Welcome to

DS595 Reinforcement Learning Prof. Yanhua Li

Time: 6:00pm –8:50pm W Location: Zoom Spring 2022

Quiz 2 Wed Week #6 (2/23 W)

- Model-Free Policy Evaluation
 - MC First Visit
 - MC Every Visit
 - TD
 - 30 min at the beginning

Quiz 3 Wed in Week 7 (3/2 W)

- Model-free Control (30 mins)
 - Model-free control
 - SARSA
 - Q-Learning

Last Lecture

- Model Free Control
 - Generalized policy iteration
 - Control with Exploration
 - Monte Carlo (MC) Policy Iteration
 - Temporal-Difference (TD) Policy Iteration
 - SARSA
 - Q-Learning
 - Project 2 description.

This Lecture

Value Function Approximation VFA

- Introduction
- VFA for Policy Evaluation
- VFA for Control

This Lecture

- Value Function Approximation VFA
 - Introduction
 - VFA for Policy Evaluation
 - VFA for Control

RL algorith Tabular Repre	nms esentation Fu	Inction Representation
Model-based control	Model-Free Control	Policy function approximation
 Policy evaluation (DP) 	 Policy evaluation MC (First/every visit) and TD 	Value Function approximation
 Policy iteration Value iteration 	 Value/Policy Iteration MC Iteration TD Iteration SARSA Q-Learning Double Q- Learning 	(Asynchronous) Advantage Actor Critic: A2C A3C

Value function representations

Tabular representation Value function

- ♦ V^π can be viewed as a vector
- enormous state and/or action spaces
 - Tabular representation is insufficient

Value function representations

S

Tabular representation Value function

<u>s'</u> ______γπ(s')

S

 $S \rightarrow V^{\pi}$ of |S| dimensions |

Vπ(S)

V^π can be viewed as a vector

w with k dimensions, k<</S/

W

V⊓(s;w)

- enormous state and/or action spaces
- Tabular representation is insufficient

Value Function Approximation (VFA)

 Represent a (state-action/state) value function with a parameterized function instead of a table
 V^π(s)

Why VFA? Benefits of VFA?

Why VFA? Benefits of VFA?

- Huge state and/or action space, thus impossible by tabular representation
- Want more compact representation that generalizes across state or states and actions

Benefits of Generalization via VFA

- Huge state and/or action space,
 - Reduce the memory needed
- More compact representation that generalizes across state or states and actions
 - Generalization across states/state-action-pairs
 - Advantages of tabular: Exact value of s, or s,a
- A trade-off
 - Capacity vs (computational and space) efficiency

w with *k* dimensions, *k*<</S/

What function approximator?

What function for VFA?

- Many possible function approximators including
 - Linear combinations of features
 - Neural networks
 - Decision trees
 - Nearest neighbors, and more.
- In this class we will focus on function approximators that are differentiable (Why?)
- Two very popular classes of differentiable function approximators
 - Linear feature representations;
 - Neural networks (Deep Reinforcement Learning).

This Lecture

Value Function Approximation VFA

- Introduction
- VFA for Policy Evaluation
- VFA for Control

Review: Gradient Descent

- Consider a function J(w) that is a differentiable function of a parameter vector w
- Goal is to find parameter w that minimizes J
 The gradient of J(w) is

Review: Gradient Descent

- Consider a function J(w) that is a differentiable function of a parameter vector w
- Goal is to find parameter w that minimizes] \bullet The gradient of J(w) is $\nabla_w J(w) = \left[\frac{\partial J(w)}{\partial w_1}, \cdots, \frac{\partial J(w)}{\partial w_N}\right]$ $\Delta w = \alpha \nabla_w J(w)$, with $\alpha > 0$ • Gradient vector points the uphill direction. J(w)* To minimize J(w), we remove α -weighted gradient vector from w in each iteration.

VFA problem

- * Consider an oracle function exists, that takes s as input, and outputs a $V^{\pi}(s)$.
 - The oracle may not be accessible in practice (that is the model-free problem setting).

