This lecture will be recorded!

Welcome to

DS595 Reinforcement Learning
Prof. Yanhua Li

Time: 6:00pm —8:50pm W
Zoom Lecture
Fall 2022

Quiz 4 today in Week 9 (3/16 W)

+» Linear Value Function Approximation (30 mins)

= Stochastic Gradient Decent
* VFA for policy evaluation
= \/FA for control

Quiz 5 in Week 12 (4/6 W)
=+ policy gradient (PG) RL(30 mins)

= Basic PG,
= REINFORCE PG,
* and Vanilla PG)

Project 3 is Due 3/23 Wed, Week
#10

Top three on the leader board get
10 bonus points

% https://github.com/yingxue-zhang/DS$595-
RL-Projects/tree/master/Project3

https://users.wpi.edu/~yli15/courses/DS595Spring22/Assignments.html

Project 4 is available
Starts 3/23 Wed Week 10
Due 4/25 Monday Week 15

% https://github.com/yingxue-zhang/DS$595-
RL-Projects/tree/master/Project4

https://users.wpi.edu/~yli15/courses/DS595Spring22/Assignments.html

A Project 4 self-intro session
Wed in Week 9 (3/16)

We will have a
«Self Introduction Session on Wed in Week 9

+Who are you? Your expertise, such as
programming experience, background knowledge
of data mining, management, analytics.

+EXxperience on RL, Deep Learning, Data
analytics

+Any initial idea for the open project 47

Last Lecture

+ Advanced DQN methods
= Double-DOQN

= Prioritized DOQN

" Dueling DOQN

+ Project 3 (by Yingxue) starting from around
8:20PM

" Project 3 description
" Pytorch configuration and Google cloud environment

This Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
= Behavioral Cloning
* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

Reinforcement

Learning

Inverse
Reinforcement Learning

Single Agent

Tabular representation of reward

Model-based control
Model-free control
(MC, SARSA, Q-Learning)

Function representation of reward

1. Linear value function approx
(MC, SARSA, Q-Learning)
2. Value function approximation

Linear reward function learning
Imitation learning
Apprenticeship learning
Inverse reinforcement learning
MaxEnt IRL
MaxCausalEnt IRL
MaxRelEnt IRL

(Deep Q-Learning, Double DQN,
prioritized DQN, Dueling DQN)
3. Policy function approximation
(Policy gradient, PPO, TRPO)

4. Actor-Critic methods

(A2C, A3C)

Non-linear reward function learning
Generative adversarial
imitation learning (GAIL)

Adversarial inverse reinforcement
learning (AIRL)

Review of Deep Learning

As bases for non-linear function
approximation (used in 2-4).

Review of Generative Adversarial nets
As bases for non-linear IRL

Multiple

Agents

Multi-Agent Reinforcement Learning

Multi-agent Actor-Critic
etc.

Multi-Agent Inverse Reinforcement
Learning

MA-GAIL

MA-AIRL

AMA-GAIL

This Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
= Behavioral Cloning
* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

Model-Free Deep Q-Learning

1: Initializew =0, k =1
2: loop
3: Sample tuple (sk, ak, rk, Sk+1) given 7
4: Update welp;hts))
Aw = —a(ry+7y max Q(Skﬂ,akﬂ, w)—Q(8k, ar; w))VuQ(sk, ag; w)

W= w— X

m(sy,) = argmax Q(sy, az), with prob 1 — ¢, else random.
5: k=k+1 "
6: end loop

+ experience replay
reduce correlations between samples

+ fixed target S |
improve target stability Z.Q—(S”a’ w)

DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D
from prior experience

§$1,04,71,8;

S,,05,75,83 — 5,q,r1,S

S3,0a3,73,5,

St»Ae, Te) St41

@ To perform experience replay, repeat the following:
o (s,a,r,s’") ~D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r +ymax, Q(s’, a’; w)
e Use stochastic gradient descent to update the network weights

N

Aw = a(r + y max Q(s’,a:w) — Q(s,a; w))VwQ(s, a; w)

DQNSs: Fixed Q-Targets

@ To help improve stability, fix the target weights used in the target
calculation for multiple updates

@ Use a different set of weights to compute target than is being updated

@ Let parameters w™ be the set of weights used in the target, and w
be the weights that are being updated

@ Slight change to computation of target value:

o (s,a,r,s’) ~D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r +ymaxy Q(s’,a’; w™)
e Use stochastic gradient descent to update the network weights

Aw =-a(r + v max Q(s’,a;w™) — Q(s,a; w))VwQ(s, a; w)

Periodically, update the fixed O-target -network by the current O-network.

