This Lecture will be recorded!!!

Welcome to

DS595

Reinforcement Learning
Prof. Yanhua Li

Time: 6:00pm —8:50pm W
Zoom Lecture
Spring 2022



No Quiz Today




Office hour time change in next 2
weeks (Prof. Li)

+ Prof Li’s office hour

% From Tue 10:00am-11:00am;

% To Wed | [:00am-12pm

+ with the same Zoom Link as course lecture
% for Week || Wed 3/30

+ and Week |2 Wed 4/6.

+ From Week | 3, we resume it to Tue 10-1 | AM
% Other time slots by appointments



Class arrangement

https://users.wpi.edu/~yli15/courses/DS5955pring22/Schedule.html
Quiz 5 on Week #12 4/6/2022 (the Wed after next week ).

30 minutes on Policy Gradient (PG)



Project 3 reminder:
Due 4/6 Next Wed
10 bonus points and a leader board

% https://github.com/yingxue-zhang/DS$595-
RL-Projects/tree/master/Project3


https://users.wpi.edu/~yli15/courses/DS595Spring22/Assignments.html

Project 4 proposal due today

Group confirmation.



Project 4 is available
Starts 3/23 this Wed

% https://github.com/yingxue-zhang/DS595-RL-
Projects/tree/master/Project4

<+ Important Dates:

<~ Timeline:

Week Il (3/30 W), Proposal Due. (Upload it to Canvas
Discussion board)

Week 13 (4/13 W), Progressive report due (Upload it to
Canvas discussion board)

Week 15 (4/25 M), Project report due. (Upload it to
Canvas discussion board)

Week |5 (4/27 W), Project poster session. (On Zoom)




Last Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
= Behavioral Cloning
* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)




This Lecture

+~ Imitation Learning / Inverse Reinforcement Learning

= |[ntroduction
» Behavioral Cloning
" Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

" Intro and Stochastic Policy

» Basic Policy Gradient Algorithm
» Vanilla Policy Gradient

» PPO, TRPO, PPO2



Problems with many RL scenarios

% Reinforcement Learning:

" | earning policies guided by (often sparse)
rewards (e.g. win the game or not)

" Pros: simple, cheap form of supervision /
exploration

" Cons: High sample complexity



Problems with many RL scenarios

% VWhere is it % Not when:
successful? = Execution of actions is
" In simulation where slow
data is cheap and " Very expensive or not
parallelization is easy tolerable to fail

= Want to be safe




Learning from Demonstrations (LfD)

@ Expert provides a set of demonstration trajectories: sequences of

states and actions

@ Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

e come up with a reward that would generate such behavior,
e coding up the desired policy directly

+ Learning two things from imitation learning:

* Policy
" Reward function (why?)



Learning from Demonstrations (LfD)

@ Expert provides a set of demonstration trajectories: sequences of

states and actions

@ Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

e come up with a reward that would generate such behavior,
e coding up the desired policy directly

+ Learning two things from imitation learning:

* Policy

= Reward function (why?)
e Understand/reason how demonstrator makes decisions
* Predict future behaviors
* Good reward function for training RL agents



One Shot Imitation Learning

"ab," "cde," "fg," and "hij," where the blocks are ordered from top'to bottom within each
group. https://www.youtube.com/watch?v=Bc_kZ-OQh24

1. Hard to define a reward function;
2. Hard to explore from a random policy.



A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue et al., SIGGRAPH 2017 AL RSWAATTAATRYZeTUR (V] o T eTaa TAVVE R (ol a WAVES S b A WA T=IIMAS i S

https://www.youtube.com/watch?v=9zL7qejWOofE
1. Hard to define a reward function;

2. Hard to explore from a random policy.



Problem Setup

Model Based for Now

@ Input:

o State space, action space

o Transition model P(s’ | s, a)

e No reward function R

o Set of one or more teacher’'s demonstrations (s, ag, S1, So, - - -)
(actions drawn from teacher’s policy 7*)

@ Behavioral Cloning:

e Can we directly learn the teacher’s policy using supervised learning?
@ Inverse RL:

e Can we recover R?

We will discuss model-free (i.e., unknown P) in future lectures.



This Lecture

+~ Imitation Learning / Inverse Reinforcement Learning

= |[ntroduction
» Behavioral Cloning (Learning expert policy)
* [nverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

" Intro and Stochastic Policy

» Basic Policy Gradient Algorithm
» Vanilla Policy Gradient

» PPO, TRPO, PPO2



Behavioral Cloning

@ Formulate problem as a standard machine learning problem:

o Fix a policy class (e.g. neural network, decision tree, etc.)
o Estimate a policy from training examples (so, a0), (s1, a1), (s2, a2), - - -

Problem with the BC approach?



