Welcome to

DS595 Reinforcement Learning Prof. Yanhua Li

Time: 6:00pm –8:50pm W Zoom Lecture Spring 2022

No Quiz Today

Office hour time change in next 2 weeks (Prof. Li) * Prof Li's office hour

- From Tue 10:00am-11:00am;
- To Wed 11:00am-12pm
- with the same Zoom Link as course lecture
- for Week II Wed 3/30
- * and Week 12 Wed 4/6.

From Week 13, we resume it to Tue 10-11AM

Other time slots by appointments

Class arrangement

https://users.wpi.edu/~yli15/courses/DS595Spring22/Schedule.html Quiz 5 on Week #12 4/6/2022 (the Wed after next week). 30 minutes on Policy Gradient (PG)

Project 3 reminder: Due 4/6 Next Wed 10 bonus points and a leader board

https://users.wpi.edu/~yli15/courses/DS595
Spring22/Assignments.html

https://github.com/yingxue-zhang/DS595-RL-Projects/tree/master/Project3

Project 4 proposal due today Group confirmation.

Project 4 is available Starts 3/23 this Wed

- https://github.com/yingxue-zhang/DS595-RL-Projects/tree/master/Project4
- ✤ Important Dates:

Timeline:

Week II (3/30 W), Proposal Due. (Upload it to Canvas Discussion board) Week I3 (4/13 W), Progressive report due (Upload it to Canvas discussion board) Week I5 (4/25 M), Project report due. (Upload it to Canvas discussion board) Week I5 (4/27 W), Project poster session. (On Zoom)

Last Lecture

- Advanced DQN methods
 - Double-DQN
 - Dueling DQN
 - Prioritized DQN
 - Multi-step
 - Noisy net
 - Distributional Q-learning
 - Rainbow
 - Continuous actions
- Self-Introduction
- Imitation Learning / Inverse Reinforcement Learning
 - Introduction
 - Behavioral Cloning
 - Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)

This Lecture

Imitation Learning / Inverse Reinforcement Learning

- Introduction
- Behavioral Cloning
- Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)
- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - Vanilla Policy Gradient
 - PPO, TRPO, PPO2

Problems with many RL scenarios

- Reinforcement Learning:
 - Learning policies guided by (often sparse) rewards (e.g. win the game or not)
 - Pros: simple, cheap form of supervision / exploration
 - Cons: High sample complexity

Where is it successful?

 In simulation where data is cheap and parallelization is easy

- Execution of actions is slow
- Very expensive or not tolerable to fail
- Want to be safe

Learning from Demonstrations (LfD)

- Expert provides a set of demonstration trajectories: sequences of states and actions
- Imitation learning is useful when is easier for the expert to demonstrate the desired behavior rather than:
 - come up with a reward that would generate such behavior,
 - coding up the desired policy directly
- Learning two things from imitation learning:
 - Policy
 - Reward function (why?)

Learning from Demonstrations (LfD)

- Expert provides a set of demonstration trajectories: sequences of states and actions
- Imitation learning is useful when is easier for the expert to demonstrate the desired behavior rather than:
 - come up with a reward that would generate such behavior,
 - coding up the desired policy directly
- Learning two things from imitation learning:
 - Policy
 - Reward function (why?)
 - Understand/reason how demonstrator makes decisions
 - Predict future behaviors
 - Good reward function for training RL agents

One Shot Imitation Learning

"ab," "cde," "fg," and "hij," where the blocks are ordered from top to bottom within each group. https://www.youtube.com/watch?v=Bc_kZ-OQh24

Hard to define a reward function; Hard to explore from a random policy.

A Deep Learning Approach for Generalized Speech Animation Sarah Taylor, Taehwan Kim, Yisong Yue et al., SIGGRAPH 2017

https://www.youtube.com/watch?v=9zL7qejW9fE

Hard to define a reward function;
 Hard to explore from a random policy.

Problem Setup

Model Based for Now

• Input:

- State space, action space
- Transition model $P(s' \mid s, a)$
- No reward function R
- Set of one or more teacher's demonstrations (s₀, a₀, s₁, s₀, ...) (actions drawn from teacher's policy π*)
- Behavioral Cloning:
 - Can we directly learn the teacher's policy using supervised learning?
- Inverse RL:
 - Can we recover R?

We will discuss model-free (i.e., unknown P) in future lectures.

