Welcome to

DS595 Reinforcement Learning Prof. Yanhua Li

Time: 6:00pm –8:50pm W Zoom Lecture Spring 2022

Quiz 5 Today

30 minutes on Policy Gradient (PG)

Project 4

- https://github.com/yingxue-zhang/DS595-RL-Projects/tree/master/Project4
- Important Dates:
- Progressive report: Wed. April 13, 2022 (23:59)
- Final Project:
 - Mon April 25, 2022 team project report is due
 - Wed. April 27, 2022 Virtual Poster Session

	Learning	Reinforcer
Single Agent	Tabular representation of reward Model-based control Model-free control (MC, SARSA, Q-Learning)	Linear reward fu Imitation Apprentic Inverse r
	Function representation of reward 1. Linear value function approx (MC, SARSA, Q-Learning) 2. Value function approximation	MaxEnt I MaxCaus MaxRelEr
Sin	(Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN) 3. Policy function approximation (Policy gradient, PPO, TRPO)	Non-linear rewar Generativ imitation
	4. Actor-Critic methods (A2C, A3C, Pathwise Derivative PG)	Adversari learning (
	Review of Deep Learning As bases for non-linear function approximation (used in 2-4).	Review of General As bases
S e	Multi-Agent Reinforcement Learning Multi-agent Actor-Critic	Multi-Agent Inve
lultiple Agents	etc.	MA-GAIL MA-AIRL
	Annlication	AMA-GA

Reinforcement

Inverse ment Learning

unction learning

n learning iceship learning

reinforcement learning

IRL

salEnt IRL

Ent IRL

rd function learning

ive adversarial n learning (GAIL)

rial inverse reinforcement (AIRL)

rative Adversarial nets

s for non-linear IRL

verse Reinforcement

This Lecture

- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - REINFORCE and Vanilla Policy Gradient
 - PPO, TRPO, PPO2
- Actor-Critic methods
 - A2C
 - A3C
 - Pathwise Derivative Policy Gradient

This Lecture

- Policy Gradient (Review Quickly)
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - REINFORCE and Vanilla Policy Gradient
 - PPO, TRPO, PPO2
- Actor-Critic methods
 - A2C
 - A3C
 - Pathwise Derivative Policy Gradient

This Lecture

- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - REINFORCE and Vanilla Policy Gradient
 - PPO, TRPO, PPO2
- Actor-Critic methods
 - A2C
 - A3C
 - Pathwise Derivative Policy Gradient
- Generative Adversarial Networks (GAN)
- Deep Inverse Reinforcement Learning

Review – Policy Gradient

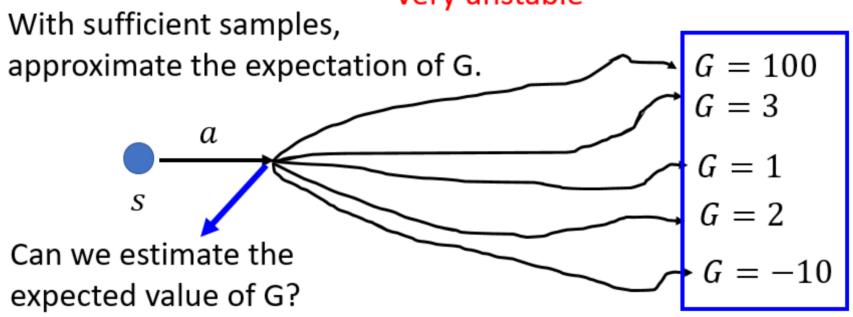
$$abla ar{R}_{ heta} pprox rac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b}
ight)
abla log \pi_{ heta}(a_t^n | s_t^n)$$
 G_t^n : obtained via interaction

Review – Policy Gradient

$$abla ar{R}_{ heta} pprox rac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b} \right) \nabla log \pi_{\theta}(a_t^n | s_t^n)$$