Problem: Compounding Errors

Expert trajectory
Learned Policy
@
No data on
how to recover ("-.‘l

Data distribution mismatch!
In supervised learning, (x, y) ~ D during train and test. In MDPs:

@ Train: sy ~ Dy~
@ Test: sy ~ D,



The agent will copy
every behavior, even
irrelevant actions.

Behavior Cloning

BANDICUT
Easy Video Cutter & Joiner
www .bandicam.com/bandicut

https://www.youtube.com/watch?v=j2FSB3bseek




This Lecture

+~ Imitation Learning / Inverse Reinforcement Learning

= Introduction
» Behavioral Cloning
" Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

" Intro and Stochastic Policy

» Basic Policy Gradient Algorithm
» Vanilla Policy Gradient

» PPO, TRPO, PPO2



| inear Feature Reward Inverse RL

@ Recall linear value function approximation
@ Similarly, here consider when reward is linear over features
o R(s) = w'x(s) where w ¢ R" x: S — R"
@ Goal: identify the weight vector w given a set of demonstrations

@ The resulting value function for a policy m can be expressed as

VT =E[> y'R(s:) | 7]
t=0



inear Feature Reward Inverse RL

@ Recall linear value function approximation
@ Similarly, here consider when reward is linear over features
o R(s)=w'x(s) where w € R",x: S — R"
@ Goal: identify the weight vector w given a set of demonstrations

@ The resulting value function for a policy m can be expressed as

VT =E[)_7'R(st) 7] =E[ 7' wx(se) | 7]

~ WTE[S07 x(s0) |
=w' p(r)

where p(7)(s) is defined as the discounted weighted frequency of
state features under policy .



Inverse Reinforcement Learning

To find the reward function R used by the
expert:

@ Note
E[> 2oy R*(se) [ 7] = V* =2 VT =E[} 207" R*(st) [ 7] V.

@ Therefore if the expert's demonstrations are from the optimal policy,
to identify w it is sufficient to find w* such that

w* u(m*) > w* ' p(m), v # 7

Transport Layer 3-24



Inverse reinforcement learning

% Goal: Learn a policy function and a reward function
that are as good as the demonstration expert
» Linear reward function assumption: R(s) = w'x(s)

" |nitialize TT=TT,, stopping criteria €=10-3 (for example)
" Fori=|l,2,... ...

* Find a reward function that the expert maximally outperforms
previous policies: (Any quadratic programming solver)

arg max(w' u(r) —w p(r), s.t, [l < 1

* Find the optimal 1T with the current w (dynamic prggramming)
» Exitif w'p(r") —w'pu(m) <e/2 T

Suppose it is model-based, i.e., environment dynamics is known.



More on Imitation Learning

< Video:

https://www.youtube.com/watch?v=WjFdD/7PDG
w0

Imitation Learning

ICML 2018 Tutorial
(Slides Available Online)

Yisong Yue Hoang M. Le

a

yyue@caltech.edu hmle@caltech.edu
W @YisongYue @HoangMinhLe



https://drive.google.com/file/d/12QdNmMll-bGlSWnm8pmD_TawuRN7xagX/view

This Lecture

+~ Imitation Learning / Inverse Reinforcement Learning

= I[ntroduction
= Behavioral Cloning

" Inverse reinforcement learning
 Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

* Intro and Stochastic Policy

» Basic Policy Gradient Algorithm

* REINFORCE and Vanilla Policy Gradient
» PPO, TRPO, PPO2



Types of RL agents/algorithms

MoOdel-Free
Value Function Actor Policy
Critic
(\ Value-Based Policy-Based
\ Madel-Based
Model-based \-/\-Mﬁlel-Free:
o Model
Explicit: Model or No’'model

learning the model
first.



Value-Based and Policy-Based RL

@ Value Based

e Learnt Value Function
e Implicit policy (e.g. Value Fungtion  Policy
e-greedy)

@ Policy Based Value-Based éf'tt‘l’é Policy-Based
e No Value Function

e Learnt Policy

@ Actor-Critic

e Learnt Value Function
e Learnt Policy




D S{S P M IN d https://youtu.be/gn4nRCCITWQ

It might
look goofy ...




