This lecture will be recorded!!!

Welcome to

DS595 Reinforcement Learning
Prof. Yanhua Li

Time: 6:00pm —8:50pm W
Zoom Lecture
Spring 2022



Quiz 1 today Week 4 (2/9 W)

+» Model-based Control

= Policy Evaluation, Policy Iteration, Value lteration
= 30 min at the beginning

* For the second question Q#2, the initial policy is still a
random policy, and the policy evaluation only needs
one step to get V, as what you did in Q#1.

» For those students who are observing the class, sorry,
this time, we don’t have time to let you do the Quiz 1.
Next time, we will send you guys pdf to do the
quizzes.



So far

+ Review: Model based control

» Policy Iteration, and Value iteration

+» Model-Free Policy Evaluation
" Monte Carlo policy evaluation
* Temporal-difference (TD) policy evaluation



This Lecture

+ Model-Free Control

» Generalized policy iteration

= Control with Exploration

* Monte Carlo (MC) Policy Iteration

» Temporal-Difference (TD) Policy lteration
« SARSA
» Q-Learning

» Project 2 description.

+ Value Function Approximation



This Lecture

+» Model-Free Control
» Generalized policy iteration



Quiz 2 next Thursday Week
#6 (2/23 W)

+ Model-free Control

* Model-free policy evaluation
« Monte Carlo policy evaluation
« TD policy evaluation

* Model-free control
« SARSA
» Q-Learning
* Double-Q-Learning



Model-based vs -free RL algorithms

Tabular Representation Value Function

+ Model-based control
» Policy evaluation (DP)

= Policy iteration
= \/alue iteration

+» Model-Free Control
» Policy evaluation
* Monte Carlo (MC)

— First visit
— Every visit
« Temporal Difference (TD)
= VValue/Policy Iteration
* MC Policy Iteration

« TD Policy lteration
— SARSA
— Q-Learning
— Double Q-Learning



Model-Free Control Problems
+» Examples:

\’l

!/ ,//\5 ._,.'fJ

— = ;/

Autonomous vehicles (AVs) Robocomp Patient treatment

«+ Model-Free Control

" For many of these and other problems
* Either MDP model is unknown but can be sampled (e.g., AVs)

* Or MDP model is known but it is computationally infeasible
to use directly, except through sampling (e.g., Go Game).



Recall Policy lteration

Loop

Policy evaluation
@ Initialize policy 7
@ Repeat:

Policy improvement

e Policy evaluation: compute V7™
e Policy improvement: update m

——

m'(s) = arg max|R(s, a) + v E P(s'|s,a)V™(s")|= argmax Q" (s, a)
a a
s’eS

@ Now want to do the above two steps without access to the true
dynamics and reward models

@ Last lecture introduced methods for model-free policy evaluation



Model Free Policy lteration

!

@ Initialize policy 7
@ Repeat:

e Policy evaluation: compute Q™ With model-free policy evaluation
e Policy improvement: update 7



Model Free Policy lteration

!

@ Initialize policy 7
@ Repeat:
e Policy evaluation: compute Q™ With model-free policy evaluation
° ICy | ;
Policy improvement: update 7w ’ﬂ"(S) — arg max Q" (s, a)
d



First-Visit Monte Carlo (MC) On Policy Evaluation

Evaluation for VT(s)

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode i = s;1,a;1,/i1,512,3i2,Fi2,---sSi.T,

Ti—1

@ Define Gjt =ri+ +yrit+1 + fy2r,-,t+2 + -y ri 1, as return from

time step t onwards in ith episode

@ For each state s visited in episode |
o Forlfirst time t [that state s is visited in episode i

@ Increment counter of total first visits: N(s) = N(s) + 1
@ Increment total return G(s) = G(s) + Gi+

e Update estimate V" (s) = G(s)/N(s) GJ['(S)
State s Action al g+

o E(\-\Hﬂ @5

@ G(S)




MC for On Policy Q Evaluation

Evaluation for Q"(s,a)

