This lecture will be recorded!!!

Welcome to

DS595 Reinforcement Learning
Prof. Yanhua Li

Time: 6:00pm —8:50pm W
Zoom Lecture
Spring 2022

Happy Lunar New Year

HAPPY LUNAR
NEW YEAR

Last lecture

+» Reinforcement Learning Components
» Model, Value function, Policy

+» Model-based Control

= Policy Evaluation, Policy Iteration, Value lteration

+» Project 1 description.

Quiz 1 Week 4 (2/9 W)

+» Model-based Control

= Policy Evaluation, Policy Iteration, Value lteration

* 30 min at the beginning on 2/9 W Week #4

* You can start as early as 5:55PM, and finish as late as
6:30PM. The quiz duration is 30 minutes.

» | ogin class zoom so you can ask questions regarding
the quiz in Zoom Chatbox.

Project 1 due Week 4 (2/9 W)

This lecture

+ Review: Model based control

» Policy Iteration, and Value iteration

+» Model-Free Policy Evaluation
" Monte Carlo policy evaluation
* Temporal-difference (TD) policy evaluation

Example: Taxi passenger-seeking
task as a decision-making process

S; 52 53 S4 S5 56

States: Locations of taxi (s, . . ., S5) on the road
Actions: Left or Right

Rewards:

+1 in state s,

+3 In state s;

0 in all other states

RL components

< Often include one or more of

* Model: Representation of how the world changes in
response to agent’s action

" Policy: function mapping agent’s states to action

* Value function: Future rewards from being in a state
and/or action when following a particular policy

RL components: (1) Model

+» Agent’s representation of how the world
changes in response to agent’s action, with
two parts:

predicts next agent state predicts immediate reward

P(St+1 =S |St =S, ar =a) (s,a)

RL components: (2)Policy

+ Policy T determines how the agent chooses
actions
"1T:S — A, mapping from states to actions

‘a

% Deterministic policy: > ,
"TI(S) = a L] ‘ i

= |n the other word, ‘ 7
da

e Ti(als) = |, ‘ d

* TI(a’|s) = mm(a”|s)=0,

<+ Stochastic policy: sl O
" TT(als) = Pr(a, = als, = s) ‘ 57

RL components: (3)Value Function

+ Value function V™ expected discounted sum of
future rewards under a particular policy T

V™ (st = s) = Ex[re + vres1 + 7 reqo + Y regs + -+ se = s]
+ Discount factoryweighs immediate vs future rewards

+ Can be used to quantify goodness/badness of states
and actions

+ And decide how to act by comparing policies
Q a

S /
O a

RL agents and algorithms

Value Function

Model-based

Explicit: Model

Find a good policy: Problem settings

Model-based control Model-free control
(Agent’s internal +» Computing while
computation) interacting with

= Given model of how the environment

world works " Agent doesn’t know

® Transition and reward how world works
models " |nteracts with world to

» Algorithm computes how implicitly/explicitly learn
to act in order to how world works

maximize expected reward = Agent improves policy
(may involve planning)

Find a good policy: Problem settings

Model-based control
+ (Agent’s internal

computation)
" Frozen Lake project |

* Know all rules of game /
perfect model

" dynamic programming,
tree search

S 3 - F

F H F " H

F ; F H

Model-free control .
+» Computing while interacting

with environment

" Taxi passenger-seeking
problem

* Demand/Traffic dynamics
are uncertain

" Huge state space
Path 1

ey i’“é“‘\/\-

Path 2

Path 3

Find a good policy: Problem settings

Model-based control Model-free control
Given: MDP + Given: MDP without R, P
= <§, A PR Y> =S,A,Y
<+ Unknow
PR,
Output: +» Output:
| '|'|' - n

This lecture

+ Review:

» Policy Iteration, and Value iteration

MDP Policies

@ Policy specifies what action to take in each state
e Can be deterministic or stochastic

@ For generality, consider as a conditional distribution
e Given a state, specifies a distribution over actions

e Policy: w(a|s) = P(a; = a|s; = s)