O P e nAI https://blog.openai.com/op

enai-baselines-ppo/

PPO (Proximal Policy Optimizaiton) default reinforcement learning algorithm at OpenAl




Advantages of Policy-Based RL

= .
WHYPE s
2= WHY?
WHY? WHY? WHY? WHY?




Advantages of Policy-Based RL

Advantages:
@ Better convergence properties

e Effective in high-dimensional or continuous action spaces

@ Can learn stochastic policies
Disadvantages:
@ Typically converge to a local rather than global optimum

@ Evaluating a policy is typically inefficient and high variance



Advantages of Policy-Based RL

Advantages:

@ Better convergence properties

e Effective in high-dimensional or continuous action spaces

@ Can learn stochastic policies

Disadvantages:
@ Typically converge to a local rather than global optimum

@ Evaluating a policy is typically inefficient and high variance



Stochastic Policy Example #1:
Modeling Human Decisions

< Human make decisions under bounded
rationality.

Trading Stocks Route choices



Stochastic Policy Example #2:
Rock-Paper-Scissors

iy

@ Two-player game of rock-paper-scissors

e Scissors beats paper
e Rock beats scissors
e Paper beats rock

@ Consider policies for iterated rock-paper-scissors

e A deterministic policy is easily exploited
e A uniform random policy is optimal (i.e. Nash equilibrium)



Stochastic Policy Example #3:
Aliased Grid world

Gray state={Wall to N and S}

> - l - | <«
\ \~~-! } $ \ \~..4 }
YAy, < r) YAy

@ Under aliasing, an optimal deterministic policy will either

e move W in both grey states (shown by red arrows)
e move E in both grey states

@ Either way, it can get stuck and never reach the money
@ Value-based RL learns a near-deterministic policy
e e.g. greedy or e-greedy

@ So it will traverse the corridor for a long time



Stochastic Policy Example #3:
Aliased Grid world

— - l - > -

AR YTy

@ An optimal stochastic policy will randomly move E or W in grey states
mg(wall to N and S, move E) = 0.5

mg(wall to N and S, move W) = 0.5

@ It will reach the goal state in a few steps with high probability

@ Policy-based RL can learn the optimal stochastic policy

3-38




Policy Objective Functions

e Goal: given a policy my(s, a) with parameters 6, find best 6
@ But how do we measure the quality for a policy my?

" DOQN: Deep Q-Learning ,\
Vi () = V,E(Q(s,a) — Q(s, a;w)’]

-~ A

Initializew =0, k=1 + Reply buffer
lo op + Fixed target Q

Sample tuple (sk, ak, rk, Skr1) given m
Update welghts A A
Aw = —a(ry+7ymax Q(3k+1> ak+1; W) —Q(Sk, ar; w)) Vo Q(Sk, ax; w)

41

w=w— JW
m(sk) = arg max Q(sk, a), with prob 1 — ¢, else random.

k=k+1

. end loop




Policy Objective Functions

e Goal: given a policy my(s, a) with parameters 6, find best 6
@ But how do we measure the quality for a policy my?

" Maximize the value function: (focus on this case
first)

H8)=Rg = ) R@Pp(D) = Er_py(o[R()]

" |t can be solved by gradient ascent, since we
are maximizing the objective.

3-40



This Lecture

+~ Imitation Learning / Inverse Reinforcement Learning

= I[ntroduction
= Behavioral Cloning

" Inverse reinforcement learning
 Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

" Intro and Stochastic Policy

» Basic Policy Gradient Algorithm

* REINFORCE and Vanilla Policy Gradient
» PPO, TRPO, PPO2



Basic Components

You cannot control

AL
Function

Get 20 scores
when killing a
monster

rd

Env

The
rule of
GO



Policy of Actor

$ Policy 7T is a network with parameter & — 7

" Input: the observation of machine represented
as a vector or a matrix

" Output: each action corresponds to a neuron

in output layer
P 4 Take the
action based
. on the

» left (0.7 | probability.

>

o

right 0.2 \ Score.of an
action

: » fire (.1
pixels y




Example: Playing Video Game

Start with
Observation s; Observation s, Observation s;
P Obtaln reward Obtain reward
O r,=0 r,=5
e ++ ‘

? } }

S = (kill an alien)




Example: Playing Video Game

Start with
observation s; Observation s, Observation s;

This is an episode.
Total reward:
Game Over
(spaceship destroyed)
Obtain reward ry

=

After many turns

IIIIIIIIIIIIIIIII>

R — Tt
t=1

We want the total
reward be maximized.




