Welcome to

DS595 Reinforcement Learning
Prof. Yanhua Li

Time: 6:00pm —8:50pm W
Location: Zoom
Spring 2022

Quiz 2 Wed Week #6 (2/23 W)

+» Model-Free Policy Evaluation

* MC First Visit
= MC Every Visit
= TD

= 30 min at the beginning

Quiz 3 Wed in Week 7 (3/2 W)

+ Model-free Control (30 mins)

= Model-free control
« SARSA
» Q-Learning

Last Lecture

+~ Model Free Control

» Generalized policy iteration

= Control with Exploration

* Monte Carlo (MC) Policy Iteration

» Temporal-Difference (TD) Policy lteration
« SARSA
» Q-Learning

» Project 2 description.

This Lecture

+ Value Function Approximation VFA
" |ntroduction

* VFA for Policy Evaluation

" VFA for Control

This Lecture

+ Value Function Approximation VFA
" [ntroduction

* VFA for Policy Evaluation

" VFA for Control

RL algorithms

Tabular Representation

Value Function

Function Representation

Value Function

Model-based
control

= Policy
evaluation (DP)

= Policy iteration
= \/alue iteration

Model-Free
Control
= Policy
evaluation

MC (First/every
visit) and TD

= Value/Policy
Iteration

« MC lteration

* TD lteration
— SARSA
— Q-Learning
— Double Q-
Learning

Policy function
approximation

Value Function
approximation

(Asynchronous)
Advantage Actor
Critic:

A2C

A3C

Value function representations

+» Tabular representation |+ Value function

ool 5 i

S - : :

« VT can be viewed as 3|+ enormous state and/or action

vector spaces
+ Tabular representation is

insufficient

Value function representations

+ Tabular representation|+ Value function

> v(s) S | V(s;w)
; w J >
s’ Vr(s') w with k dimensions,
> k<</S/
S — V" of |S| dimensions |« enormous state and/or action

+ VT can be viewed as a| >Pac®

vector + Tabular representation is
insufficient

Value Function Approximation
(VFA)

+» Represent a (state-action/state) value function
with a parameterized function instead of a table

% VT(s)
: {] V(s;w)
w J >

% QT(s,a)

Why VFA? Benefits of VFA? 0

1 VT(s;w)

S
% VT(s) { w J

S D
2 Q“(s,a)aI i QT(s,a;w)

Why VFA? Benefits of VFA?

+ Huge state and/or action space, thus impossible
by tabular representation

< VVant more compact representation that
generalizes across state or states and actions

2 VT(s) S { 7 V(s:w)
W —>

)

i 1 Q(s,a;w)
d w >

Benefits of Generalization via VFA

+ Huge state and/or action space,
" Reduce the memory needed

+» More compact representation that generalizes
across state or states and actions

* Generalization across states/state-action-pairs

" Advantages of tabular: Exact value of s, or s,a

< A trade-off

= Capacity vs (computational and space) efficiency

S] V'(S) w with k dimensions,
w J T k<</S/

What function for VFA?
= VT (s) S { 3) VTi(s;w)

)

% QT(s,a) S

+ VWhat function approximator?

What function for VFA?

+» Many possible function approximators including
" Linear combinations of features
* Neural networks
= Decision trees
* Nearest neighbors, and more.

<+ In this class we will focus on function
approximators that are differentiable (VWhy?)

+ Two very popular classes of differentiable
function approximators

" Linear feature representations;
* Neural networks (Deep Reinforcement Learning).

This Lecture

+ Value Function Approximation VFA
" |ntroduction

" VFA for Policy Evaluation

" VFA for Control

Review: Gradient Descent

+» Consider a function J(w) that is a differentiable
function of a parameter vector w

% Goal is to find parameter w that minimizes |
% The gradient of J(w) is

Review: Gradient Descent

+» Consider a function J(w) that is a differentiable
function of a parameter vector w

% Goal is to find parameter w that minimizes |

. . O
» The gradient of J(w) is A~
o OJ(w) aJ(w) QY
Vu..ll,_u’_,l — [- Lttt]
1y dw
Aw = aVyJ(w), with a >0
w = w — A Tow)

+ Gradient vector points the uphill direction.

% To minimize J(w), we remove a-weighted
gradient vector from w in each iteration.

VFA problem

+ Consider an oracle function exists, that takes s
as input, and outputs a V(s).

" The oracle may not be accessible in practice (that is
the model-free problem setting).

S { j VT (s: w)
w J —

% The objective is to find the best approximate
representation of VT(s), given a particular
parameterized function V'(s, w)

Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function V™ (s) and its approximation V(s; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as
J(w) = E-[(V7(s) = V(s; w))]

@ Can use gradient descent to find a local minimum
Without loss of generality,

1 a constant parameter 2

Aw = Eaij(w) was added.