This Lecture

Imitation Learning / Inverse Reinforcement Learning

- Introduction
- Behavioral Cloning (Learning expert policy)
- Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)
- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - Vanilla Policy Gradient
 - PPO, TRPO, PPO2

• Formulate problem as a standard machine learning problem:

- Fix a policy class (e.g. neural network, decision tree, etc.)
- Estimate a policy from training examples $(s_0, a_0), (s_1, a_1), (s_2, a_2), \ldots$

Problem with the BC approach?

Problem: Compounding Errors

Data distribution mismatch!

In supervised learning, $(x, y) \sim D$ during train and test. In MDPs:

• Train: $s_t \sim D_{\pi^*}$

• Test:
$$s_t \sim D_{\pi_A}$$

Behavior Cloning

The agent will copy every behavior, even irrelevant actions.

https://www.youtube.com/watch?v=j2FSB3bseek

This Lecture

Imitation Learning / Inverse Reinforcement Learning

- Introduction
- Behavioral Cloning
- Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)
- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - Vanilla Policy Gradient
 - PPO, TRPO, PPO2

Linear Feature Reward Inverse RL

- Recall linear value function approximation
- Similarly, here consider when reward is linear over features

•
$$R(s) = oldsymbol{w}^{ op} x(s)$$
 where $w \in \mathbb{R}^n, x: S o \mathbb{R}^n$

- Goal: identify the weight vector **w** given a set of demonstrations
- The resulting value function for a policy π can be expressed as

$$V^{\pi} = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t) \mid \pi]$$

Linear Feature Reward Inverse RL

- Recall linear value function approximation
- Similarly, here consider when reward is linear over features

•
$$R(s) = oldsymbol{w}^{ op} x(s)$$
 where $w \in \mathbb{R}^n, x: S o \mathbb{R}^n$

- Goal: identify the weight vector **w** given a set of demonstrations
- The resulting value function for a policy π can be expressed as

$$V^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \mid \pi\right] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \boldsymbol{w}^{T} \boldsymbol{x}(s_{t}) \mid \pi\right]$$
$$= \boldsymbol{w}^{T} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \boldsymbol{x}(s_{t}) \mid \pi\right]$$
$$= \boldsymbol{w}^{T} \mu(\pi)$$

where $\mu(\pi)(s)$ is defined as the discounted weighted frequency of state features under policy π .

Inverse Reinforcement Learning

To find the reward function R used by the expert:

- Note $\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) \mid \pi^*\right] = V^* \ge V^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) \mid \pi\right] \quad \forall \pi,$
- Therefore if the expert's demonstrations are from the optimal policy, to identify w it is sufficient to find w* such that

$$w^{*T}\mu(\pi^*) \geq w^{*T}\mu(\pi), \forall \pi \neq \pi^*$$

Inverse reinforcement learning

♦ Goal: Learn a policy function and a reward function that are as good as the demonstration expert
♦ Linear reward function assumption: R(s) = w^Tx(s)

- Initialize $\pi = \pi_0$, stopping criteria $\varepsilon = 10^{-3}$ (for example)
- For i=1,2,...
 - Find a reward function that the expert maximally outperforms previous policies: (Any quadratic programming solver) $\arg\max_{w}(w^{\top}\mu(\pi^{*}) w^{\top}\mu(\pi)), \text{ s.t., } \|w\|_{2} \leq 1$
 - Find the optimal π with the current w (dynamic programming)
 - Exit if $\mathbf{w}^\top \boldsymbol{\mu}(\pi^*) \mathbf{w}^\top \boldsymbol{\mu}(\pi) \leq \epsilon/2$

More on Imitation Learning

- Slides: https://drive.google.com/file/d/12QdNmMIIbGISWnm8pmD_TawuRN7xagX/view
- Video:

https://www.youtube.com/watch?v=WjFdD7PDG w0

Imitation Learning

ICML 2018 Tutorial (Slides Available Online)

Yisong Yue

Hoang M. Le

@YisongYue

visonavue.com

yyue@caltech.edu

hmle@caltech.edu

@HoangMinhLe

hoangle.info

This Lecture

Imitation Learning / Inverse Reinforcement Learning

- Introduction
- Behavioral Cloning
- Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)
- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - REINFORCE and Vanilla Policy Gradient
 - PPO, TRPO, PPO2

Types of RL agents/algorithms

Value-Based and Policy-Based RL

- Value Based
 - Learnt Value Function
 - Implicit policy (e.g. *ϵ*-greedy)
- Policy Based
 - No Value Function
 - Learnt Policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy

DeepMind

https://youtu.be/gn4nRCC9TwQ

OpenAl

https://blog.openai.com/op enai-baselines-ppo/

PPO (Proximal Policy Optimizaiton) default reinforcement learning algorithm at OpenAI

Advantages of Policy-Based RL

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Stochastic Policy Example #1: Modeling Human Decisions

Human make decisions under bounded rationality.