Actor, Environment, Reward

Y a; SH a,
. .
sl - Yt - B
v } Vo
ST a Ay, a, as

Trajectory 1={s,, a,;, s,, a, $3 as,..., Sp ar}

pe (T)

= p(sy)me(a,|s)p(sy|s1, a)me(a,|s,)p(ss|s,, ay) -

T
=G0 | [motaclsopCseslse a)
t=1



Actor, Environment, Reward

Ay, a S a
. .
v } Vo
ST aj Ay, a, as
| |
F

Optimization r,
Problem | l
Expected Reward (Objective to maximize)

Ry = Z R(Dpe(1) = Erep,[R(D]  R(p) = ZT:rt t

t=1



Policy Gradient R =) R@pe(@ VR, =

Vpe(7)
po (1)

VRg = ) R@Vps(r) = » R(@py(r)

R(7) do not have to be differentiable
It can even be a black box.



Policy Gradient R =) R@pe(@) 7Ry =2

Vpe(T)
pe(T)

7Ry = ) R(Vpe(d) = ) R(@ps(0)

R(7) do not have to be differentiable
It can even be a black box.
Vfx) =

= Z R(7)pe (t)Viogpe(7) f(x)Vlogf (x)




Policy Gradient R =) R@pe(@ VR, =

Vpe(T)
pe(T)

TRy = ) R(Vpe(t) = ) R(@ps(0)

R(7) do not have to be differentiable
It can even be a black box.
Vf(x) =

R(t)pp (1) logpe (¢) f)Vlogf (x)

T

1 \ n n
= Ecvpym[R@VIogps (D] = 7 > R™Viogps(c")
n=1



Policy Gradient s = ) R@ps(®) 7Ry =2

Vpe (T)
pe(7)

7Ry = ) R@UPs(x) = ) R(@pe(®)

R(7) do not have to be differentiable
It can even be a black box.
Vfx) =

R(t logpe (1) f(x)Vlogf (x)

T

1 \ n n
— Er~p9(r) [R(7)Vlogpe(7)] = N Z R(t™)Vlogpe(t")
n=1

N T,
1
=~ Z Z R(t™)Viogmg(al|s)

n=1t=1




I .
= Er~p9(r)[R(T)Vlogp9(T)] zﬁzR(T )Wlogpe(t™)
n=1
Tn

N

1

_ Nz R(t™)Vlogme(al|sl)
n=1t=1

See Backup Slide #1 for the derivation.



Policy Gradient Algorithm

9<—9+T]V§9

R(t™)Vlogme(ar'|s¢')




Policy Gradient Algorithm

Given policy g

: (511, a%)

(s2,a3)

9<—9+T]V§9

: (512, a%)

(s3,a3)

R(t™)Vlogme(ar'|s¢')




Basic Policy Gradient Algorlthm

VR = T~p9(‘c) [R (T)Vlogpg (T) N Z Z R(Tn)VIOQPB (a?lS?)

n=1t=1

Update

Given policy g

> (s1,a1)

(32 az

9<—9+T]VR9

: (51 9,

shab R R(z")Vlogmg(al|st)

Collection

onlv used once



6 « 0 +nVRy
Implementation N T,

PRo =~ Y Z R(™)Plogmg(aflst)
n=1t=
s ai R(@™)



6 « 6 +nVRg

Implementation

N T,

TIRESY Z R(=™)Plogmy(aflst)

Consider as classification problem

n=1t=

s¢ ai R(x™)

- - -

+— left < » 1 a?
> right < » 0
+» fire < >0




6«6+ UVEQ ?
Implementation N T,

VRy = m Z Z R(t™)Vlogmo(af|si)

n=1t=

n
Consider as classification problem s¢ ar R(t™)

+—» left < » 1 a?
- - ‘ - ‘ -* right < > O
n . -—> fire < > 0
DNN for classification:
N T, N T,
N Z Z logmg(ar|st’) — N Z Z Vliogme(ai'|si)
n=1t= TF, pyTorch ... n=1t=1
DNN for pollcy oradient RL:

N T,

3 Z R(")logmy(ap|st') mmmp Ni TZ R(™)Vlogmg(af|st)
o &

n=1t=




From basic PG algorithm to...?

Given policy g

Collection



From basic PG algorithm to... ?

+ Issues with the basic PG algorithm



From basic PG algorithm to...

+ Issues with the basic PG algorithm

= 1. Inaccurate update when non-negative rewards
= 2. Large variance

= 3. Slow, due to the un-reusable data collection
process



From basic PG algorithm to...