@ Stochastic gradient descent (SGD) samples the gradient:

@ Expected SGD is the same as the full gradient update

Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function V™ (s) and its approximation V(s; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as
J(w) = E-[(V7(s) = V(s; w))]

@ Can use gradient descent to find a local minimum
Without loss of generality,

1 a constant parameter 2

Aw = Eaij(w) was added.

@ Stochastic gradient descent (SGD) samples the gradient:
From full gradient VwJ(”LU) :'EW[Q(VW(S)—VW(S; w))VwV”(s; w)]

to

Stochastic gradien Aw = —CV(VW(S)—VW(S; w))VwVW(S, U))
@ Expected SGD is the same as the full gradient update

w = w—Aw = wta(V(s)=V(s;w))V,V(s; w)

Model-free Policy Evaluation
From tabular Representation to VFA

2 FoIIowmg a fixed policy M (or had access to
prior data) Goal is to estimate V" and/or QT

+» Maintained a look up table to store estimates V"
and/or QT
+» Updated these tabular estimates
" after each episode (Monte Carlo methods)
or
" after each step (TD methods)

V(I V(2 V(@3 V(4 V(5

Model-free Policy Evaluation
From tabular Representation to VFA

2 FoIIowmg a fixed policy M (or had access to
prior data) Goal is to estimate V" and/or QT

+ Maintained a function parameter vector w to
store estimates V"and/or QT
+ Updated the function parameter vector w
" after each episode (Monte Carlo methods)
or
" after each step (TD methods)

Feature Vectors

@ Use a feature vector to represent a state s

X1(S)
()

S

\ xo(s) /

x(s) =

Linear Value Function Approximation for Prediction With

An Oracle

@ Represent a value function (or state-action value function) for a
particular policy with a weighted linear combination of features

n

V(siw) =Y x(s)w; = x(s)"w

Jj=1

@ Objective function is

N

J(w) = E-[(V7(s) = V(s;w))’]
@ Recall weight update is

1
Aw = EaVWJ(W)

@ Update is:

@ Update = step-size x prediction error X feature value

Linear Value Function Approximation for Prediction With

An Oracle

@ Represent a value function (or state-action value function) for a
particular policy with a weighted linear combination of features

n

Jj=1

@ Objective function is

N

J(w) = Ex[(V7(s) = V(s; w))’]

@ Recall weight update is

1
Aw = iava(W)
o Update IS: AW = -0 (‘F[S] o ‘I(S W]]X[S]

@ Update = step-size x prediction error X feature value

% From updating initial V over iterations

= MC V™(s) = V™(s) + a(Gir — V(s))
"TD V7(st) = V7 (se) + a[re + 7V (se1)] = V7(5t))
TD?;rget

+ To update initial w over iterations
Aw = —a(V7™(s) — ‘_l s:w))x(s)
w = w — Aw

Monte Carlo Value Function Approximation

@ Return G; is an unbiased but noisy sample of the true expected return

V7 (st)
@ Therefore can reduce MC VFA to doing supervised learning on a set
of (state,return) pairs: (s1, G1), (s2, G2), ..., (sT, GT)

o Substitute G; for the true V™ (s;) when fit function approximator

@ Concretely when using linear VFA for policy evaluation

Aw = -Gy — V(sp; w))Vi V(se; w)
)

||
|
2
D
|
Jal
Ly
8
L3
/x\/\
Ky

@ Note: Gy may be a very noisy estimate of true return

n

V(siw) =Y xi(s)w; = x(s)"w

j=1

MC Linear Value Function Approximation for Policy

Evaluation

1: Initialize w =0, k=1

2: loop

3: Sample k-th episode (Sk,17 Ak 15 Tk 1sSk2,y - - - 75k,Lk) given T
4. fort=1,...,L, do

5: if First visit to (s) in episode k then

6: Ge(s) = 37k, rig !

7: Update weights:

8: end if
9: end for
10: k=k+1

11: end loop

MC Linear Value Function Approximation for Policy

Evaluation

1: Initialize w =0, k=1

2: loop
3 Sample k-th episode (Sk,17 Ak 15 Tk 1sSk2,y - - - 75k,Lk) given T
4 fort=1,...,L, do
5: if First visit to (s) in episode k then
6 Ge(s) = JL_t rej 70"
7 Update weights:
W =W - AW = w+a(Gt(s) — ,I [s w])x(st)
: =W + alGis) — yx(s;) w)x(s;)
8: end if R o S
9: end for
10: k=k+1

11: end loop

Baird (1995)-Like Example with MC Policy Evaluation®

o MC update: Aw =-a(G; — x(st) "w)x(st), 0=0.5, y=1
o Small prob s; goes to terminal state, x(s7)" =[000000 1 2]

(S1,a1,0,S7,a1,0,87,31,0,T)
What is Aw and w, after update with the first visit of s,7?