Trading Stocks

Route choices

Stochastic Policy Example #2: Rock-Paper-Scissors

Two-player game of rock-paper-scissors

- Scissors beats paper
- Rock beats scissors
- Paper beats rock
- Consider policies for iterated rock-paper-scissors
 - A deterministic policy is easily exploited
 - A uniform random policy is optimal (i.e. Nash equilibrium)
Stochastic Policy Example #3: Aliased Grid world

Gray state={Wall to N and S}

• Under aliasing, an optimal deterministic policy will either

- move W in both grey states (shown by red arrows)
- move E in both grey states
- Either way, it can get stuck and never reach the money
- Value-based RL learns a near-deterministic policy
 - e.g. greedy or ϵ -greedy
- So it will traverse the corridor for a long time

Stochastic Policy Example #3: Aliased Grid world

• An optimal stochastic policy will randomly move E or W in grey states

 $\pi_{ heta}(\text{wall to N and S, move E}) = 0.5$

 $\pi_{ heta}(\text{wall to N and S, move W}) = 0.5$

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy

Policy Objective Functions

- Goal: given a policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality for a policy π_{θ} ?

• DQN: Deep Q-Learning

$$\nabla_w J(w) = \nabla_w \mathbb{E}_{\pi}[(Q(s, a) - \hat{Q}(s, a; w)^2]$$

1: Initialize
$$\mathbf{w} = \mathbf{0}$$
, $k = 1$
2: **loop**
3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
4: Update weights:
 $\Delta w = -\alpha(r_k + \gamma \max_{a_{k+1}} \hat{Q}(s_{k+1}, a_{k+1}; w) - \hat{Q}(s_k, a_k; w)) \nabla_w \hat{Q}(s_k, a_k; w)$
 $w = w - \Delta w$
 $\pi(s_k) = \arg \max_{a_k} \hat{Q}(s_k, a_k)$, with prob $1 - \epsilon$, else random.
5: $k = k + 1$
6: end loop

Policy Objective Functions

- Goal: given a policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality for a policy π_{θ} ?
 - Maximize the value function: (focus on this case first)

$$J(\theta) = \bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) = E_{\tau \sim p_{\theta}(\tau)}[R(\tau)]$$

It can be solved by gradient ascent, since we are maximizing the objective.

This Lecture

Imitation Learning / Inverse Reinforcement Learning

- Introduction
- Behavioral Cloning
- Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)
- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - REINFORCE and Vanilla Policy Gradient
 - PPO, TRPO, PPO2

Basic Components

Policy of Actor

***** Policy π is a network with parameter $\theta \longrightarrow \pi_{\theta}$

- Input: the observation of machine represented as a vector or a matrix
- Output: each action corresponds to a neuron in output layer

Example: Playing Video Game

Example: Playing Video Game

Actor, Environment, Reward

Trajectory $\tau = \{s_1, a_1, s_2, a_2, s_3, a_3, \dots, s_T, a_T\}$

 $p_{\theta}(\tau) = p(s_1)\pi_{\theta}(a_1|s_1)p(s_2|s_1, a_1)\pi_{\theta}(a_2|s_2)p(s_3|s_2, a_2)\cdots$ $= p(s_1)\prod_{t=1}^{T}\pi_{\theta}(a_t|s_t)p(s_{t+1}|s_t, a_t)$

Actor, Environment, Reward

Policy Gradient $\bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) \quad \nabla \bar{R}_{\theta} = ?$

$$\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) = \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)}$$

 $R(\tau)$ do not have to be differentiable It can even be a black box.

Policy Gradient
$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) \quad \nabla \bar{R}_{\theta} = ?$$

$$\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) = \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)}$$

 $R(\tau)$ do not have to be differentiable It can even be a black box.

$$= \sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla log p_{\theta}(\tau)$$

 $\nabla f(x) = f(x) \nabla log f(x)$

Policy Gradient
$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) \quad \nabla \bar{R}_{\theta} =?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) = \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)}$
 $R(\tau)$ do not have to be differentiable
It can even be a black box.
 $= \sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla log p_{\theta}(\tau)$
 $= E_{\tau \sim p_{\theta}(\tau)} [R(\tau) \nabla log p_{\theta}(\tau)] \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log p_{\theta}(\tau^{n})$