+ Issues with the basic PG algorithm

= TIP 1. Inaccurate update when non-negative
rewards

« Add baselines at states
= TIP 2. Large variance
« Assign suitable credits
« REINFORCE and Vanilla Policy Gradient

= TIP 3. Slow, due to the un-reusable data collection
process

« Use importance sample to reuse data when training:
PPO, TRPO, PPO2



This Lecture

+~ Imitation Learning / Inverse Reinforcement Learning

= I[ntroduction
= Behavioral Cloning

" Inverse reinforcement learning
 Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

" Intro and Stochastic Policy

» Basic Policy Gradient Algorithm

* REINFORCE and Vanilla Policy Gradient RL
» PPO, TRPO, PPO2



Tip |: Add a Baseline

0 « 8 + nVRy |ltis possible that R(t™) is always positive.

N T,

NZ Z(R (") —b)Vlogrme(ai|st) b~ E[R(1)]

It is probablllty .
Ideal Case
(policy function)

C

NOT . The probablllty of the
With >arlpIc actions not sampled
Sampling will decrease.




Tip 2: Assign Suitable Credit

Return: 3¢ 3 X —2 X —2 X —7 X —2 X —2

(swa1) (spaz) (s¢ asz) (Sa.az) (Sp,az) (sc az)
Reward: 45 +0 -2 -5 +0 -2
Total Reward: R = 43 R =—7

N T,
_ 1
VRo ~ % ) Z(ﬁeﬂa b)Vlogmy(al|st

=

|

i

o~

Il

(WY
l QD

”

|l

3

a%

Backup Slide #2 of why we can safely do this.



Tip 2: Assign Suitable Credit

How good it is if we take a,other

Advantage PL: (s;, a,) than other actions at s;.

Function

Estimated by “critic” (later)

Can be state-dependent

/ b(st) ~ El[re + re1 + -+ rr—1]

N T,
1
VRg = NZZ*&Q b)Viogmy(al|st)
n=1t=1

n n t'—t.m
—T-> E Ty —»E AR
t'=t t'=t

Add discount factor Yy <1

b(s) defined on states (average returns from a state) does not introduce bias.
(see backup slide #3 for proof).



Monte-Carlo Policy Gradient (REINFORCE)

TIP #2: Assign Suitable Credit by using returns

@ Leverages likelihood ratio / score function and temporal structure

A@t = aVe |Og 7T0(5t, at)Gt

(7)

REINFORCE:
Initialize policy parameters 6 arbitrarily
for each episode {s1,a1,r, - ,sT_1,ar_1,rr} ~ mp do

fort=1to T —1do
0 < 0+ aVylogmo(st, ar)Ge
endfor
endfor
return 0




"Vanilla” Policy Gradient Algorithm

Using both TIP #1 & #2  The simplest way to implement it
is using average return of a state sz b(s;) ~ E[ry + rpo1 + -+ + rr_1]
4

Initialize policy parameter 6, baseline b
for iteration=1,2,--- do
Collect a set of trajectories by executing the current pblicy 7Tg
At each timestep in each trajectory, compute
I:the return Gy = Zt,:t rer, and
the advantage estimate A, = G} — b(s).
(Re-fit the baseline, by minimizing ||b(s;) —
summed over all trajectories and timesteps.)
Update the policy, using a policy gradient estimate VRg
which is a sum of terms Vy Iogﬂg(at|st,0)/2\t.
- (Plug VRgto SGD or ADAM)
endfor

N T, J
Z Z b(s0)7logme(alt|st)
n=1t=1



This Lecture

+~ Imitation Learning / Inverse Reinforcement Learning

= I[ntroduction
= Behavioral Cloning

" Inverse reinforcement learning
 Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

" Intro and Stochastic Policy

» Basic Policy Gradient Algorithm

* REINFORCE and Vanilla Policy Gradient
» PPO, TRPO, PPO2



Quick Review VRg = Erep,(v)[R(T)VIogpg (7)]
Basic Policy Gradient Algorithm

Update
Given policy g

™ (s},al) R@EY) —
(s3,a3) R(t1) 0 < 6 +nVRy

12 (stad) R(?)
(s2,a3) RGD)

R(t™)Vlogme(ar'|s¢')

Collection
only used once



Quick Review
From basic PG algorithm to...