Q-Learning Algorithm with two tricks

<+ Initialize Q-function Q, target Q-function Q = ()
% In each episode

" For each time step t
* Given state s;, take action a; based on Q (epsilon greedy)
e Obtain reward 1%, and reach new state S;, 4
* Store (S¢, Q¢ T4, Sty1) into buffer
* Sample (s;, a;, 13, S;j11) from buffer (usually a batch)
» Target y = 1; + max Q(s;11,Q)
* Update the parameters of Q to make Q(s;, a;) close to y
(regression)

e Every C steps reset Q = Q

This Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
= Behavioral Cloning
* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

Value estimates

Double DON

< Q value is usually over-estimated

Alien Space Invaders Time Pilot Zaxxon
20 - Q -
S - IDOQN estimate
_ 6
15
4 _

Double DQN estimate
10 -#m“m' I 9 _

Double DQN true value

I 0 /- DQN true value

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200

Training steps (in millions)

Double DON

% Q value is usually over estimate

Q(se az) < > Tyt max Q(S¢+1, @)

Tend to select the action
that is over-estimated

& &

Q(5t+1; Cl)

Double DON

% Q value is usually over estimate

Q(se, a) < > Tt + max Q(S¢+1, @)

% Double DQN: two functions Q Target Network

Q(St, at) < » 1% + Q’ (St+1' arg maaX Q(St+1, a))

If Q over-estimate a, so it is selected. Q" would give it proper value.
How about Q’ overestimate? The action will not be selected by Q.

Hado V. Hasselt, “"Double Q-learning”, NIPS 2010
Hado van Hasselt, Arthur Guez, David Silver, “"Deep Reinforcement Learning with Double Q-
learning”, AAAI 2016

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van
Hasselt, Marc Lanctot, Nando de Freitas, “Dueling

D U eI i N g D Q N Network Architectures for Deep Reinforcement

Learning”, arXiv preprint, 2015

State G> % R
S
14 V(s)
State @> % Q(sa)
S p—
A(s,a)+V(s
L/ Only change the A(s,a)

network structure)

1 3 as,a)
- = A(s,a)+V(s)

Dueling DON @

Only change the

network structure A(s,a)
state
3 N4 3 |
Q(s,a) action | N O 6 |
' 2 -1 3 |

V(S) Average of 2 B1l| 4 |
column
n +
I 3 -1 0
A(s,a) X X) ;
sum of
column = 0 0 -2 - | 0

Dueling DON

State

/)
12

e

_/ Only change the
network structure

Normalize A(s,a) before
adding with V(s)

1.0

V(s)

A(s,a)

v
7
3
2

Q(s,a)
= A(s,a)+V(s)

Dueling DQN - Visualization

Value Advantage

(from the link of the original paper)

Dueling DQN - Visualization

Value Advantage

(from the link of the original paper)

https://arxiv.org/abs/1511.05952?context=cs

Prioritized Reply

The data with larger TD error in previous
training has higher probability to be sampled.

(Se, Ap, Te) Sp41) ————— Experience
‘ Buffer

S¢ > Parameter update
Q — Q(spap) procedure is also
modified.
Gy ' TD error
PR
St+1

Q)

e + Q(Spy1, Arpr) —

A+ = aArg mC?X Q(s¢+1,a) Ati1

Multi-step

Balance between MC and TD

(St' A, Tty St+N» A+ N> Te+N» St+N+1)

S ST — Ex
S Buffer

perience

¥

zt'HV
t'=t

Q)

rer + Q(Sern+1 AeaN+1)

—> Q(s¢,a;) Ae+n+1 = Arg max Q(Stan+1, Q)
(7 g —
PR

St+N+1

At

FN+1

N @) | Sy N et https://arxiv.org/abs/1706.01905

https://arxiv.org/abs/1706.10295

% Noise on Action (Epsilon Greedy)

arg max Q(s,a), with probability 1 — ¢
a = a
random, otherwise

« Noise on IDa‘rameterﬁnject noise into the parameters

of Q-function at the beginning of
each episode

Q(s,a) > Q(s,a)
Add noise

a = argmax Q(s,a)
a

The noise would NOT change in an episode.