Policy Gradient
$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) \quad \nabla \bar{R}_{\theta} =?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) = \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)}$
 $R(\tau)$ do not have to be differentiable
It can even be a black box.
 $= \sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla log p_{\theta}(\tau)$
 $= E_{\tau \sim p_{\theta}(\tau)} [R(\tau) \nabla log p_{\theta}(\tau)] \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log p_{\theta}(\tau^{n})$
 $= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla log \pi_{\theta}(a_{t}^{n} | s_{t}^{n})$

$$\begin{split} &= E_{\tau \sim p_{\theta}(\tau)}[R(\tau)\nabla logp_{\theta}(\tau)] \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n})\nabla logp_{\theta}(\tau^{n}) \\ &= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n})\nabla log\pi_{\theta}(a_{t}^{n}|s_{t}^{n}) \end{split}$$

See Backup Slide #1 for the derivation.

Policy Gradient Algorithm

$$\begin{split} \theta &\leftarrow \theta + \eta \nabla \bar{R}_{\theta} \\ \nabla \bar{R}_{\theta} &= \\ \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log \pi_{\theta}(a_t^n | s_t^n) \end{split}$$

Policy Gradient Algorithm

Given policy π_{θ} τ^1 : $(s_1^1, a_1^1) \quad R(\tau^1)$ $(s_2^1, a_2^1) \quad R(\tau^1)$ τ^2 : $(s_1^2, a_1^2) \quad R(\tau^2)$ $(s_2^2, a_2^2) \quad R(\tau^2)$

$$\begin{split} \theta &\leftarrow \theta + \eta \nabla \bar{R}_{\theta} \\ \nabla \bar{R}_{\theta} &= \\ \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log \pi_{\theta}(a_t^n | s_t^n) \end{split}$$

From basic PG algorithm to...?

✤ Issues with the basic PG algorithm

From basic PG algorithm to...

✤ Issues with the basic PG algorithm

- Inaccurate update when non-negative rewards
- 2. Large variance
- Slow, due to the un-reusable data collection process

From basic PG algorithm to...

- ✤ Issues with the basic PG algorithm
 - TIP 1. Inaccurate update when non-negative rewards
 - Add baselines at states
 - TIP 2. Large variance
 - Assign suitable credits
 - REINFORCE and Vanilla Policy Gradient
 - TIP 3. Slow, due to the un-reusable data collection process
 - Use importance sample to reuse data when training: PPO, TRPO, PPO2

This Lecture

Imitation Learning / Inverse Reinforcement Learning

- Introduction
- Behavioral Cloning
- Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)
- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - REINFORCE and Vanilla Policy Gradient RL
 - PPO, TRPO, PPO2

Tip I: Add a Baseline $\theta \leftarrow \theta + \eta \nabla \overline{R}_{\theta}$ It is possible that $R(\tau^{n})$ is always positive. $\nabla \overline{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} (R(\tau^{n}) - \underline{b}) \nabla log \pi_{\theta}(a_{t}^{n} | s_{t}^{n}) \qquad b \approx E[R(\tau)]$

Tip 2: Assign Suitable Credit

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (\mathbf{R}(\tau^n) - b) \nabla \log \pi_{\theta}(a_t^n | s_t^n)$$

$$G_t = \sum_{t'=t}^{T_n} r_{t'}^n$$

Backup Slide #2 of why we can safely do this.

Tip 2: Assign Suitable Credit

Monte-Carlo Policy Gradient (REINFORCE)

TIP #2: Assign Suitable Credit by using returns

• Leverages likelihood ratio / score function and temporal structure

$$\Delta \theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t \tag{7}$$

REINFORCE:

Initialize policy parameters θ arbitrarily for each episode $\{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta}$ do for t = 1 to T - 1 do $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t$ endfor endfor return θ

"Vanilla" Policy Gradient Algorithm

Using both TIP #1 & #2 The simplest way to implement it is using average return of a state $s_t: b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \cdots + r_{T-1}]$

Initialize policy parameter
$$\theta$$
, baseline *b*
for iteration=1, 2, ... do
Collect a set of trajectories by executing the current policy π_{θ}
At each timestep in each trajectory, compute
the return $G_t^n = \sum_{t'=t}^{T-1} r_{t'}$, and
the advantage estimate $\hat{A}_t = G_t^n - b(s_t)$.
(Re-fit the baseline, by minimizing $||b(s_t) - G_t^n||^2$,
summed over all trajectories and timesteps.)
Update the policy, using a policy gradient estimate $\nabla \bar{R}_{\theta}$
which is a sum of terms $\nabla_{\theta} \log \pi_{\theta}(a_t | s_t, \theta) \hat{A}_t$.
(Plug $\nabla \bar{R}_{\theta}$ to SGD or ADAM)
endfor