Baird (1995)-Like Example with MC Policy Evaluation®

x(s1)=[2,0,0,0,0,0,0,1]"

- -—_—-— ————
_——____———__—_——

82 =:O721O!O,0,010,1]I ’’’’’ ’ f
v

s3)=[0,0,2,0,0,0,0/1] /.il

s,4)=[0,0,0,2,0,0,0;1]
o MC update: Aw =-a(G; — x(st) "w)x(st), 0=0.5, y=1

(
(
(
X(s5)=[0,0,0,0,2,0,0{1
(s6)=[0,0,0,0,0,2,0,]
(
o Small prob s; goes to terminal state, x(s7)" =[000000 1 2]

&FOOOOOOAQ

s
AL
—
“_\
“A
“A
“A
“A
“A
“A
| F—
.‘|
e e e s [
/

(31,81,0,87,81,0,87,81,O,T)

Sq. GS1=O, V(S1)=X(S1)TW =3

a=0.5, x(s,)=[2.0,0,0.0,0,0 1"

Aw=-0.5*(0-3) [2,0,0,0,0,0,0,1]"=[3,0,0,0,0,0,0,1.5]"
w=wy-Aw=[1,1,1,1,1,1,1,1]"-[3,0,0,0,0,0,0,1.5]"=[-2,1,1,1,1,1,1,-0.5]"

Recall: Temporal Difference Learning w/ Lookup Table

Tabular representation

@ Uses bootstrapping and sampling to approximate V7™

e Updates V™ (s) after each transition (s, a, r,s’):
V7i(s) = V7(s)+a(r+yV7(s") = V7(s))

@ Targetis r +yV7™(s’), a biased estimate of the true value V7 (s)

@ Represent value for each state with a separate table entry

Input: «
Initialize V™(s) =0, Vs € S
Loop
@ Sample tuple (s, a¢, rt, St+1)
© V7™(st) = V™(st) + a[re + 7V (st41)] =V (st))

TD target

Temporal Difference (TD(0)) Learning with Value

Function Approximation

o In value function approximation, target is r +~V™(s’; w), a biased
and approximated estimate of the true value V7(s)

@ Can reduce doing TD(0) learning with value function approximation
to supervised learning on a set of data pairs:

° <517 r +7\7ﬂ(52; W)>7 <527 ry + 7\7(53; W)>7 oo

@ Find weights to minimize mean squared error

J(w) = Ex[(rj + 7V (sj41, w) — V(55 w))’]

Temporal Difference (TD(0)) Learning with Value

Function Approximation

o In value function approximation, target is r +~V7(s’; w), a biased
and approximated estimate of the true value V7 (s)

@ Supervised learning on a different set of data pairs:
(51,11 + 7V (52 w)), (52,2 + 7V (s3:w)), ...
@ In linear TD(0)

Aw = -ao(r+~V7(s';w)— V7(s;w))V,, V" (s; w)
= - a(r+~vV™(s"; w) — V7 (s; w))x(s)
T

TD(0) Linear Value Function Approximation for Policy

Evaluation

1: Initializew =0, k=1

2: loop

3: Sample tuple (sk, ak, rc, Sk+1) given m
4. Update weights:

— r —
S=Sk,S = Sk+1, ¥ =71

w=w + a(r+yx(s')

5: k=k+1
6: end loop

This Lecture

+ Value Function Approximation VFA
" |ntroduction

* VFA for Policy Evaluation

" VFA for Control

Q-Learning with e-greedy Exploration
Recall: Tabular representation

1. Initialize Q(s,a),Vs € S,a € At =0, initial state s; = s

2: Set mp to be e-greedy w.r.t. @

3: loop

4: Take a; ~ mp(s¢) // Sample action from policy

5. Observe (r¢, S¢i1)

6: Q(st,ar) < Q(st,ar) +alre+v maxy Q(st,a) — Q(st, at))
7. m(s;) = argmax, Q(st, a) w.prob 1 — ¢, else random

8 t=t+1

9: end loop

Does how Q@ is initialized matter?
Asymptotically no, under mild condiditions, but at the beginning, yes

Control using Value Function Approximation

@ Use value function approximation to represent state-action values
AT . ~)T
Q™(s,a;w) =~ Q

