Review Generative Adversarial Networks (GANs)
- IRL as GAN
 - Generative Adversarial Imitation Learning (GAIL)
- Multi-Agent IRL
 - MA-GAIL
- Meta-Learning
 - Meta-Reinforcement Learning
- Class Review

This Lecture

- Review Generative Adversarial Networks (GANs)
- IRL as GAN
 - Generative Adversarial Imitation Learning (GAIL)
- Multi-Agent IRL
 - MA-GAIL
- Meta-Learning
 - Meta-Reinforcement Learning
- Class Review

Introduction of Generative Adversarial Network (GAN)

Generation

Image Generation

In a specific range

Sentence Generation

Powered by: http://mattya.github.io/chainer-DCGAN/

Basic Idea of GAN

Basic Idea of GAN

This is where the term "*adversarial*" comes from. You can explain the process in different ways.....

Algorithm

• Initialize generator and discriminator

Step 1: Fix generator G, and update discriminator D

G

D

Discriminator learns to assign high scores to real objects and low scores to generated objects.

Algorithm

• Initialize generator and discriminator

• In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to "fool" the discriminator

10,000 updates

20,000 updates

50,000 updates

The faces generated by machine.

This Lecture

- Review Generative Adversarial Networks (GANs)
- IRL as GAN
 - Generative Adversarial Imitation Learning (GAIL)
- Multi-Agent IRL
 - MA-GAIL
- Meta-Learning
 - Meta-Reinforcement Learning
- Class Review

Inverse reinforcement learning

Also called Learning from Demonstration (LfD)

Inverse reinforcement learning

- Also called Learning from Demonstration (LfD)
- Input:
 - Trajectory set from experts $\tau = (s_1, a_1, \dots, s_n, a_n)$
 - State space: S
 - Action space: A
- Output:
 - Policy: R(s,a)
 - *Reward: π*(*s*,*a*)

• Model-free problem: Unknown P and γ .

GAIL: Generative Adversarial Imitation Learning

Generative Adversarial Nets (GAN) + Imitation Learning (IL)

https://arxiv.org/abs/1606.03476

Inverse reinforcement learning

https://youtu.be/YsxN3uRBupc

This Lecture

- Review Generative Adversarial Networks (GANs)
- IRL as GAN
 - Generative Adversarial Imitation Learning (GAIL)
- Multi-Agent IRL
 - MA-GAIL
- Meta-Learning
 - Meta-Reinforcement Learning
- Class Review

MA-GAIL: Multi-Agent Generative Adversarial Imitation Learning

Rock-paper-scissors

Monkey-Pirate-Robot-Ninja-Zombie

MA-GAIL: Multi-Agent Generative Adversarial Imitation Learning

GAIL

MA-GAIL

https://arxiv.org/abs/1807.09936

This Lecture

- Review Generative Adversarial Networks (GANs)
- IRL as GAN
 - Generative Adversarial Imitation Learning (GAIL)
- Multi-Agent IRL
 - MA-GAIL
- Meta-Learning
 - Meta-Reinforcement Learning
- Class Review

Multiple (Similar) Tasks

https://youtu.be/jwSbzNHGflM

Meta Learning

<u>Machine Learning</u> \approx from data to model $f^*(.)$

Meta Learning

 \approx from data of various tasks to F(.) that outcomes f(.)

Meta Learning

Different decisions in the red boxes lead to different algorithms. What happens in the red boxes is decided by humans until now.

Meta Learning

• Defining the goodness of a function F

Meta-learning problem statement

supervised learning

German shepherd"

"Dalmation"

corgi

???

reinforcement learning

Robot art by Matt Spangler, mattspangler.com

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-20.pdf

Meta-RL problem statement

Regular RL: learn policy for single task Meta-RL: learn adaptation rule $= \arg \max_{\theta} \sum E_{\pi_{\phi_i}(\tau)}[R(\tau)]$ $\theta^{\star} = \arg\max_{\rho} E_{\pi_{\theta}(\tau)}[R(\tau)]$ θ^{\star} Meta-training / $= f_{\mathrm{RL}}(\mathcal{M})$ **Outer loop** where $\phi_i = f_{\theta}(\mathcal{M}_i)$ Adaptation / MDP for task i**Inner** loop MDP \mathcal{M}_1 \mathcal{M}_2 \mathcal{M}_3 \mathcal{M}_{test}

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-20.pdf

Meta-RL (with Policy Gradient) (One of many Meta-RL paradigms)

while training:

for *i* in tasks:

1. sample k episodes $\mathcal{D}_i = \{(s, a, s', r)\}_{1:k}$ from π_{θ}

2. compute adapted parameters $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_i(\pi_{\theta}, \mathcal{D}_i)$

3. sample k episodes $\mathcal{D}'_i = \{(s, a, s', r)_{1:k}\}$ from π_{ϕ}

update policy parameters $\theta \leftarrow \theta - \nabla_{\theta} \sum_{i} \mathcal{L}_{i}(\mathcal{D}'_{i}, \pi_{\phi_{i}})$

Finn et al. 2017. Fig adapted from Finn et al. 2017

This Lecture

- Review Generative Adversarial Networks (GANs)
- IRL as GAN
 - Generative Adversarial Imitation Learning (GAIL)
- Multi-Agent IRL
 - MA-GAIL
- Meta-Learning
 - Meta-Reinforcement Learning
- Class Review