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{I_n} (G_t^n - b(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t^n | s_t^n)$$

This Lecture

Imitation Learning / Inverse Reinforcement Learning

- Introduction
- Behavioral Cloning
- Inverse reinforcement learning
 - Model-Based, Linear Reward Functions (this time)
- Policy Gradient
 - Intro and Stochastic Policy
 - Basic Policy Gradient Algorithm
 - REINFORCE and Vanilla Policy Gradient
 - PPO, TRPO, PPO2

Quick Review From basic PG algorithm to...

- ✤ Issues with the basic PG algorithm
 - TIP 1. Inaccurate update when non-negative rewards
 - Add baselines at states
 - TIP 2. Large variance
 - Assign suitable credits
 - REINFORCE and Vanilla Policy Gradient
 - TIP 3. Slow, due to the un-reusable data collection process
 - Use importance sample to reuse data when training: PPO, TRPO, PPO2

Monte-Carlo Policy Gradient (REINFORCE)Quick Review

TIP #2: Assign Suitable Credit by using returns

• Leverages likelihood ratio / score function and temporal structure

$$\Delta \theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t \tag{7}$$

REINFORCE:

Initialize policy parameters θ arbitrarily for each episode $\{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta}$ do for t = 1 to T - 1 do $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t$ endfor endfor return θ
"Vanilla" Policy Gradient Algorithm

The simplest way to implement it Using both TIP #1 & #2 is using average return of a state s_t : $b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \cdots + r_{T-1}]$

Initialize policy parameter
$$\theta$$
, baseline *b*
for iteration=1, 2, ... do
Collect a set of trajectories by executing the current policy π_{θ}
At each timestep in each trajectory, compute
the return $G_t^n = \sum_{t'=t}^{T-1} r_{t'}$, and
the advantage estimate $\hat{A}_t = G_t^n - b(s_t)$.
(Re-fit the baseline, by minimizing $||b(s_t) - G_t^n||^2$,
summed over all trajectories and timesteps.)
Update the policy, using a policy gradient estimate $\nabla \bar{R}_{\theta}$
which is a sum of terms $\nabla_{\theta} \log \pi_{\theta}(a_t | s_t, \theta) \hat{A}_t$.
(Plug $\nabla \bar{R}_{\theta}$ to SGD or ADAM)
endfor

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{n} (G_{t}^{n} - b(s_{t})) \nabla_{\theta} \log \pi_{\theta}(a_{t}^{n} | s_{t}^{n})$$

A 1

TIP #3: Importance Sampling + Constraints

- TIP 3. Slow, due to the un-reusable data collection process
 - Relook at
 - Basic PG,
 - REINFORCE PG
 - Vanilla PG

From on-policy to off-policy

Using the experience more than once

?

On-policy v.s. Off-policy

- On-policy: The agent learned and the agent interacting with the environment is the same.
- Off-policy: The agent learned and the agent interacting with the environment is different.

On-policy \rightarrow Off-policy

$\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta}(\tau)} [R(\tau) \nabla log p_{\theta}(\tau)]$

- Use π_{θ} to collect data. When θ is updated, we have to sample training data again.
- Goal: Using the sample from $\pi_{\theta'}$ to train θ . θ' is fixed, so we can re-use the sample data.

Hope to use the data to update θ multiple times before collecting new data.

On-policy
$$\rightarrow$$
 Off-policy
 $\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta}(\underline{\tau})}[R(\tau)\nabla logp_{\theta}(\tau)] = \frac{1}{N} \sum_{\substack{n=1\\n \in I}}^{N} \sum_{\substack{t=1\\n \in I}}^{T_n} R(\tau^n)\nabla logp_{\theta}(a_t^n | s_t^n)$
• Use π_{θ} to collect data. When θ is updated, we have to sample training data again.

Goal: Using the sample from π_θ' to train θ. θ' is fixed, so we can re-use the sample data.