MDP Policy Evaluation, lterative Algorithm

For deterministic policy:

e Initialize Vp(s) =0 for all s
@ For k =1 until convergence
e Forall sin$S

Vi (s) =)+) p(s'ls, m(s) Vils(s)

s’eS

@ This is a Bellman backup for a particular policy

MDP Policy Evaluation, lterative Algorithm

For deterministic and stochastic policy:

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop:
A+ 0
Loop for each s € &:
v+ V(s)
V(s) ¢ X, m(als) Sy, p(', 7] 5,0) [r + V()]
A + max(A, |v—V(s)|)
until A < 6

From: Reinforcement Learning: An Introduction, Sutton and Barto, 2nd Edition

MDP Control

@ Compute the optimal policy
7*(s) = arg max V" (s)
s

@ There exists a unique optimal value function

@ Optimal policy for a MDP in an infinite horizon problem is
deterministic

MDP Policy Iteration (PI)

@ Set =0

@ Initialize my(s) randomly for all states s

@ While i == 0 or ||7; — mj_1]|/1 > 0 (L1-norm, measures if the policy
changed for any state):

o V™ < MDP V function policy evaluation of ;
e w11 < Policy improvement
o I=1+1

Policy Improvement

@ Compute state-action value of a policy 7;
e Forsin S and ain A:

Q" (s,a) = R(s,a) +7) P(s'ls,a)V™i(s")

s’eS

@ Compute new policy 71, forall s S

mir1(s) = argmax Q" (s,a) Vs € S
a

MDP Policy Iteration (Pl) (All-in-one algorithm

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7.

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A<+ 0
Loop for each s € 8:
v+ V(s)
V(s) < X g, p(ssr]s,m(s)) [+ AV (s)]
A +— max(A, |lv—V(s)|)

until A < 0 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
m(s) < argmax, Y, . p(s’,7|s,a) ['r + 7V(s’)}
If old-action # m(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = 7,; else go to 2

From: Reinforcement Eearnlng: AN Introduction, sutton and Barto, Znd Edition

Value lteration (VI) Deterministic policy

@ Set k=1

o Initialize Vp(s) = O for all states s

@ Loop until [finite horizon, convergence]:
e For each state s

Vk+1()_max{ sa+*yz s'|s, a) V(s }

s’eS

e View as Bellman backup on value function

Vi1 = BV

Trr1(s) = arg maax{R(s, a)+v Y _ P(s|s. a)vk(s')}

s’eS

Value Iteration (VI)

Value Iteration, for estimating 7 ~ .,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8%, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € 3:
v+ V(s)
V(s) + maxq) . p(s',r]s,a) [r+V(s)]
A +— max(A, v — V(s)])
until A < 6

Output a deterministic policy, m =~ m,, such that
m(s) = argmax, Y, . p(s',r|s,a)[r + 7V (s')]

From: Reinforcement Learning: An Introduction, Sutton and Barto, 2nd Edition

This lecture

+» Model-Free Policy Evaluation
" Monte Carlo policy evaluation
* Temporal-difference (TD) policy evaluation

Review of Dynamic Programming for
policy evaluation (model-based)

state action

-
&

e Initialize VJ(s) =0 for all s
@ For k =1 until convergence

T A

O TAXI O

@ Forallsin S

Vi (s) = r(s,m(s)) + Y p(s'ls,m(s)) Vi1 (s")
s'eS

equivalently,;7(s) _Zz,mqupu s, a)(r + V™ ,(s'))

|lr—*lhr—‘ﬁ

Vi (s) = Epp [+¥Vi_1(s)] 2

Review of Dynamic Programming
for policy evaluation (model-based)

Bootstrapping
state action

=
S —‘<
T
V' (s) = Egp [r +yVi_1(s)]
+» Bootstrapping: Update for V uses an estimate

+ Known model P(s’|s,a) and r(s,a)

A

Review of Dynamic Programming
for policy evaluation (model-based)

Bootstrapping
state action

- =
WS —‘<
)
V' (s) = Enp [r + ¥Vi_1(s")]
+ Requires model of MDP P(s’|s,a) and r(s,a)
Bootstraps future return using value estimate

Requires Markov assumption: bootstrapping
regardless of history

A

Model-free Policy Evaluation

<+ What if don’t know transition model P nor the

reward model R?