+ Issues with the basic PG algorithm

= TIP 1. Inaccurate update when non-negative
rewards

« Add baselines at states
= TIP 2. Large variance
« Assign suitable credits
« REINFORCE and Vanilla Policy Gradient

= TIP 3. Slow, due to the un-reusable data collection
process

« Use importance sample to reuse data when training:
PPO, TRPO, PPO2



Monte-Carlo Policy Gradient (REINFORCE)

TIP #2: Assign Suitable Credit by using returns

@ Leverages likelihood ratio / score function and temporal structure

A@t = aVe |Og 7T0(5t, at)Gt

(7)

REINFORCE:
Initialize policy parameters 6 arbitrarily
for each episode {s1,a1,r, - ,sT_1,ar_1,rr} ~ mp do

fort=1to T —1do
0 < 0+ aVylogmo(st, ar)Ge
endfor
endfor
return 0




"Vanilla” Policy Gradient Algorithm

Using both TIP #1 & #2  The simplest way to implement it
is using average return of a state sz b(s;) ~ E[ry + rpo1 + -+ + rr_1]
4

Initialize policy parameter 6, baseline b
for iteration=1,2,--- do
Collect a set of trajectories by executing the current pblicy 7Tg
At each timestep in each trajectory, compute
I:the return Gy = Zt,:t rer, and
the advantage estimate A, = G} — b(s).
(Re-fit the baseline, by minimizing ||b(s;) —
summed over all trajectories and timesteps.)
Update the policy, using a policy gradient estimate VRg
which is a sum of terms Vy Iogﬂg(at|st,0)/2\t.
- (Plug VRgto SGD or ADAM)
endfor

N T, J
Z Z b(s0)7logme(alt|st)
n=1t=1



TIP #3: Importance Sampling
+ Constraints

= TIP 3. Slow, due to the un-reusable data collection
process

* Relook at
— Basic PG,
— REINFORCE PG
— Vanilla PG



From on-policy
to off-policy

Using the experience more than once



On-policy v.s. Off-policy

+» On-policy: The agent learned and the agent
interacting with the environment is the
same.

+» Off-policy: The agent learned and the agent
interacting with the environment is
different.




On-policy = Off-policy

VRg = Evvpy@)[R(1)V0I0gpg (7)]
* Use 1y to collect data. When 6 is updated, we have

to sample training data again.
* Goal: Using the sample from w4/ to train 8. 8 is

fixed, so we can re-use the sample data.

Given policy g

: (sf,ad)

(52 az

0 — 0 +nVRy

Tn

. : E o
i (st,a ; ZZ R(t™)Vlogpg(al|s?)

(52

Hope to use the data to update @ multiple times before collecting new data.




On-policy = Off-policy

N T,

_ 1
VRo = Erepy(r) [R(VIogpe ()] = 3 ), ) REVIogpo(allst)

n=1t=1
* Use g to collect data. When 6 is updated, we have

to sample training data again.
* Goal: Using the sample from gy to train 6. 8" is
fixed, so we can re-use the sample data.

Importance Sampling

x* is sampled from p(x)

Eep[f(X)] =~ Z f(xt) We only have x* sampled
i=1 from q(x)



On-policy = Off-policy

N T,
VRy = Ernpy@)[R(T)V0Iogpe(T)] = NZZR(T")WOQPG(G?B?)

* Use g to collect data. When 6 is updated, we have

to sample training data again.
* Goal: Using the sample from my/ to train 6. 8" is

fixed, so we can re-use the sample data.

Importance Sampling ¥t is sampled from p(x)
N :
Explf (x)] = It%‘bﬁ' We only have x* sampled
=1 from g (x)
) p(x)

= [ reoweix = [ r B S adx = Eenglr 02

Importance weight




Importance Sampling

x* is sampled from p(x)

N .
Explf ()] = %ﬁ&%‘ We only have x* sampled
i=1

from g(x)

p(x)
q(x)

ff(X)p(X)dx = ff(X)p( a2 q(x)dx = Ex_qlf (x) ——




Issue of Importance Sampling

p(x)
q(x)

Eyplf (x)] is negative f(x)

p(x) r q(x)

J

Ex-p [f(x)] = Ex-q [f (x)——=




Issue of Importance Sampling

p(x )]
q(x)

Eyplf (x)] is negative f(x)

p(x) ///”" q(x)

\/ Eyplf (x)] is positive?

