This lecture will be recorded!!!

Welcome to

DS595

Reinforcement Learning
Prof. Yanhua Li

Time: 6:00pm —8:50pm W
Zoom Lecture
Spring 2022

Quiz 5 Today

% 30 minutes on Policy Gradient (PG)

Project 4

<+ Important Dates:

% Progressive report: Wed. April 13, 2022
(23:59)

< Final Project:

=" Mon April 25, 2022 team project report is due
" Wed. April 27, 2022 Virtual Poster Session

https://github.com/yingxue-zhang/DS595-RL-Projects/tree/master/Project4

Reinforcement

Learning

Inverse
Reinforcement Learning

Single Agent

Tabular representation of reward

Model-based control/
Model-free control
(MC, SARSA, Q-Learning)

Function representation of reward

1. Linear value function approx
(MC, SARSA, Q-Learning)
2. Value function approximation

Linear reward function learning
Imitation learning
Apprenticeship learning
Inverse reinforcement learning
MaxEnt IRL

MaxCausalEnt IRL
MaxRelEnt IRL

(Deep Q-Learning, Double DQON,
prioritized DQN, Dueling DQN)
3. Policy function approximation
(Policy gradient, PPO, TRPO)

4. Actor-Critic methods (A2C,
A3C, Pathwise Derivative PG)

Non-linear reward function learning
Generative adversarial
imitation learning (GAIL)

Adversarial inverse reinforcement
learning (AIRL)

Review of Deep Learning

As bases for non-linear function
approximation (used in 2-4).

Review of Generative Adversarial nets
As bases for non-linear IRL

Multiple

Agents

Multi-Agent Reinforcement Learning

Multi-agent Actor-Critic
etc.

Multi-Agent Inverse Reinforcement
Learning

MA-GAIL

MA-AIRL

AMA-GAIL

This Lecture

+ Policy Gradient

» PPO, TRPO, PPO2

« Actor-Critic methods

= A2C
= A3C
» Pathwise Derivative Policy Gradient

This Lecture

+ Policy Gradient (Review Quickly)

» PPO, TRPO, PPO2

« Actor-Critic methods

= A2C
= A3C
» Pathwise Derivative Policy Gradient

This Lecture

+ Policy Gradient

» PPO, TRPO, PPO2

« Actor-Critic methods

= A2C
= A3C
» Pathwise Derivative Policy Gradient

+ Generative Adversarial Networks (GAN)
+ Deep Inverse Reinforcement Learning

Review — Policy Gradient

baseline

(Zt, t t'—t)) — b) Vliogmg(alt|sl

G[' : obtained via interaction

Tn_

N
_ 12‘
N

n=1t=1

Review — Policy Gradient

baseline

1 N T,
VR9~—ZZ(Z yt =ty — b) Vliogme(ai|st')
N bt L t'=t

G[' : obtained via interaction
Very unstable

With sufficient samples,
approximate the expectation of G.

G =100
G =3

Can we estimate the
expected value of G?

Review — Q-Learning

* State value function V™ (s)
* When using actor 1, the cumulated reward expects to
be obtained after visiting state s
* State-action value function Q™ (s, a)

* When using actor m, the cumulated reward expects to
be obtained after taking a at state s
for discrete action only

V7 (s) — Q" (s,a = left)
S ‘ e ——s S ’ Q" — Q"(s,a =right)

scalar
B Qn(Sia - fire)

Estimated by TD or MC

Actor-Critic

T, baseline

(57 s) o

G" obtained via interaction

N
VR 12
Y

n=1t=1

Actor-Critic

T, baseline

(Z t’ = b) Vliogmg(al'|si)
t’—t —

G" obtained via interaction

l

ElGe] = Q™0 (s, ar)

N
Ry =LY
6~ N

n=1t=1

Actor-Critic

vre (st
. N T, baseline
TRy > (D t—g)vzogw@(ams?)

n=1t=1
G"’ : obtained via interaction

1

ElGe] = Q™0 (st ar)

Actor-Critic

Qo (st al) — V™ (sf) Vo (st)

G[' : obtained via interaction

l

ElGe] = Q™0 (st ar)

Advantage Actor-Critic

Estimate two networks? We

(st a) — VT (sh :
Q" (st ar) (s¢) can only estimate one.

Advantage Actor-Critic

Estimate two networks? We
can only estimate one.

Q" (s¢ar) — V™ (s{)

4

- =7 n nn Only estimate state value
e+ VT(s) — V7 (st)

A little bit variance

Q™ (st ar) = Elr* + V™ (s¢y1)]

Q™ (st ar) =1 + V7 (Sth1)

Advantage Actor-Critic (A2C algorithm)

1T interacts with

the environment Value function
Approximation

T = 11’ TD or MC

Policy Gradient

Update actor from

m — 1 based on Learning V™ (s)

N
_ 1
TRy =3)) (i + V(stiy) = V(1)) Plogrp(allst)

Advantage Actor-Critic

* Tips
* The parameters of actor m(s) and critic V™(s)
can be shared

i

Asynchronous Advantage
Actor-Critic (A3C)

Asynchronous

Source of image: Global Network
https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na709

Asynchronous

Source of image: Global Network

https://medium.com/emergent-
future/simple-reinforcement-learning-with-

tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na709

01 +nA6

1. Copy global parameters

2. Sampling some data

3. Compute gradients /’ / \ \

4. Update global
PAALC BN s e s

modes - o o

Worker 1 Worker 3 Worker n

! 1 ! !