Initialize N(s,a) =0, G(s,a) =0, Q™(s,a)=0,Vse€ S, Vac A
Loop
@ Using policy m sample episode i = s; 1,81, 6.1,5.2,3i 2,2, --Si.T,

Ti—1

_ 2
@ Git="ri¢t+Vrits1 +Y T g2+ i T,

@ For each state,action (s, a) visited in episode /

o For|first or every time t|that (s, a) is visited in episode i
o N(s,a) = N(s,a)+ 1, G(s,a) = G(s,a) + Gj:
e Update estimate Q" (s, a) = G(s,a)/N(s, a)

G'4(s)

~® G(S)

@ G(S)

State s Action a

N

‘o™o




Model-free Policy lteration

(?

@ Initialize policy m
@ Repeat:

e Policy evaluation: compute Q™ (MC On Policy Q-evaluation)
e Policy improvement: update 7 given Q™

7' (s) = arg max Q" (s, a)

Problem with this algorithm!?



Model-free Policy Iteration

!

@ Initialize policy m
@ Repeat:

e Policy evaluation: compute Q™ (MC On Policy Q-evaluation)
e Policy improvement: update 7 given Q™

m'(s) = arg max Q™ (s, a)

@ May need to modify policy evaluation:
o If m is deterministic, can't compute Q(s, a) for any a # m(s)
@ How to interleave policy evaluation and improvement?
e Policy improvement is now using an estimated Q

State s Action a

G'{(S)

/‘ G?H{S)

@ GoH(s)




Road map

+ Model-Free Control

= Control with Exploration



e-greedy Policies

@ Simple idea to balance exploration and exploitation
@ Let |A| be the number of actions

@ Then an e-greedy policy w.r.t. a state-action value Q(s, a) is

c \(\a\’
m(als) = [arg max, Q(s,a), w. prob 1 —¢; a w. prob W] 66 O\'\(ﬁ

+ Model-Free Control with exploration P
+ Exploration ratio € in (0,1)

G'{(S)

/‘ G?H{S)

@ GoH(s)

State s Action a

A
|

‘o™o




MC on policy Q evaluation
s, % S 535 s, L 55 M M6

1 0 |

0 lﬁ |\ N 0 0 0 0

.- —P
Taxi passenger-seeking process: R(-,a;)=[0,1,0,0,0,2],
R(-Ia2)=[OI1IOIOIOIO]I Y =

Assume the current greedy policy: n(s) = a; vs. € = 1.
Sample trajectories from €-greedy policy.

any action from s, or sg terminates an episode

Given (S5 d;, 0, S5 a5 1,53 a, 0, S5 a5, 1, 5, a, 0, 7);
Q. First visit MC estimate Q of each state-action? Q init 0
A




MC on policy Q evaluation
s, % S 535 s, S5 M M6

IOI IO

I IOI ~ IOI I0 0 0

4 ™ ==
Taxi passenger-seeking process: R(-,a,)=[0,1,0,0,0,2],
R(-Ia2)=[OI1IOIOIOIO]I Y =

Assume the current greedy policy: n(s) = a; Vs, € = 1.
Sample trajectories from €-greedy policy.

any action from s, or sg terminates an episode

Given (83 a;, 0, S ay 1, S5, a1, 0, S5 ay 1, S, a5, G, 7);
Q. First visit MC estimate Q of each state-action? Q init 0

A: Q(',5])=[0,],2,0,0,0],' Q(-/52)=[0/2/0/0/0/0]




Greedy in the Limit of Infinite Exploration (GLIE)

» Choice of the exploration ratio € for convergence.