Importance Sampling

$$E_{x\sim p}[f(x)]\approx \frac{1}{N}{\sum_{i=1}^{N}}f(x^{i})$$

 x^{i} is sampled from p(x)We only have x^{i} sampled from q(x)

On-policy
$$\rightarrow$$
 Off-policy
 $\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta}(\underline{\tau})}[R(\tau)\nabla logp_{\theta}(\tau)] = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n)\nabla logp_{\theta}(a_t^n | s_t^n)$
• Use π_{θ} to collect data. When θ is updated, we have

- Use π_{θ} to collect data. When θ is updated, we have to sample training data again.
- Goal: Using the sample from $\pi_{\theta'}$ to train θ . θ' is fixed, so we can re-use the sample data.

Importance Sampling

 $E_{x \sim p}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x^i)}{x^i}$

$$x^i$$
 is sampled from $p(x)$

We only have x^i sampled from q(x)

$$= \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx = E_{x\sim q}[f(x)\frac{p(x)}{q(x)}]$$

Importance weight

Importance Sampling

p(x)

$$E_{x\sim p}[f(x)] \approx \frac{1\sum_{i=1}^{N} f(x^{i})}{N\sum_{i=1}^{N} f(x^{i})}$$

 x^i is sampled from p(x)

We only have x^i sampled from q(x)

q(x)

$$= \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx = E_{x\sim q}[f(x)\frac{p(x)}{q(x)}]$$

Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

On-policy \rightarrow Off-policy

$$\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta}(\tau)} [R(\tau) \nabla log p_{\theta}(\tau)]$$

- Use π_{θ} to collect data. When θ is updated, we have to sample training data again.
- Goal: Using the sample from $\pi_{\theta'}$ to train θ . θ' is fixed, so we can re-use the sample data.

$$\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta'}(\tau)} \left[\frac{p_{\theta}(\tau)}{p_{\theta'}(\tau)} R(\tau) \nabla log p_{\theta}(\tau) \right] \qquad Basic PG$$

- Sample the data from θ' .
- Use the data to train θ many times.

$$\frac{Importance}{Sampling} \quad E_{x \sim p}[f(x)] = E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

On-policy
$$\rightarrow$$
 Off-policy

Gradient for update

$$\nabla f(x) = f(x)\nabla log f(x)$$

 $\nabla \bar{R}_{\theta} = E_{(s_t, a_t) \sim \pi_{\theta}} [A^{\theta}(s_t, a_t) \nabla log \pi_{\theta}(a_t^n | s_t^n)]$

$$= E_{(s_t,a_t)\sim\pi_{\theta'}} \left[\frac{P_{\theta}(s_t,a_t)}{P_{\theta'}(s_t,a_t)} A^{\theta}(s_t,a_t) \nabla log\pi_{\theta}(a_t^n | s_t^n) \right]$$

On-policy \rightarrow Off-policy

Gradient for update

$$\nabla f(x) = f(x)\nabla log f(x)$$

 $\nabla \bar{R}_{\theta} = E_{(s_t, a_t) \sim \pi_{\theta}} [A^{\theta}(s_t, a_t) \nabla \log \pi_{\theta}(a_t^n | s_t^n)]$ $= E_{(s_t, a_t) \sim \pi_{\theta'}} \begin{bmatrix} P_{\theta}(s_t, a_t) & \text{This term is from sampled data.} \\ P_{\theta'}(s_t, a_t) & \text{A}^{\theta'}(s_t, a_t) \end{bmatrix}$

On-policy
$$\rightarrow$$
 Off-policy

Gradient for update

$$\nabla f(x) = f(x)\nabla log f(x)$$

 $\begin{aligned} \nabla \bar{R}_{\theta} &= E_{(s_{t},a_{t})\sim\pi_{\theta}} [A^{\theta}(s_{t},a_{t})\nabla \log \pi_{\theta}(a_{t}^{n}|s_{t}^{n})] \\ &= E_{(s_{t},a_{t})\sim\pi_{\theta'}} \begin{bmatrix} P_{\theta}(s_{t},a_{t}) & \text{This term is from sampled data.} \\ P_{\theta'}(s_{t},a_{t}) & P_{\theta'}(s_{t},a_{t}) \end{bmatrix} \\ &= E_{(s_{t},a_{t})\sim\pi_{\theta'}} \begin{bmatrix} \frac{P_{\theta}(s_{t},a_{t})}{P_{\theta'}(s_{t},a_{t})} & P_{\theta}(s_{t}) \\ P_{\theta'}(s_{t},a_{t}) & P_{\theta}(s_{t}) \end{bmatrix} \\ &= E_{(s_{t},a_{t})\sim\pi_{\theta'}} \begin{bmatrix} \frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta'}(a_{t}|s_{t})} & \frac{p_{\theta}(s_{t})}{p_{\theta'}(s_{t})} \\ P_{\theta'}(s_{t}) & P_{\theta'}(s_{t}) \end{bmatrix} \end{aligned}$