Noisy Net

<+ Noise on Action

= Given the same state, the agent may takes

different actions.
" No real policy works in this way

< Noise on Parameters

Random

" Given the same (similar) state, the agent takes

the same action.

e — State-dependent Exploration

" Explore in a consistent way

Systematic

https://blog.openai.com/better-
exploration-with-parameter-noise/

Distributional Q-function

+ State-action value function Q™ (s, a)

* When using actor 1, the cumulated|reward |
expects to be obtained after seeing observation
s and taking a

DoGod

> >

-10 10 -10 10

Different distributions can have the same values.

Distributional Q-function

Q™(s,ay)
Q™ (s,aq) A Q™(s,az)
||] *
Q" Q"
> >
S S

A network with 3 outputs

A network with 15 outputs
(each action has 5 bins)

0.5

Laser
D r Left+Laser
el I IO 2 | Right+Laser
2 B Right
a l Left wm

|

Noop

Return

0.5

Probability

— Y

Return

https://youtu.be/yFBwyPuO2Vg

Rainbow bon

DDQON

- Prioritized DDQN
- Dueling DDQN
200% . A3C A
E - Distributional DQN -
S - Noisy DQN
; == Rainbow
@
A e
v
g __
o)
c Z : '/M \'\”
|
S . "'"W
£ 100%|- | M’*"’ /
< A
S / ﬂ"‘u
2
’ |

0%

48 | |
7 44 100 200
Millions of frames

https://arxiv.org/abs/1710.02298

Rainbow

200%

Median normalized score

https://arxiv.org/abs/1710.02298

100%

0%

DQN

no double
no priority
no dueling a
no multi-step
no distribution

== N0 NOISY AW
== Rainbow v \
I'Mo""
"‘ '\.-"Q 4 \\’
Y o
~ ’p"‘“.r’.h &
.\ AT eer™ N -
- -
\‘_aﬂl"‘~f"
| | |
50 100 150 200

Millions of frames

Continuous Actions
+ Action a is a continuous vector
a=argmaxQ(s,a)
a

Solution 1

Sample a set of actions: {a,a,, -, ay}

See which action can obtain the largest Q
value

Continuous Actions

Solution 2 Don't use Q-learning

Policy-based Value-based

Learning an Actor + Critic Learning a Ciritic
Actor (Next Lecture)

https://www.youtube.com/watch?v=ZhsEKTo7V04

This Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
= Behavioral Cloning
* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

A Project 4 self-intro session
Wed in Week 9 (3/16)

We will have a
«Self Introduction Session on Wed in Week 9

+Who are you? Your expertise, such as
programming experience, background knowledge
of data mining, management, analytics.

+EXxperience on RL, Deep Learning, Data
analytics

+Any initial idea for the open project 47

38

This Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
= Behavioral Cloning
* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

Problems with many RL scenarios

% Reinforcement Learning:

" | earning policies guided by (often sparse)
rewards (e.g. win the game or not)

" Pros: simple, cheap form of supervision

" Cons: High sample complexity

Problems with many RL scenarios

% VWhere is it % Not when:
successful? = Execution of actions is
" In simulation where slow
data is cheap and " Very expensive or not
parallelization is easy tolerable to fail

= Want to be safe

Learning from Demonstrations (LfD)

@ Expert provides a set of demonstration trajectories: sequences of

states and actions

@ Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

e come up with a reward that would generate such behavior,
e coding up the desired policy directly

+ Learning two things from imitation learning:

* Policy
" Reward function (why?)

Learning from Demonstrations (LfD)

@ Expert provides a set of demonstration trajectories: sequences of

states and actions

@ Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

e come up with a reward that would generate such behavior,
e coding up the desired policy directly

+ Learning two things from imitation learning:

* Policy

= Reward function (why?)
e Understand/reason how demonstrator makes decisions
* Predict future behaviors
* Good initial reward function for training RL agents

One Shot Imitation Learning

- 2y=

Duan et al., NIPS ‘17

https://www.youtube.com/watch?v=o0MZwkljZzCM

The task that needs to be achieved is to stack blocks into 4 towers: "ab," "cde," "fg," and
"hij," where the blocks are ordered from top to bottom within each group.