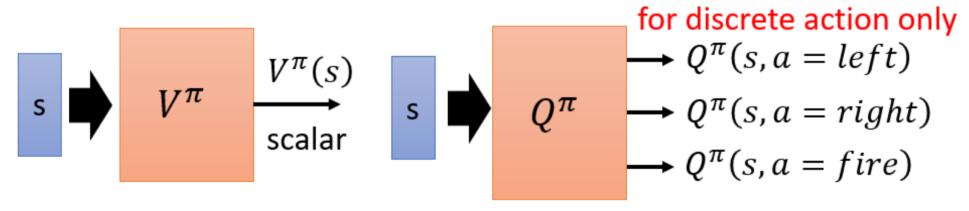
 G_t^n : obtained via interaction

Very unstable



Review – Q-Learning

- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after visiting state s
- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after taking a at state s



Estimated by TD or MC

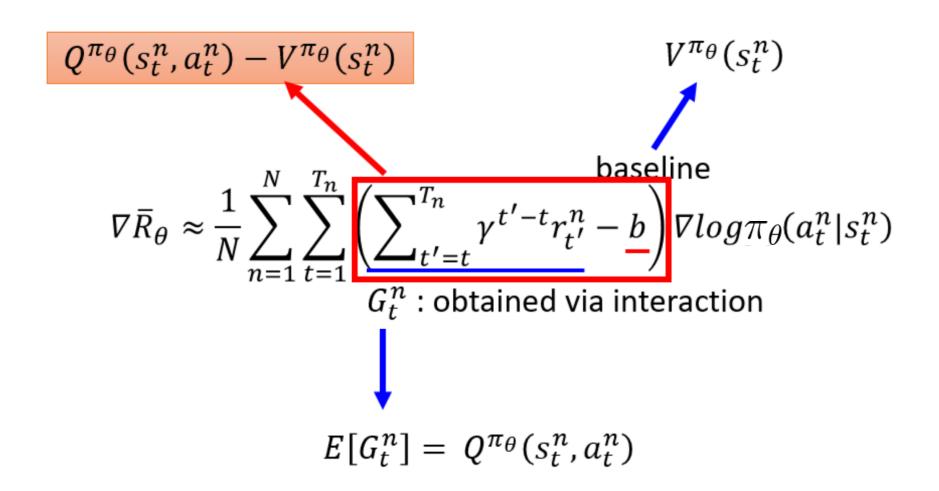
$$abla ar{R}_{ heta} pprox rac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b} \right) \nabla log \pi_{ heta}(a_t^n | s_t^n)$$
 G_t^n : obtained via interaction

$$abla ar{R}_{ heta} pprox rac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b} \right)
abla line baseline $G_t^n : \text{obtained via interaction}$

$$G_t^n : \text{obtained via interaction}$$

$$E[G_t^n] = Q^{\pi_{\theta}}(s_t^n, a_t^n)$$$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \underbrace{\left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b}\right)}_{\text{T obtained via interaction}}^{\text{$V_{\theta}(s_t^n)$}} \underbrace{\left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b}\right)}_{\text{$E[G_t^n]$}}^{\text{V og}} \pi_{\theta}(a_t^n | s_t^n)$$



$$Q^{\pi}(s_t^n, a_t^n) - V^{\pi}(s_t^n)$$

Estimate two networks? We can only estimate one.

$$Q^{\pi}(s_t^n, a_t^n) - V^{\pi}(s_t^n)$$

$$r_t^n + V^{\pi}(s_{t+1}^n) - V^{\pi}(s_t^n)$$

Estimate two networks? We can only estimate one.