Ex-p [f(x)] = Ex-q [f (x)




Issue of Importance Sampling

p(x)
q(x)

Eyplf (x)] is negative f(x)

p(x) ///”P— q(x)

Very large weight
Eyplf (x)] is positives-
negative

Ex-p [f(x)] = Eyx-q [f (x)—=]




On-policy = Off-policy

VRg = E1~py(x)[R(¥)V0ogpg (7)]
* Use 1y to collect data. When 6 is updated, we have

to sample training data again.
* Goal: Using the sample from w4/ to train 6. 8" is

fixed, so we can re-use the sample data.

_ pe (T)

VRg = E.- R(0)VI '
0 = Erpyo |, "oy R(IVIogpe (D) Basic PG

« Sample the data from 8"'.
* Use the data to train & many times.

Importance p(x)
Sampling Ex~p[f(x)] x~q[f( X)—— (%)




On-policy = Off-policy
Gradient for update | Vi(x) = f(x)Vlogf(x)\

VRo = E(s,ap)ms [A? (50, ) VIogmp(al|st)]

A? (s¢,ap)Viogme(ay|st')]

= E(sa0)~n



On-policy = Off-policy
Gradient for update \Vf(x) = f(x)Vlogf(x)l

VRo = E(s,,a,)~mg [Ae(st» a;)Vlogme(ar'|si)]
This term is from
A7 (56:80) | sampled data.

PG (s¢, ag)
= E(st ap)~Tyr ﬂwvwgﬂ-ﬁ(a?ls?)]

PG’ (St' at)




On-policy = Off-policy
Gradient for update | Vf(x) = f(x)Vlogf(x)‘

VRo = E (s, a,)~mg [A% (s¢, ap)Viogmp(at|st)]
This term is from
A7 (s ar) - sampled data.

P o (se, ar)
= E(sa0)~m, | *ﬁ('?rEﬁVlOgﬁe(a |s¢)]

' "Pgr(S¢, ag)

mo(ac|se) pe(se)
Tor(aclse) per(se)

AG’(St: a.)Vlogmg(ai'|st)]

= E(st,at)~n [

6,



On-policy = Off-policy

Gradient for update Vi(x) = f(x)Viogf(x)

VRy = E(s,.a,)~me [A% (5., a)Viogme(al|sM)]
This term is from
A7 (s, ap) sampled data.

P9 (Str at)
= E(s, ayor | AderepVlogrm(al|s?))

o P9 (St; at)

mo(aclse) Pe(se) o
= E(St;at)"'ﬂ'el[‘ —— ZmAe(st: at)Vlogﬂ-H(a?lS?)]

Tor(ag|se)

7-‘-e(at Ist) 9
7T9/(at|st)

4‘“%.]9,(9) — E(St,at)"'ner [ ( St at)] When to stop?



Add Constraints

RL — The Math behind TRPO & PPO
TRPO paper:
https://arxiv.org/pdf/1502.05477.pdf

PPO paper:
https://arxiv.org/pdf/1707.06347.pdf


https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33

PPO / TRPO

Proximal Policy Optimization (PPO)

: , Vf(x) =f(x)Vlogf(x)
J8po(8) = ]9 (0) — BKL(6,6")

mo(ae|se)
6" | Tpr(ac|se)

—

]9 (0) = E(spa)~n 49' (s, a,)




@ cannot be very different from 8’

PPO / TRPO

Constraint on behavior not parameters

. . P (2017)
Proximal Policy Optimization (PPO)

| | TF(x) = FIVlogf ()
JBpo(8) = J% (8) — BKL(8,8")
mo(ag|se)
Tor(ag|se)

]6,(9) = E(st,at)~7t9, [ A® (St at)]

TRPO (Trust Region Policy Optimization)  (2015)

o (ag|se)
o (ag|se)

]?RPO (9) — E(st,at)~n9/

Ae'(st» at)‘

KL(,0") < &



PPO algorithm

* Initial policy parameters 6°

* |n each iteration
« Using 6% to interact with the environment to collect
{s;, a;} and compute advantage 49" (s¢,ap)
* Find @ optimizing Jppp(6)

gk gk .y Update parameters
Jppo(8) =] (6) — BKL(6,6") several times

 If KL(B, 9") > KL,,.x, iINCrease f3 Adaptive
* If KL(6,0%) < KLy, decrease f | | KL Penalty




PPO algorithm

J8p0(8) = J¢*(6) — BKL(6,6%)

PPO2 algorithm (5.a¢)
]gllioz(g) - Z min(ﬂe(adst) Aek(st,

(St!at)




PPO algorithm

J6p0(8) = J9“(8) — BKL(8, 8%)
mo(ae|se)