A Deep Learning Approach for Generalized Speech Animation
Sarah Taylor, Taehwan Kim, Yisong Yue et al., SIGGRAPH 2017

https://www.youtube.com/watch?v=9zL7qejWOofE

Problem Setup

Model Based for Now

@ Input:

o State space, action space

o Transition model P(s’ | s, a)

e No reward function R

o Set of one or more teacher’'s demonstrations (s, ag, S1, So, - - -)
(actions drawn from teacher’s policy 7*)

@ Behavioral Cloning:

e Can we directly learn the teacher’s policy using supervised learning?
@ Inverse RL:

e Can we recover R?

We will discuss model-free (i.e., unknown P) in future lectures.

This Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
» Behavioral Cloning
* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

Behavioral Cloning

@ Formulate problem as a standard machine learning problem:

o Fix a policy class (e.g. neural network, decision tree, etc.)
o Estimate a policy from training examples (so, a0), (s1, a1), (s2, a2), - - -

Problem with the BC approach?

Problem: Compounding Errors

Expert trajectory
Learned Policy
@
No data on
how to recover ("-.‘l

Data distribution mismatch!
In supervised learning, (x, y) ~ D during train and test. In MDPs:

@ Train: sy ~ Dy~
@ Test: sy ~ D,

This Lecture

+» Advanced DQN methods
= Double-DQN

* Dueling DQN

= Prioritized DQN

= Multi-step

= Noisy net

= Distributional Q-learning

= Rainbow

= Continuous actions

+» Self-Introduction
+~ Imitation Learning / Inverse Reinforcement Learning
= Introduction
= Behavioral Cloning
" Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

| inear Feature Reward Inverse RL

@ Recall linear value function approximation
@ Similarly, here consider when reward is linear over features
o R(s) = w'x(s) where w ¢ R" x: S — R"
@ Goal: identify the weight vector w given a set of demonstrations

@ The resulting value function for a policy m can be expressed as

VT =E[> y'R(s:) | 7]
t=0

inear Feature Reward Inverse RL

@ Recall linear value function approximation
@ Similarly, here consider when reward is linear over features
o R(s)=w'x(s) where w € R",x: S — R"
@ Goal: identify the weight vector w given a set of demonstrations

@ The resulting value function for a policy m can be expressed as

VT =E[)_7'R(st) 7] =E[7' wx(se) | 7]

~ WTE[S07 x(s0) |
=w' p(r)

where p(7)(s) is defined as the discounted weighted frequency of
state features under policy .

Inverse Reinforcement Learning

To find the reward function R used by the
expert:

@ Note
E[> 2oy R*(se) [7] = V* =2 VT =E[} 207" R*(st) [7] V.

@ Therefore if the expert's demonstrations are from the optimal policy,
to identify w it is sufficient to find w* such that

w* u(m*) > w* ' p(m), v # 7

Transport Layer 3-53

Inverse reinforcement learning
% Goal: Learn a policy function and a reward function

that are as good as the demonstration expert
+ Linear reward function assumption: Rr(s) = w7 x(s)

" |nitialize TT=TT,, stopping criteria €=10-3 (for example)
" Fori=I,2,... ...

* Find a reward function that the expert maximally outperforms
previous policies: (Any quadratic programming solver)

arg mvzle(WTu(ﬂ*) —w'pu(7), st Wl <1
* Find the optimal 1, with the current w (dynamic programming)
e Exitif w'p(r") —w' p(r) <e/2

T =T
Suppose it is model-based, i.e., environment dynamics is known.

More on Imitation Learning

< Video:

https://www.youtube.com/watch?v=WjFdD/7PDG
w0

Imitation Learning

ICML 2018 Tutorial
(Slides Available Online)

Yisong Yue Hoang M. Le

a

yyue@caltech.edu hmle@caltech.edu
W @YisongYue @HoangMinhLe

https://drive.google.com/file/d/12QdNmMll-bGlSWnm8pmD_TawuRN7xagX/view

Next Lecture
+~ Other deep reinforcement learning
approaches

= \Value based DRL (DQN),

* Policy based DRL
 Policy Gradient
* Proximal Policy Optimization, PPO, -> PPO2
* TRPO (Trust Region Policy Optimization, TRPO

" (Asynchronous) Advantage Actor Critic:

* A2C
* A3C

Questions?