Only estimate state value
A little bit variance

$$Q^{\pi}(s_t^n, a_t^n) = E[r_t^n + V^{\pi}(s_{t+1}^n)]$$

$$Q^{\pi}(s_t^n, a_t^n) = r_t^n + V^{\pi}(s_{t+1}^n)$$

(A2C algorithm)

 π interacts with the environment

Value function Approximation TD or MC

$$\pi = \pi'$$

Policy Gradient

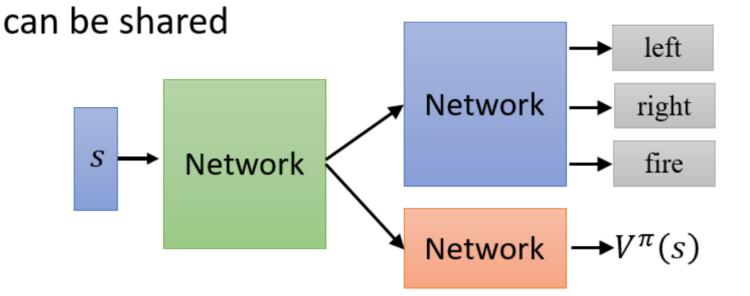
Update actor from $\pi \to \pi'$ based on $V^{\pi}(s)$

Learning $V^{\pi}(s)$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (r_t^n + V^{\pi}(s_{t+1}^n) - V^{\pi}(s_t^n)) \nabla log \pi_{\theta}(a_t^n | s_t^n)$$

Tips

• The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$



Asynchronous Advantage Actor-Critic (A3C)

Asynchronous

Global Network Source of image: https://medium.com/emergent-Policy π(s) V(s) future/simple-reinforcement-learning-with- θ^1 tensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9 Network Input (s) Worker 2 Worker 3 Worker n Worker 1 **Environment 1 Environment 2 Environment 3** Environment n

Asynchronous

Source of image:

https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta\theta$

 $\Delta\theta$

 θ^1

Worker 1

Environment 1

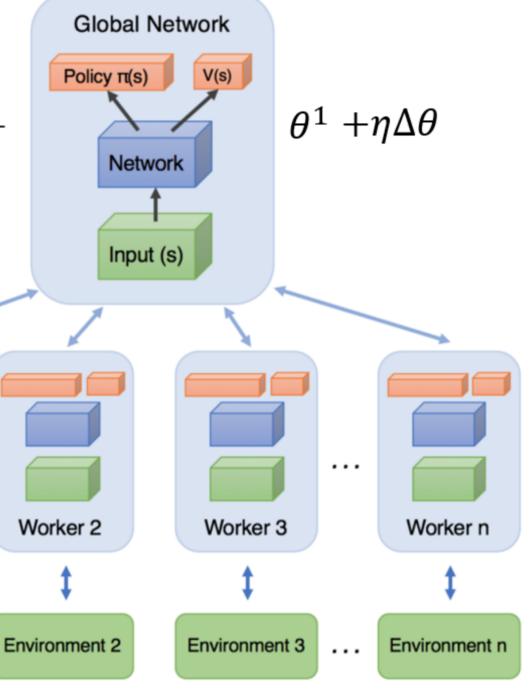
 $heta^1$

1. Copy global parameters

2. Sampling some data

3. Compute gradients

Update global models



Asynchronous

Source of image:

https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta\theta$

 $\Delta\theta$

 θ^1

Worker 1

Environment 1

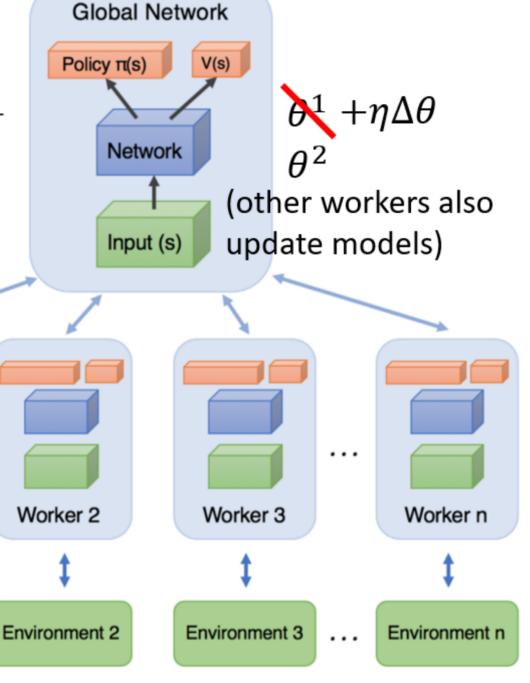
 $heta^1$

1. Copy global parameters

2. Sampling some data

3. Compute gradients

Update global models



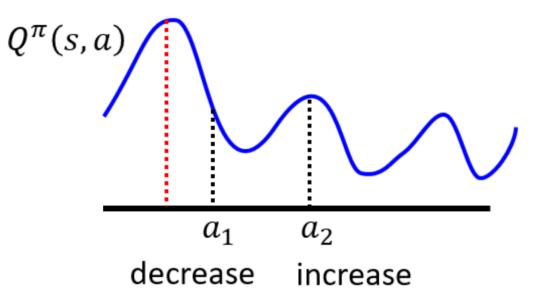
Pathwise Derivative Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller, "Deterministic Policy Gradient Algorithms", ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, "CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING", ICLR, 2016