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

lim Ni(s,a) — oo
I — OO

@ Behavior policy converges to greedy policy
lim;_,o, m(a|s) — arg max, Q(s, a) with probability 1

@ A simple GLIE strategy is e-greedy where € is reduced to 0 with the
following rate: ¢, =1/i



Road map

+ Model-Free Control

= Monte Carlo (MC) Policy Iteration



Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s,a) =0,N(s,a) =0V(s,a), Sete=1, k=1

2: m = e-greedy(Q) // Create initial e-greedy policy )
3: loop

4:  Sample k-th episode (Sk.1, ak.1, rk.1,Sk.2,-- -+ Sk.T) given Ty

4: Gk,t = Ikt + Vlk,t+1 T+ 72fk,t+2 + - "YTi_lfk,T,

5 fort=1,..., T do

6: if First visit to (s, a) in episode k then

7: N(s,a) = N(s,a) + 1

8: Q(st,ar) = Q(st, ar) + m(Gk,t — Q(st, at))

9: end if

10:  end for

11: k=k+1, e=1/k

12:  m, = e-greedy(Q) // Policy improvement
13: end loop

GLIE Monte-Carlo control converges to the optimal state-action value function
Q(s, a) — Q*(s, a). If you choose €=1/k, GLIE is guaranteed.



Example: MC on policy control
s, X S 53‘_54 S @ wSe

L 0 g |Q

[ |0| ~ [ PN | [ |

ﬁ 0 0

O i) ° 0
First visit MC estimate of Q of each state-action
as Q(-a;)=/0,1,1,0,0,0/; Q(-a-)=[0,1,0,0,0,0].

Q1: What is greedy policy ri(s)?

Q2: What is e-greedy policy, given k=4, e=1/k?



Example: MC on policy control
s, X S 53‘_54 S @ wSe

L 0 g |Q

[ |0| .ﬁ_. |0| |O| IOI |

4 ™™o ==
First visit MC estimate of Q of each state-action
as Q(-a;)=/0,1,1,0,0,0/; Q(-a-)=[0,1,0,0,0,0].
Q1: What is greedy policy ri(s)?
Al ri(s) = [tie, tie, al, tie, tie, tie/
Q2: What is e-greedy policy, given k=4, e=1/k?
With probability 24 following ri(s), and % random.
A2: ri(a,/s) = [tie, tie, //8, tie, tie tie/

ri(a,[s) = [tie, tie, 1/8, tie, tie, tie/




Road map

+ Model-Free Control

* Temporal-Difference (TD) Policy Iteration
« SARSA
» Q-Learning



Model-free Policy lteration

@ Initialize policy 7
@ Repeat:

e Policy evaluation: compute Q™
e Policy improvement: update 7 given QT

@ What about TD methods?



MC+ DP=TD

% Dynamic Programming (DP) policy evaluation

Vii(s) = 2 2 mlals)P(s'|s,a)(r + V" ,(s"))

a4 88

Vi (s) = Exlr + V()]

+» Monte Carlo (MC) policy evaluation

V7(s) = V7 (s) + a(Git — V"(s))

% Temporal Difference (TD)
V7(s) = V7(s) + a([re + 7V (st+1)] = V™ (s))

27



Model-free Policy lteration with TD Methods

@ Use temporal difference methods for policy evaluation step
@ Initialize policy 7
@ Repeat:

e Policy evaluation: compute Q™ using temporal difference updating
with e-greedy policy

e Policy improvement: Same as Monte carlo policy improvement, set 7
to e-greedy (Q™)




General Form of SARSA Algorithm

3:

0:
10:

. Set initial e-greedy policy m randomly, t = 0, initial state s; = s
. Take a; ~ 7m(s¢) // Sample action from policy

. Observe (rt, S¢+1)

. loop

Take action a1 ~ 7(S¢+1)

Observe (ri41,St42)

Update Q given (st, at, rt, St+1, at+1):

Perform policy improvement:

t=t+1
end loop




General Form of SARSA Algorithm

1: Set initial e-greedy policy 7, t = 0, initial state s; = s

2: Take a; ~ m(s¢) // Sample action from policy

3: Observe (r¢, st+1)

4: loop

5. Take action a;y1 ~ 7(S¢y1)

6: Observe (rt41,5St42)

7. Q(st;ar) < Q(st,ar) +alre +vQ(St41, ar41) — Q(st, ar))
8: m(s¢) = argmax, Q(st,a) w.prob 1 — ¢, else random

90 t=t+1

10: end loop

What are the benefits to improving the policy after each step?