On-policy
$$\rightarrow$$
 Off-policy

Gradient for update

$$\nabla f(x) = f(x)\nabla log f(x)$$

 $\nabla \bar{R}_{\theta} = E_{(s_t, a_t) \sim \pi_{\theta}} [A^{\theta}(s_t, a_t) \nabla \log \pi_{\theta}(a_t^n | s_t^n)]$ $\begin{aligned} & A^{\theta'}(s_t, a_t) & \text{This term is from} \\ & ampled data. \end{aligned} \\ & = E_{(s_t, a_t) \sim \pi_{\theta'}} [\frac{P_{\theta}(s_t, a_t)}{P_{\theta'}(s_t, a_t)} \frac{A^{\theta'}(s_t, a_t)}{P_{\theta'}(s_t, a_t)} \nabla log \pi_{\theta}(a_t^n | s_t^n)] \end{aligned}$ $= E_{(s_t,a_t)\sim\pi_{\theta'}} \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta'}(a_t|s_t)} \frac{p_{\theta'}(s_t)}{p_{\theta'}(s_t)} A^{\theta'}(s_t,a_t) \nabla \log \pi_{\theta}(a_t^n|s_t^n) \right]$ $\mathbf{A}^{\mathbf{M}'}J^{\theta'}(\theta) = E_{(s_t,a_t)\sim\pi_{\theta'}} \left| \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta'}(a_t|s_t)} A^{\theta'}(s_t,a_t) \right| \quad \text{When to stop?}$

Add Constraints

RL — The Math behind TRPO & PPO https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33

TRPO paper: https://arxiv.org/pdf/1502.05477.pdf

PPO paper: https://arxiv.org/pdf/1707.06347.pdf

PPO / TRPO

Proximal Policy Optimization (PPO)

$$\nabla f(x) = f(x)\nabla log f(x)$$

$$J_{PPO}^{\theta'}(\theta) = J^{\theta'}(\theta) - \beta K L(\theta, \theta')$$
$$J^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$

θ cannot be very different from θ'

Constraint on behavior not parameters

Proximal Policy Optimization (PPO)

 $J_{PPO}^{\theta'}(\theta) = J^{\theta'}(\theta) - \beta K L(\theta, \theta')$

PPO / TRPO

(2017)

$$\nabla f(x) = f(x)\nabla log f(x)$$

$$J^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$

TRPO (Trust Region Policy Optimization) (2015)

$$J_{TRPO}^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$
$$KL(\theta, \theta') < \delta$$

- Initial policy parameters θ^0
- In each iteration
 - Using θ^k to interact with the environment to collect $\{s_t, a_t\}$ and compute advantage $A^{\theta^k}(s_t, a_t)$
 - Find θ optimizing $I_{PPO}(\theta)$

$$J_{PPO}^{\theta^{k}}(\theta) = J^{\theta^{k}}(\theta) - \beta KL(\theta, \theta^{k})$$

Update parameters several times

- If $KL(\theta, \theta^k) > KL_{max}$, increase β If $KL(\theta, \theta^k) < KL_{min}$, decrease β

Adaptive **KL** Penalty

$$J^{\theta^{k}}(\theta) \approx \\ \sum_{(s_{t},a_{t})} \frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta^{k}}(a_{t}|s_{t})} A^{\theta^{k}}(s_{t},a_{t})$$

$$J_{PPO}^{\theta^{k}}(\theta) = J^{\theta^{k}}(\theta) - \beta KL(\theta, \theta^{k})$$

$$J^{\theta^{k}}(\theta) \approx \sum_{(s_{t}, a_{t})} \frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta^{k}}(a_{t}|s_{t})} A^{\theta^{k}}(s_{t}, a_{t})$$

$$\frac{PPO2 \text{ algorithm}}{J_{PPO2}^{\theta^{k}}(\theta)} \approx \sum_{(s_{t}, a_{t})} \min\left(\frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta^{k}}(a_{t}|s_{t})} A^{\theta^{k}}(s_{t}, a_{t}), \left(\frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta^{k}}(a_{t}|s_{t})}, 1 - \varepsilon, 1 + \varepsilon\right) A^{\theta^{k}}(s_{t}, a_{t})\right)$$

https://arxiv.org/abs/1707.06347

Experimental Results (with MuJoCo Tasks)

(a) CartPole-v0

(b) HalfCheetah-v2

(c) Hopper-v2

(d) Reacher-v2

(e) Walker-v2

(f) Humanoid-v2

https://arxiv.org/abs/1707.06347

Experimental Results

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.