The objective is to find the best approximate representation of V^π(s), given a particular parameterized function V'^π(s, w)

Stochastic Gradient Descent

- Goal: Find the parameter vector *w* that minimizes the loss between a true value function V^π(s) and its approximation Ŷ(s; w) as represented with a particular function class parameterized by w.
- Generally use mean squared error and define the loss as

$$J(\boldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s; \boldsymbol{w}))^2]$$

• Can use gradient descent to find a local minimum

Without loss of generality, a constant parameter $\frac{1}{2}$ was added.

• Stochastic gradient descent (SGD) samples the gradient:

Expected SGD is the same as the full gradient update

$$\Delta \boldsymbol{w} = \frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

Stochastic Gradient Descent

- Goal: Find the parameter vector *w* that minimizes the loss between a true value function V^π(s) and its approximation Ŷ(s; w) as represented with a particular function class parameterized by w.
- Generally use mean squared error and define the loss as

$$J(\boldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s; \boldsymbol{w}))^2]$$

 $\Delta \boldsymbol{w} = \frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$

• Can use gradient descent to find a local minimum

Without loss of generality, a constant parameter $\frac{1}{2}$ was added.

• Stochastic gradient descent (SGD) samples the gradient: From full gradient $\nabla_w J(w) = \mathbb{E}_{\pi}[2(V^{\pi}(s) - \hat{V}^{\pi}(s;w))\nabla_w \hat{V}^{\pi}(s;w)]$ to Stochastic gradient $\Delta w = -\alpha(V^{\pi}(s) - \hat{V}^{\pi}(s;w))\nabla_w \hat{V}^{\pi}(s;w)$ • Expected SGD is the same as the full gradient update

$$w = w - \Delta w = w + \alpha (V^{\pi}(s) - \hat{V}^{\pi}(s; w)) \nabla_w \hat{V}^{\pi}(s; w)$$

Model-free Policy Evaluation From tabular Representation to VFA * Following a fixed policy π (or had access to prior data) Goal is to estimate V^π and/or Q^π

- * Maintained a look up table to store estimates V^{π} and/or Q^{π}
- Opdated these tabular estimates
 - after each episode (Monte Carlo methods)

or

after each step (TD methods)

V(I)	V(2)	V(3)	V(4)	V(5)

Model-free Policy Evaluation
From tabular Representation to VFA
* Following a fixed policy π (or had access to prior data) Goal is to estimate V^π and/or Q^π

- Maintained a function parameter vector w to store estimates V^π and/or Q^π
- Opdated the function parameter vector w
 - after each episode (Monte Carlo methods) or
 - after each step (TD methods)

• Use a feature vector to represent a state *s*

$$oldsymbol{x}(s) = \left(egin{array}{c} x_1(s) \ x_2(s) \ \ldots \ x_n(s) \end{array}
ight)$$

Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

Objective function is

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

Recall weight update is

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

• Update is:

• Update = step-size \times prediction error \times feature value

Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

Objective function is

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

Recall weight update is

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

• Update is: $\Delta \mathbf{w} = -\alpha (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w})) \mathbf{x}(s)$

• Update = step-size \times prediction error \times feature value

From updating initial V over iterations

• MC
• TD

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

• TD
 $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$

* To update initial w over iterations $\Delta \mathbf{w} = -\alpha (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w})) \mathbf{x}(s)$ $w = w - \Delta w$

Monte Carlo Value Function Approximation

- Return G_t is an unbiased but noisy sample of the true expected return $V^{\pi}(s_t)$
- Therefore can reduce MC VFA to doing <u>supervised learning</u> on a set of (state, return) pairs: (s₁, G₁), (s₂, G₂), ..., (s_T, G_T)
 - Substitute G_t for the true $V^{\pi}(s_t)$ when fit function approximator
- Concretely when using linear VFA for policy evaluation

$$\Delta \boldsymbol{w} = -\alpha (G_t - \hat{V}(s_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{V}(s_t; \boldsymbol{w})$$

= $-\alpha (G_t - \hat{V}(s_t; \boldsymbol{w})) \boldsymbol{x}(s_t)$
= $-\alpha (G_t - \boldsymbol{x}(s_t)^T \boldsymbol{w}) \boldsymbol{x}(s_t)$