J(0) ~ A% (s¢, a,)
PPO2 algorithm &ty ok aclse)
JEroa®) = )
(st.at)
clip (:@i ((a;tllst:) 1—g1+ g) A" (s,, a,)
1+ g{. S




PPO algorithm

J8po(8) =] (6) — BKL(6,6%)

Bk(e) ~ :9((“;”3;)) Gk(st: a,)
PPO2 algorithm (Spap O
~ o 7“-Q(at|st) gk
]PP02(9) ~ (Stzat) min (;779/% (@ |s,) A” (s¢, ay),

Mok (ac|se)

| mo(ag|s
clip( o(ac|se) ,1—8,1+8)A6k(5t,at)>




https://arxiv.org/abs/1707.06347

Experimental Results
(with MuJoCo Tasks)

Episode 8

(a) CartPole-v0

-v2

(d) Reacher-v2 (e) Walker-v2 (f) Humanoi

o



https://arxiv.org/abs/1707.06347

Experimental Results

HaliCrectahy 1 Hopparvl

Reacrar-! Swrrvrerot Wakeriov!

.

o 1000200 o 1000000

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.



Reinforcement

Learning

Inverse
Reinforcement Learning

Single Agent

Tabular representation of reward

Model-based control/
Model-free control
(MC, SARSA, Q-Learning)

Function representation of reward

1. Linear value function approx
(MC, SARSA, Q-Learning)
2. Value function approximation

Linear reward function learning
Imitation learning
Apprenticeship learning
Inverse reinforcement learning
MaxEnt IRL

MaxCausalEnt IRL
MaxRelEnt IRL

(Deep Q-Learning, Double DQON,
prioritized DQN, Dueling DQN)
3. Policy function approximation
(Policy gradient, PPO, TRPO)

4. Actor-Critic methods

(A2C, A30)

Non-linear reward function learning
Generative adversarial
imitation learning (GAIL)

Adversarial inverse reinforcement
learning (AIRL)

Review of Deep Learning

As bases for non-linear function
approximation (used in 2-4).

Review of Generative Adversarial nets

Multiple

Agents

Multi-Agent Reinforcement Learning

Multi-agent Actor-Critic
etc.

Multi-Agent Inverse Reinforcement
Learning

MA-GAIL

MA-AIRL

AMA-GAIL



Questions?



What is next?

+~ Other deep reinforcement learning
approaches

" (Asynchronous) Advantage Actor Critic:
« A2C
* A3C

" Deep Inverse reinforcement learning
* Entropy based IRL
* GAN (Generative adversarial networks)
* GAIL (Generative adversarial imitation learning)



Backup Slide #1

T—1
Volog P(r")%) = Vjlog 1(s0) [ mo(aclst) P(seialse, ac)
N~ L N\ -~ /
| Initial state distrib. policy dynamics model |
T—1
=V |log u(so) + Z log mg(a¢|st) + log P(st+1|st, at)
t=0

T-1
= Vg logmg(as|s:)

A _J/
WV
t=

no dynamics model required!




Policy Gradient: Use Temporal Structure

Backup Slide #2
@ Previously:

V,E,[R] = E,

55 ()

t=0
@ We can repeat the same argument to derive the gradient estimator for
a single reward term ry.

t/
VoE[re] =E | ry Z Vi log 7T9(3t|5t)}

t=0
@ Summing this formula over t, we obtain

[T—-1 t/
V(0) = VeE[R] =E | Y rv Y Vylog wa(atst)}

T—1
=K Vg log mg(at, St) Z rt/}




Baseline b(s) Does Not Introduce Bias—Derivation

Backup Slide #3

E.[Vglogm(a¢|st, @)b(st)]

= Eq o001 | Esiernyroaery [ Vo log m(ae|se, 0)b(s)]| (break up expectation)

= Eq, 2001 |D(5t)Esi1)ria0r_n [Vo log m(at|st, 0)]] (pull baseline term out)
= Boouape [b(st)Ea [V log m(arst, 0)]

V97T(at

(remove irrelevant variables)

St,g)

— ]ESO:t,E’O:(t—l) St ZT‘-H at|st)

— ESO:taaO:(t—l) b(st) Z veﬂ-(atlsh 0)

— ESO:taaO:(t—l) b(St)V@ Z 7T(3t|5t,

a

— ]ESO:t ao:(t—1) [b(St)VQ].]
— IEsozt,ao:(t—l) [b(st) ' O] =0

0)

7T9(at

likelihood ratio
Sl )