@ Interleave

e Approximate policy evaluation using value function approximation
e Perform e-greedy policy improvement

@ Can be unstable. Generally involves intersection of the following:

e Function approximation
e Bootstrapping

Action-Value Function Approximation with an Oracle

o (,A?”(s, a,w)~ QT
@ Minimize the mean-squared error between the true action-value
function Q™ (s, a) and the approximate action-value function:

J(w) = Eq[(Q7(s,a) — Q" (s, a; w))’]
@ Use stochastic gradient descent to find a local minimum

ij(zf) = E.[-2(Q"(s,a)—Q"(s, a;w))VQ (s, a; w)]
Aw = ianJ(w) = —a(Q" (s, a)—@”(s, a;w))va”(s, a;w)

@ Stochastic gradient descent (SGD) samples the gradient

Linear State Action Value Function Approximation with an

Oracle

@ Use features to represent both the state and action
/ X1(57 a) \
X2(57 a)

\ n(s,2) /
@ Represent state-action value function with a weighted linear

combination of features

A

s, w) = x(s.3)Tw =" xi(s, a)w;
j=1

@ Stochastic gradient descent update:

Vwl(w) = VW EL[(Q7(s,a) — Q7 (s, a; w))?]

Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target
AU} — _&(Gt o Q(Sta Q, UJ))va(St, (i, U}>

o For SARSA instead use a TD target r +~yQ(s’, a’; w) which leverages
the current function approximation value

A

Aw = —a(r +7Q(s', a';w) = Q(s, a;w))VuQ(s, a5 w)

Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target

Aw = —a(Gy — Q(St, (At w))va(St, ag; W)

o For SARSA instead use a TD target r +vQ(s’, a’; w) which leverages
the current function approximation value

A

Aw = —a(r +9Q(s', a';w) = Q(s, a;w))VuQ(s, a5 w)

o For Q-learning instead use a TD target r + v maxy Q(s, a’; w) which
leverages the max of the current function approximation value

A

Aw = —a(r + ’YIIIE/LXQ(S/, a';w) — Q(s,a;w))VuQ(s, a;w)

Q-Learning with e-greedy Exploration
Recall: Tabular representation

1. Initialize Q(s,a),Vs € S,a € At =0, initial state s; = s

2: Set mp to be e-greedy w.r.t. @

3: loop

4: Take a; ~ mp(s¢) // Sample action from policy

5. Observe (r¢, S¢i1)

6: Q(st,ar) < Q(st,ar) + alr: + yargmax, Q(st,a) — Q(st, at))
7. m(s;) = argmax, Q(st, a) w.prob 1 — ¢, else random

8 t=t+1

9: end loop

Does how Q@ is initialized matter?
Asymptotically no, under mild condiditions, but at the beginning, yes

Model-Free Q-Learning Control
Value Function Approximation (VFA)

1: Initializew =0, k=1

2: loop

3: Sample tuple (sk, ak, rk, Sk+1) given 7
4 Update weights:

5: k=k+1
6: end loop

Model-Free Q-Learning Control
Value Function Approximation (VFA)

1: Initializew =0, k=1
2: loop
3: Sample tuple (sk, ak, rk, Sk+1) given 7
4 Update weights:
Aw = —OZ(Tk:JrV max Q(3k+17 Ak+1, w)—Q(Sk, g, w))VwQ(Sk, g, w)

ar+1

w = w — Aw

m(sx) = arg max Q(sg, ax), with prob 1 — ¢, else random.
5: k=k+1 ak
6: end loop

Convergence of Control Methods with VFA

Algorithm

Tabular

Linear VFA

Nonlinear VFA

Monte-Carlo Control

Sarsa

Q-learning

Convergence of Control Methods with VFA

Algorithm Tabular | Linear VFA | Nonlinear VFA
Monte-Carlo Control \% (V) X
Sarsa \Y% V) X
Q-learning \Y X X

See more details in Chapter 11 in Textbook by Sutton & Barto

RL algorithms

Tabular Representation

Value Function

Function Representation

Value Function

Model-based
control

= Policy
evaluation (DP)

= Policy iteration
= \/alue iteration

Model-Free
Control
= Policy
evaluation

MC (First/every
visit) and TD

= Value/Policy
Iteration

« MC lteration

* TD lteration
— SARSA
— Q-Learning
— Double Q-
Learning

Policy function
approximation

Value Function
approximation

(Asynchronous)
Advantage Actor
Critic:

A2C

A3C

Next Lecture
+» (Continue) Value Function Approximation

= Linear Value Function
+ Review of Deep Learning

% Deep Learning Implementation in Pytorch
= (by TA Yingxue)

Questions?