• Note: G_t may be a very noisy estimate of true return

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

MC Linear Value Function Approximation for Policy Evaluation

- 1: Initialize $\mathbf{w} = \mathbf{0}, \ k = 1$
- 2: **loop**
- 3: Sample k-th episode $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,L_k})$ given π
- 4: **for** $t = 1, ..., L_k$ **do**
- 5: **if** First visit to (s) in episode k **then**
- 6: $G_t(s) = \sum_{j=t}^{L_k} r_{k,j} \gamma^{j-t}$
- 7: Update weights:
- 8: **end if**
- 9: **end for**
- 10: k = k + 1
- 11: end loop

MC Linear Value Function Approximation for Policy Evaluation

- 1: Initialize $\mathbf{w} = \mathbf{0}, \ k = 1$
- 2: **loop**

7:

- 3: Sample *k*-th episode $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, ..., s_{k,L_k})$ given π
- 4: **for** $t = 1, ..., L_k$ **do**
- 5: **if** First visit to (s) in episode k **then**
- 6: $G_t(s) = \sum_{j=t}^{L_k} r_{k,j} \gamma^{j-t}$

Update weights:

$$\mathbf{w} = \mathbf{w} + \Delta \mathbf{w} = \mathbf{w} + \alpha (G_t(s) - \gamma \hat{V}(s; \mathbf{w})) \mathbf{x}(s_t)$$

$$= \mathbf{w} + \alpha (G_t(s) - \gamma \mathbf{x}(s_t)^\top \mathbf{w}) \mathbf{x}(s_t)$$

- 8: **end if**
- 9: **end for**
- 10: k = k + 1
- 11: end loop

Baird (1995)-Like Example with MC Policy Evaluation¹

- MC update: $\Delta \boldsymbol{w} = -\alpha (G_t \boldsymbol{x}(s_t)^T \boldsymbol{w}) \boldsymbol{x}(s_t)$, $\alpha = 0.5, \gamma = 1$
- Small prob s_7 goes to terminal state, $\mathbf{x}(s_7)^T = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2]$

 $(s_1,a_1,0,s_7,a_1,0,s_7,a_1,0,T)$

What is Δw and w_1 after update with the first visit of s_1 ?

Baird (1995)-Like Example with MC Policy Evaluation¹

- MC update: $\Delta \boldsymbol{w} = -\alpha (G_t \boldsymbol{x}(s_t)^T \boldsymbol{w}) \boldsymbol{x}(s_t)$, $\alpha = 0.5$, $\gamma = 1$
- Small prob s_7 goes to terminal state, $\mathbf{x}(s_7)^T = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2]$

$$\begin{aligned} &(s_1, a_1, 0, s_7, a_1, 0, s_7, a_1, 0, T) \\ &s_1: G_{s1} = 0, \ V(s_1) = x(s_1)^T w = 3 \\ &\alpha = 0.5, \ x(s_1) = [2, 0, 0, 0, 0, 0, 0, 1]^T \\ &\Delta w = -0.5^*(0-3) \ [2, 0, 0, 0, 0, 0, 0, 1]^T = [3, 0, 0, 0, 0, 0, 0, 1.5]^T \\ &w_1 = w_0 - \Delta w = [1, 1, 1, 1, 1, 1, 1]^T - [3, 0, 0, 0, 0, 0, 0, 1.5]^T = [-2, 1, 1, 1, 1, 1, 1, -0.5]^T \end{aligned}$$

Recall: Temporal Difference Learning w/ Lookup Table Tabular representation

- ullet Uses bootstrapping and sampling to approximate V^π
- Updates $V^{\pi}(s)$ after each transition (s, a, r, s'):

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- Target is $r + \gamma V^{\pi}(s')$, a biased estimate of the true value $V^{\pi}(s)$
- Represent value for each state with a separate table entry

```
Input: \alpha
Initialize V^{\pi}(s) = 0, \forall s \in S
Loop
• Sample tuple (s_t, a_t, r_t, s_{t+1})
• V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))
```

Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \boldsymbol{w})$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs:
 - $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \boldsymbol{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \boldsymbol{w}) \rangle, \ldots$
- Find weights to minimize mean squared error