Reinforcement	Inverse
Learning	Reinforcement Learning
Tabular representation of rewardModel-based controlModel-free control(MC, SARSA, Q-Learning)	Linear reward function learning Imitation learning Apprenticeship learning Inverse reinforcement learning MaxEnt IRL MaxCausalEnt IRL MaxRelEnt IRL
Function representation of reward 1. Linear value function approx (MC, SARSA, Q-Learning) 2. Value function approximation	
(Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN) 3. Policy function approximation (Policy gradient, PPO, TRPO) 4. Actor-Critic methods	Non-linear reward function learning Generative adversarial imitation learning (GAIL) Adversarial inverse reinforcement
(A2C, A3C) Review of Deep Learning <i>As bases for non-linear function</i> <i>approximation (used in 2-4).</i>	learning (AIRL) Review of Generative Adversarial nets
Multi-Agent Reinforcement Learning Multi-agent Actor-Critic etc. Applicatio	Multi-Agent Inverse Reinforcement Learning MA-GAIL MA-AIRL AMA-GAIL
	Reinforcement Learning Tabular representation of reward Model-based control Model-free control (MC, SARSA, Q-Learning) Function representation of reward 1. Linear value function approx (MC, SARSA, Q-Learning) 2. Value function approximation (Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN) 3. Policy function approximation (Policy gradient, PPO, TRPO) 4. Actor-Critic methods (A2C, A3C) Review of Deep Learning As bases for non-linear function approximation (used in 2-4). Multi-Agent Reinforcement Learning Multi-agent Actor-Critic etc.

Questions?

What is next?

- Other deep reinforcement learning approaches
 - Advantage Actor Critic:
 - A2C
 - A3C
 - Deep Inverse reinforcement learning
 - Entropy based IRL
 - GAN (Generative adversarial networks)
 - GAIL (Generative adversarial imitation learning)

Backup Slide #1

$$\begin{aligned} \nabla_{\theta} \log P(\tau^{(i);\theta}) &= \nabla_{\theta} \log \left[\underbrace{\mu(s_{0})}_{\text{Initial state distrib.}} \prod_{t=0}^{T-1} \underbrace{\pi_{\theta}(a_{t}|s_{t})}_{\text{policy}} \underbrace{P(s_{t+1}|s_{t},a_{t})}_{\text{dynamics model}} \right] \\ &= \nabla_{\theta} \left[\log \mu(s_{0}) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_{t}|s_{t}) + \log P(s_{t+1}|s_{t},a_{t}) \right] \\ &= \sum_{t=0}^{T-1} \underbrace{\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})}_{\text{no dynamics model required!}} \end{aligned}$$

Policy Gradient: Use Temporal Structure

Backup Slide #2
Previously:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_t \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right]$$

 We can repeat the same argument to derive the gradient estimator for a single reward term r_{t'}.

$$abla_{ heta} \mathbb{E}[r_{t'}] = \mathbb{E}\left[r_{t'}\sum_{t=0}^{t'}
abla_{ heta} \log \pi_{ heta}(a_t|s_t)
ight]$$

• Summing this formula over t, we obtain

$$egin{aligned} \mathcal{V}(heta) &=
abla_{ heta} \mathbb{E}[R] = \mathbb{E}\left[\sum_{t=0}^{T-1} r_{t'} \sum_{t=0}^{t'}
abla_{ heta} \log \pi_{ heta}(a_t|s_t)
ight] \ &= \mathbb{E}\left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t,s_t) \sum_{t'=t}^{T-1} r_{t'}
ight] \end{aligned}$$

Baseline b(s) Does Not Introduce Bias–Derivation

Backup Slide #3

$$\begin{split} &\mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} \left[\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t) \right] \right] \text{(break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} \left[\nabla_{\theta} \log \pi(a_t | s_t, \theta) \right] \right] \text{(pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{a_t} \left[\nabla_{\theta} \log \pi(a_t | s_t, \theta) \right] \right] \text{(remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \pi_{\theta}(a_t | s_t) \frac{\nabla_{\theta} \pi(a_t | s_t, \theta)}{\pi_{\theta}(a_t | s_t)} \right] \text{(likelihood ratio)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \nabla_{\theta} \pi(a_t | s_t, \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} \sum_{a} \pi(a_t | s_t, \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} (a_t | s_t, \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 0 = 0 \right] \end{split}$$