Convergence?



General Form of SARSA Algorithm

1: Set initial e-greedy policy 7, t = 0, initial state s; = s

2: Take a; ~ m(s:) // Sample action from policy

3: Observe (r¢, st41)

4: loop

5. Take action a;11 ~ 7(S¢y1)

6: Observe (re41,St42)

7 Q(st, ar) < Qst,ar) + a(re + YQ(St+1, ar+1) — Q(st, ar))
8:  m(st) = argmax, Q(st, a) w.prob 1 — ¢, else random

9 t=t+1

10: end loop

Convergence? Yes, if € and a follow 1/t to decay.
= 1/t leads to GLIE, and a=1/t leads to a Robbins-
Munro sequence.

This is a sufficient condition.



TD-based model-free control
Q-learning
@ Recall SARSA

Q(st, ar) < Q(st,ar) + al(re + yQ(St41, arv1)) — Q(St, at))
@ Q-learning:

Q(St, 3t) — Q(Sn 3t) + Oé((ft + 7y mac‘;lX Q(St+1, 3,)) — Q(Sn 3t))



Q-Learning with e-greedy Exploration

1: Initialize Q(s,a),Vs € S,a€ At =0, initial state s; = 59
2: Set mp, to be e-greedy w.r.t. @

3: loop

4:  Take ar ~ mp(st) // Sample action from policy

5 Observe (r¢, st+1)

6: Update Q given (s¢, at, rt, St+1):

7:  Perform policy improvement: set 7, to be e-greedy w.r.t. @
8: t=t+1
9: end loop




Q-Learning with e-greedy Exploration

1: Initialize Q(s,a),Vs € S,a€ At =0, initial state sy = 59

2: Set mp to be e-greedy w.r.t. @

3: loop

4:  Take a; ~ mp(s¢) // Sample action from policy

5. Observe (r,S41)

6:  Q(st,ar) < Q(st,ar) +a(re+v  maxy Q(s,a) — Q(st, at))
7. m(s;) = argmax, Q(st, a) w.prob 1 — ¢, else random
8

9

t=t+1
. end loop

Does how Q@ is initialized matter?
Asymptotically no, under mild condiditions, but at the beginning, yes



Example: Q-Learning

S, ® S S35y 55 56

4 e =
n is random with probability e=1/k, else n, a=0.5, y=1,
Q-learning: Init Q(-,a;) = Q(-,a,) =[0,0,0,0,0,0];

15t step (k=1). First tuple: (s5, a4, 0, s,)
Q(s3,a1)—Q(s3,a1)+a(r +y max,Q(sz,a)—Q(s3,a1))
Update Q(s3,a4) to ?.

2" step (k=2): Second tuple: (s,, a;, 1, s¢)
Q(s2,a1)—Q(sz,a1)+a(r +y max,Q(s;,a)—Q(sz,a1))
Update Q(s,,a,) to?.




Example: Q-Learning

S, & s, ST Sy S5 56

4 e =
n is random with probability e=1/k, else n, a=0.5, y=1,
Q-learning: Init Q(-,a;) = Q(-,a,) =[0,0,0,0,0,0];

15t step (k=1). First tuple: (s5, a4, 0, s,)
Q(s3,a1)<—Q(s3,a1)+a(r +y max,Q(s,,a)—Q(s3,a1)) =0
Update Q(s5,a;) to 0.

2" step (k=2): Second tuple: (s,, a;, 1, s¢)
Q(s2,a1)—Q(sz,a1)+a(l +y maxaQ(sl,a) Q(s2,a1))=1/2
Update Q(s,,a;) to .




Road map

+ Model-Free Control

* Project 2 description



Project 2 starts next Wed
Due 3/2 Week #7 (W) mid-night

+ Beyond the requirement from Project 2,
you are encouraged to try different

methods, such as SARSA, Q-Learning, for
both scenarios.


https://github.com/yingxue-zhang/DS595-RL-Projects/tree/master/Project2

Questions?