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(oldsymbol{r}_j + \gamma \hat{V}^{\pi}(oldsymbol{s}_{j+1},oldsymbol{w}) - \hat{V}(oldsymbol{s}_j;oldsymbol{w}))^2]$$

Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \boldsymbol{w})$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- Supervised learning on a different set of data pairs: $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \boldsymbol{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \boldsymbol{w}) \rangle, \ldots$
- In linear TD(0)

$$\Delta \boldsymbol{w} = -\alpha(\boldsymbol{r} + \gamma \hat{V}^{\pi}(\boldsymbol{s}'; \boldsymbol{w}) - \hat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{w})$$

= $-\alpha(\boldsymbol{r} + \gamma \hat{V}^{\pi}(\boldsymbol{s}'; \boldsymbol{w}) - \hat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{w})) \boldsymbol{x}(\boldsymbol{s})$
= $-\alpha(\boldsymbol{r} + \gamma \boldsymbol{x}(\boldsymbol{s}')^{T} \boldsymbol{w} - \boldsymbol{x}(\boldsymbol{s})^{T} \boldsymbol{w}) \boldsymbol{x}(\boldsymbol{s})$

TD(0) Linear Value Function Approximation for Policy Evaluation

- 1: Initialize $\mathbf{w} = \mathbf{0}, \ k = 1$
- 2: **loop**
- 3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
- 4: Update weights:

$$s = s_k, s' = s_{k+1}, r = r_k$$

$$w = w + \alpha (r + \gamma x(s')^T w - x(s)^T w) x(s)$$

5: k = k + 1
6: end loop

This Lecture

Value Function Approximation VFA

- Introduction
- VFA for Policy Evaluation
- VFA for Control

Q-Learning with ϵ -greedy Exploration

Recall: Tabular representation

- 1: Initialize Q(s,a), $\forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$
- 2: Set π_b to be ϵ -greedy w.r.t. Q

3: **loop**

4: Take $a_t \sim \pi_b(s_t) \; / /$ Sample action from policy

5: Observe
$$(r_t, s_{t+1})$$

6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma) \max_a Q(s_{t_1}, a) - Q(s_t, a_t))$
7: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob $1 - \epsilon$, else random
8: $t = t + 1$

9: end loop

Does how Q is initialized matter?

Asymptotically no, under mild condiditions, but at the beginning, yes

Control using Value Function Approximation

- Use value function approximation to represent state-action values $\hat{Q}^{\pi}(s,a;m{w})pprox Q^{\pi}$
- Interleave
 - Approximate policy evaluation using value function approximation
 - Perform ϵ -greedy policy improvement
- Can be unstable. Generally involves intersection of the following:
 - Function approximation
 - Bootstrapping

Action-Value Function Approximation with an Oracle

•
$$\hat{Q}^{\pi}(s,a;oldsymbol{w})pprox Q^{\pi}$$

• Minimize the mean-squared error between the true action-value function $Q^{\pi}(s, a)$ and the approximate action-value function:

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;oldsymbol{w}))^2]$$

Use stochastic gradient descent to find a local minimum

$$\nabla_w J(w) = \mathbb{E}_{\pi} \Big[-2(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;w)) \nabla_w \hat{Q}^{\pi}(s,a;w) \Big]$$
$$\Delta w = \frac{1}{2} \alpha \nabla_w J(w) = -\alpha (Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;w)) \nabla_w \hat{Q}^{\pi}(s,a;w)$$

Stochastic gradient descent (SGD) samples the gradient

Linear State Action Value Function Approximation with an Oracle

Use features to represent both the state and action

$$\mathbf{x}(s,a) = \left(egin{array}{c} x_1(s,a) \ x_2(s,a) \ \ldots \ x_n(s,a) \end{array}
ight)$$

 Represent state-action value function with a weighted linear combination of features

$$\hat{Q}(s,a; \boldsymbol{w}) = \boldsymbol{x}(s,a)^T \boldsymbol{w} = \sum_{j=1}^n x_j(s,a) w_j$$

• Stochastic gradient descent update:

$$abla_{oldsymbol{w}} J(oldsymbol{w}) =
abla_{oldsymbol{w}} \mathbb{E}_{\pi}[(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;oldsymbol{w}))^2]$$