Another Way to use Critic

Original Actor-critic



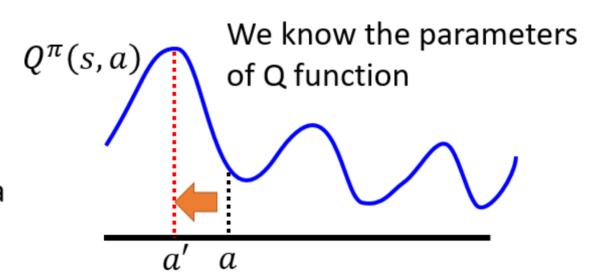
Another Way to use Critic

Original Actor-critic

$Q^{\pi}(s,a)$ $a_1 \qquad a_2$ decrease increase

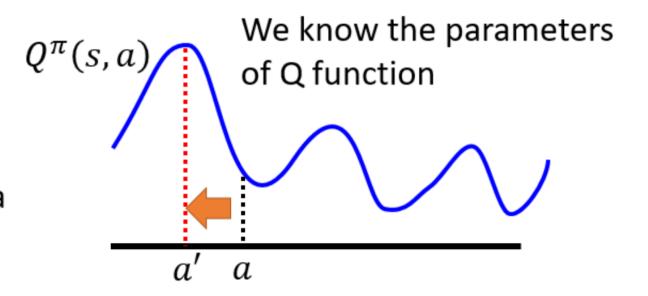
Pathwise derivative policy gradient

From Q function we know that taking a' at state s is better than a



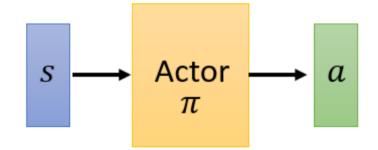
Pathwise derivative policy gradient

From Q function we know that taking a' at state s is better than a



Action a is a continuous vector

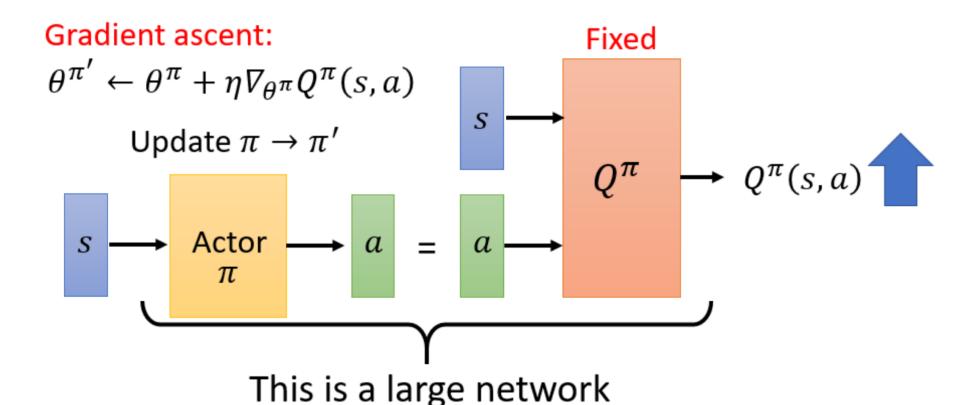
$$a = \arg\max_{a} Q(s, a)$$



Actor as the solver of this optimization problem

Pathwise Derivative Policy Gradient

$$\pi'(s) = arg \max_{a} Q^{\pi}(s, a)$$
 a is the output of an actor



π interacts with the environment

$$\pi = \pi'$$

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s,a)$

$$\theta^{\pi'} \leftarrow \theta^{\pi} + \eta \nabla_{\theta^{\pi}} Q^{\pi}(s, a)$$

$$\text{Update } \pi \to \pi'$$

$$s \longrightarrow Actor \longrightarrow a = a \longrightarrow Q^{\pi}$$

$$\downarrow Q^{\pi}$$

$$\downarrow Q^{\pi}(s, a)$$

 π interacts with the environment

Replay Buffer

Exploration

$$\pi = \pi'$$

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s, a)$

$$\theta^{\pi'} \leftarrow \theta^{\pi} + \eta \nabla_{\theta^{\pi}} Q^{\pi}(s, a)$$
Update $\pi \to \pi'$

$$s \longrightarrow Actor \longrightarrow a$$

$$\begin{array}{c} s \\ \hline \\ = a \end{array} \longrightarrow \begin{array}{c} Q^{\pi} \\ \hline \\ \end{array} \longrightarrow \begin{array}{c} Q^{\pi}(s,a) \\ \end{array}$$

Q-Learning Algorithm

- Initialize Q-function Q , target Q-function $\widehat{Q}=Q$
- In each episode
 - For each time step t
 - Given state s_t, take action a_t based on Q (exploration)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_a \hat{Q}(s_{i+1}, a)$
 - Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 - Every C steps reset $\widehat{Q}=Q$

Q-Learning Algorithm Pathwise Derivative Policy Gradient

• Initialize Q-function Q, target Q-function $\hat{Q} = Q$, actor π , target actor $\hat{\pi} = \pi$

Replaced ε -greedy policy with π network.

- In each episode
 - For each time step t
 - Given state s_t , take action a_t based on $\mathbf{Q} \pi$ (exploration)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - 2 Target $y = r_i + \max_{a} \hat{Q}(s_{i+1}, a) \hat{Q}(s_{i+1}, \hat{\pi}(s_{i+1}))$
 - Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 - Update the parameters of π to maximize $Q(s_i,\pi(s_i))$
 - Every C steps reset $\hat{Q} = Q$
 - Every C steps reset $\hat{\pi} = \pi$

	Reinforcement	Inverse	
	Learning	Reinforcement Learning	
ent	Tabular representation of reward Model-based control Model-free control (MC, SARSA, Q-Learning)	Linear reward function learning Imitation learning Apprenticeship learning Inverse reinforcement learning	
Single Agent	Function representation of reward 1. Linear value function approx (MC, SARSA, Q-Learning) 2. Value function approximation	MaxEnt IRL MaxCausalEnt IRL MaxRelEnt IRL	
Si	(Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN) 3. Policy function approximation (Policy gradient, PPO, TRPO) 4. Actor-Critic methods (A2C,	Generative adversarial imitation learning (GAIL) Adversarial inverse reinforcement	
	A3C, Pathwise Derivative PG) Review of Deep Learning	learning (AIRL) Review of Generative Adversarial nets	
	As bases for non-linear function approximation (used in 2-4).		
Iultiple Agents	Multi-Agent Reinforcement Learning Multi-agent Actor-Critic etc. Annlication	Multi-Agent Inverse Reinforcement Learning MA-GAIL MA-AIRL AMA-GAIL	

Questions?