AO

Asynchronous

Source of image: Global Network

hnps://medlum.f:om/emergent- | | " Policy ris) ’ Vo
future/simple-reinforcement-learning-with-

tensorflow-part-8-asynchronous-actor-critic- b{ +7’]A9
fa) 2

agents-a3c-c88f72a5e9f2#.68x6na709

1. Copy global parameters

(other workers also
2. Sampling some data Input (s) ‘ update models)

3. Compute gradients

4. Update global

models | v ﬁ : ﬁ ﬁ

Pathwise Derivative Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller,
“Deterministic Policy Gradient Algorithms”, ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, “CONTINUOUS CONTROL WITH DEEP
REINFORCEMENT LEARNING”, ICLR, 2016

Another Way to use Critic

Original Actor-critic

decrease increase

Another Way to use Critic

Original Actor-critic

decrease increase

Pathwise derivative

policy gradient - _ We know the parameters
Q*(s,a)/” of Q function

From Q function we
know that taking a’ at :
state s is better than a <:,

Pathwise derivative

policy gradient - _ We know the parameters
Q" (s,a)/~ of Q function

From Q function we
know that taking a’ at :
state s is better than a ,-

Action a is a continuous vector
S — Actor — a

a=argmaxQ(s,a) n L
a

Actor as the solver of this optimization problem

Pathwise Derivative Policy
Gradient

'(s) = argmax Q™ (s, a) - a is the output of an actor
a

Gradient ascent: Fixed
O™ — O™ + nVyrQ™ (s, @)
S —
Updatem — 7’
- Q" — Qs a)t
S — ActoOr — a = a—
T
|
1\ Y J

This is a large network

T interacts with

the environment

TD or MC

Find a new actor

' “better” than

\

O™ — T + nVerQ™ (s, a)

Update Tt — 7’

I

Actor
T

Learning Q™ (s, a)

Q" (s, a)

T interacts with Replay
the environment e

Exploration

T=T1

Find a new actor Learning Q™ (s, a)

' “better” than

\
O™ « BT + nVyer Q" (s,)

Update — m’

I_, Actor _,I
4

Q" (s,a)

Q-Learning Algorithm

* Initialize Q-function Q, target Q-function Q = Q

* |In each episode
* For each time step t

* Given state s;, take action a; based on Q
(exploration)

* Obtain reward r;, and reach new state s;, 4

 Store (s¢, ag, ¢, S¢+1) into buffer

* Sample (s;, a;, 17, S;4+1) from buffer (usually a batch)
e Targety =1; + max Q(sir1,a)

Update the parameters of Q to make Q(s;, a;) close
to y (regression)

Every C steps reset Q = Q

Q-Learning Algorithm wmy Pathwise Derivative Policy Gradient

« Initialize Q-function Q, target Q-function Q = Q, actor T,
targetactorm =1

. Replaced e-greedy policy with rm network.
* |In each episode P greeay potey

* For each time step t

o * Given state s, take action a, basedon€- 7
(exploration)

* Obtain reward r;, and reach new state s;,4
* Store (s¢, ag, ¢, S¢+1) into buffer
* Sample (s;, a;, 17, S;+1) from buffer (usually a batch)

o * Targety =1; + mcf*é'@r-rra; Q(siﬂ,ﬁ(siﬂ))

* Update the parameters of Q to make Q(s;, a;) close
to y (regression)

o * Update the parameters of = to maximize Q(si,n(si))
* Every C steps reset @ = (Q
* Every Cstepsresetm =m

Reinforcement

Learning

Inverse
Reinforcement Learning

Single Agent

Tabular representation of reward

Model-based control/
Model-free control
(MC, SARSA, Q-Learning)

Function representation of reward

1. Linear value function approx
(MC, SARSA, Q-Learning)
2. Value function approximation

Linear reward function learning
Imitation learning
Apprenticeship learning
Inverse reinforcement learning
MaxEnt IRL

MaxCausalEnt IRL
MaxRelEnt IRL

(Deep Q-Learning, Double DQON,
prioritized DQN, Dueling DQN)
3. Policy function approximation
(Policy gradient, PPO, TRPO)

4. Actor-Critic methods (A2C,
A3C, Pathwise Derivative PG)

Non-linear reward function learning
Generative adversarial
imitation learning (GAIL)

Adversarial inverse reinforcement
learning (AIRL)

Review of Deep Learning

As bases for non-linear function
approximation (used in 2-4).

Review of Generative Adversarial nets

Multiple

Agents

Multi-Agent Reinforcement Learning

Multi-agent Actor-Critic
etc.

Multi-Agent Inverse Reinforcement
Learning

MA-GAIL

MA-AIRL

AMA-GAIL

Questions?