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return G_t as a substitute target

$$\Delta w = -\alpha (G_t - \hat{Q}(s_t, a_t; w)) \nabla_w \hat{Q}(s_t, a_t; w)$$

 For SARSA instead use a TD target r + γQ̂(s', a'; w) which leverages the current function approximation value

$$\Delta w = -\alpha(r + \gamma \hat{Q}(s', a'; w) - \hat{Q}(s, a; w)) \nabla_w \hat{Q}(s, a; w)$$

Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return G_t as a substitute target

$$\Delta w = -\alpha (G_t - \hat{Q}(s_t, a_t; w)) \nabla_w \hat{Q}(s_t, a_t; w)$$

 For SARSA instead use a TD target r + γQ(s', a'; w) which leverages the current function approximation value

$$\Delta w = -\alpha(r + \gamma \hat{Q}(s', a'; w) - \hat{Q}(s, a; w)) \nabla_w \hat{Q}(s, a; w)$$

• For Q-learning instead use a TD target $r + \gamma \max_{a'} \hat{Q}(s', a'; w)$ which leverages the max of the current function approximation value

$$\Delta w = -\alpha (r + \gamma \max_{a'} \hat{Q}(s', a'; w) - \hat{Q}(s, a; w)) \nabla_w \hat{Q}(s, a; w)$$

Q-Learning with ϵ -greedy Exploration

Recall: Tabular representation

- 1: Initialize Q(s,a), $\forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$
- 2: Set π_b to be ϵ -greedy w.r.t. Q

3: **loop**

4: Take $a_t \sim \pi_b(s_t) \; / /$ Sample action from policy

5: Observe
$$(r_t, s_{t+1})$$

6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \arg \max_a Q(s_{t_1}, a) - Q(s_t, a_t))$

- 7: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 8: t = t + 1

9: end loop

Does how Q is initialized matter?

Asymptotically no, under mild condiditions, but at the beginning, yes

Model-Free Q-Learning Control Value Function Approximation (VFA)

- 1: Initialize $\mathbf{w} = \mathbf{0}, \ k = 1$
- 2: **loop**
- 3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
- 4: Update weights:

5: k = k + 1

6: end loop

Model-Free Q-Learning Control Value Function Approximation (VFA)

- 1: Initialize $\mathbf{w} = \mathbf{0}, \ k = 1$
- 2: **loop**

5:

6:

- 3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
- 4: Update weights:

$$\Delta w = -\alpha (r_k + \gamma \max_{a_{k+1}} \hat{Q}(s_{k+1}, a_{k+1}; w) - \hat{Q}(s_k, a_k; w)) \nabla_w \hat{Q}(s_k, a_k; w)$$

$$w = w - \Delta w$$

$$\pi(s_k) = \arg \max_{a_k} \hat{Q}(s_k, a_k), \text{ with prob } 1 - \epsilon, \text{ else random.}$$

$$k = k + 1$$
end loop

Convergence of Control Methods with VFA

Algorithm	Tabular	Linear VFA	Nonlinear VFA
Monte-Carlo Control			
Sarsa			
Q-learning			

Convergence of Control Methods with VFA

Algorithm	Tabular	Linear VFA	Nonlinear VFA
Monte-Carlo Control	V	(V)	X
Sarsa	V	(V)	X
Q-learning	V	Х	X

See more details in Chapter 11 in Textbook by Sutton & Barto

RL algorith Tabular Repre Value Fur	nms esentation Function	Inction Representation
Model-based control	Model-Free Control	Policy function approximation
 Policy evaluation (DP) Policy iteration Value iteration 	 Policy evaluation MC (First/every visit) and TD Value/Policy Iteration MC Iteration 	Value Function approximation (Asynchronous) Advantage Actor Critic:
	 TD Iteration – SARSA – Q-Learning 	A2C A3C
	– Double Q- Learning	

Next Lecture

- (Continue) Value Function Approximation
 - Linear Value Function
- Review of Deep Learning
- Deep Learning Implementation in Pytorch
 (by TA Yingxue)

Questions?