	Reinforcement Learning	Inverse Reinforcement Learning
ent	Tabular representation of rewardModel-based controlModel-free control(MC, SARSA, Q-Learning)	Linear reward function learning Imitation learning Apprenticeship learning Inverse reinforcement learning
ıgle Ag	Function representation of reward 1. Linear value function approx (MC, SARSA, Q-Learning) 2. Value function approximation	
Sin	(Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN)	Non-linear reward function learning Generative adversarial
	<i>3. Policy function approximation (Policy gradient, PPO, TRPO)</i>	imitation learning (GAIL)
	4. Actor-Critic methods (A2C, A3C. Pathwise Derivative PG)	Adversarial inverse reinforcement
	Advanced topics in RL (Sparse Rewards)	https://arxiv.org/abs/1710.11248
	Review of Deep Learning	Review of Generative Adversarial nets
	As bases for non-linear function approximation (used in 2-4).	As bases for non-linear IRL
ultiple \gents	Multi-Agent Reinforcement Learning Multi-agent Actor-Critic etc.	Multi-Agent Inverse Reinforcement Learning MA-GAIL
Σ ٩	Meta-RL	

DQN

DQN

- DQN
- Double DQN
- Dueling DQN
- Prioritized DQN
- Multi-Step DQN
- Noisy Net DQN
- Distributional DQN
- DQN with continuous action space
- Rainbow

Policy Gradient

Policy Gradient

- Basic PG
- Vanilla
- REINFORCE
- PPO
- TRPO
- PPO2

Actor Critic

Actor Critic

- A2C
- A3C
- Pathwise Derivative Policy Gradient
- Deep Deterministic Policy Gradient

More topics

- Sparse reward
 - Reward shaping, Curiosity module
 - Curriculum learning, Hierarchical RL
- Meta-RL
- Multi-agent Reinforcement Learning
- Inverse Reinforcement Learning
 - Multi-agent IRL

	Reinforcement Learning	Inverse Reinforcement Learning
ent	Tabular representation of rewardModel-based controlModel-free control(MC, SARSA, Q-Learning)	Linear reward function learning Imitation learning Apprenticeship learning Inverse reinforcement learning
ıgle Ag	Function representation of reward 1. Linear value function approx (MC, SARSA, Q-Learning) 2. Value function approximation	
Sin	(Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN)	Non-linear reward function learning Generative adversarial
	<i>3. Policy function approximation (Policy gradient, PPO, TRPO)</i>	imitation learning (GAIL)
	4. Actor-Critic methods (A2C, A3C. Pathwise Derivative PG)	Adversarial inverse reinforcement
	Advanced topics in RL (Sparse Rewards)	https://arxiv.org/abs/1710.11248
	Review of Deep Learning	Review of Generative Adversarial nets
	As bases for non-linear function approximation (used in 2-4).	As bases for non-linear IRL
ultiple \gents	Multi-Agent Reinforcement Learning Multi-agent Actor-Critic etc.	Multi-Agent Inverse Reinforcement Learning MA-GAIL
Σ ٩	Meta-RL	

Class review

- Please spend time to fill out the online class survey.
- Our goal is to offer this course as a permanent course from next fall.

More New and Advanced Learning techniques in DS504/CS586 in Spring 2023

Explainable AI (XAI)

Meta-learning
Few-shot learning

Adversarial attack to Deep neural networks

Multi-Task Learning, Transfer Learning, Life-long Learning

I am lecturing **Big Data Analytics** in 2023 Spring with these Al topics

Plan: CS586/DS504-2023Spring

5. Applications

Image Processing, High dimension Data (audio, text, trajectory) analysis

4. Big Data Mining

Deep Neural Networks, Generative Models, XAI, Attacks/Defense, Compression

3. Data Management

Indexing, Query Processing

2. Data Preprocessing/Cleaning Error Correction, Map-Matching

1. Data Acquisition & Measurement

Representative data collection: Sampling and estimation **Project 1**

Techniques

Deep Neural Networks

- 1. DNN Recipe **Project 2**
- 2. Meta Learning **Project 4**

Generative Models 1. GANs Project 3

- $. \quad \text{GAINS Pro}$
- 2. VAEs
- 3. Flow based models

More techniques

- 1. XAI
- 2. Adversarial attacks/defense
- 3. Network Compression

Questions?

<u>Algorithm</u> Initialize θ_d for D and θ_g for G

- In each training iteration:
 - Sample m examples $\{x^1, x^2, ..., x^m\}$ from database
 - Sample m noise samples $\{z^1, z^2, \dots, z^m\}$ from a distribution

Learning

G

• Obtaining generated data $\{\tilde{x}^1, \tilde{x}^2, ..., \tilde{x}^m\}$, $\tilde{x}^i = G(z^i)$

• Update discriminator parameters θ_d to maximize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^i) + \frac{1}{m} \sum_{i=1}^{m} log \left(1 - D(\tilde{x}^i)\right)$$

• $\theta_d \leftarrow \theta_d + \eta \nabla \tilde{V}(\theta_d)$

- Sample m noise samples{z¹, z², ..., z^m} from a distribution
- Learning Update generator parameters θ_g to maximize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log \left(D \left(G(z^i) \right) \right)$$

• $\theta_a \leftarrow \theta_a - \eta \nabla \tilde{V}(\theta_a)$