+ Today: Policy evaluation without a model

+ Given data and/or ability to interact in the
environment Efficiently compute a good estimate of
a policy T

Model-free Policy Evaluation

% Monte Carlo (MC) policy evaluation
" First visit based
" Every visit based

% Temporal Difference (TD)
= TD(0)

% Metrics to evaluate and compare algorithms

Monte Carlo (MC) policy evaluation

+ Return of a trajectory under policy T

Gt = It + Yre+1 ‘|"Y2rt+2 +’y3rt+3 n i

< Value function:

" Expectation over trajectories T generated by following T

V7™ (s) =

€T~7r[Gt‘5t — 5]

% Simple idea: Value = mean return
" sample set of trajectories & averag‘e returns
G'(S)

State s

action /

=N Q @ 0,
@ G(S)

Monte Carlo (MC) Policy Evaluation

If trajectories are all finite, sample set of trajectories & average returns
Does not require MDP dynamics/rewards
No bootstrapping

Does not assume state is Markov

Can only be applied to episodic MDPs

e Averaging over returns from a complete episode
e Requires each episode to terminate

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode | = Si1,4di1,6i1,52,4i2,62y---,50T;

Ti—1

@ Define Gjt =rit +rit+1 + 72r,-,t+2 + ey ri 1, as return from

time step t onwards in /th episode
@ For each state s visited in episode |
o For first time t that state s is visited in episode |

@ Increment counter of total first visits: N(s) = N(s) + 1
@ Increment total return G(s) = G(s) + Gi;
e Update estimate V" (s) = G(s)/N(s)

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode i = S; 1,3, 1,/ 1,5i2,3i 2,/ 2,--+Si.T,

) I
@ Define Gjt =ri+ +yrit+1 + fy2r,-,t+2 + .- -ny_lr,-,Tl. as return from

time step t onwards in ith episode

@ For each state s visited in episode |
o Forlfirst time t [that state s is visited in episode i

@ Increment counter of total first visits: N(s) = N(s) + 1
@ Increment total return G(s) = G(s) + Gi+
e Update estimate V™ (s) = G(s)/N(s)

For example:

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode i = s;1,ai1,ri1,52,3i2,li2,-,SiT

. o 2 T,—1
@ Define Gjt =rit+7ritq1+7 g2+ -7

time step t onwards in ith episode

r; 7. as return from
) I

@ For each state s visited in episode |
o For first time t that state s is visited in episode i

@ Increment counter of total first visits: N(s) = N(s) + 1
® Increment total return G(s) = G(s) + Gi:
e Update estimate V" (s) = G(s)/N(s)

Properties:
@ V™ estimator is an unbiased estimator of true E,[G;|s; = s]

e By law of large numbers, as N(s) — oo, V™ (s) — E;[G;|s; = s]

Model-free Policy Evaluation

" Every visit based

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop
@ Sample episode / = s;1,31,6i,1,5i2,3i2,Fi2:---+Si.T,
@ Define Gjt = rit+ +Yrit+1 + 72r,',t+2 + - -VT’_lr;,Ti as return from
time step t onwards in /th episode

@ For each state s visited in episode |
e For|every time t|that state s is visited in episode |

@ Increment counter of total first visits: N(s) = N(s) + 1
@ Increment total return G(s) = G(s) + G;;
e Update estimate V™ (s) = G(s)/N(s)

For example:

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode i = S; 1,31, 1,512,3i2,1i2,---,SiT

Ti—1

@ Define Gjt =ri++vriey1+ ’y2r,',t+2 + -y ri 1. as return from

time step t onwards in ith episode

@ For each state s visited in episode |
o For|every time t[that state s is visited in episode |

@ Increment counter of total first visits: N(s) = N(s) + 1
@ Increment total return G(s) = G(s) + G; ;
e Update estimate V" (s) = G(s)/N(s)

Properties:
@ V7 every-vist MC estimator is an biased estimator of V™

@ But consistent estimator and often has better MSE

Incremental Monte Carlo (MC) On Policy Evaluation

After each episode | = s;1,3a;1,61,S.2,3i2,l2,--.

@ Define Gjt =rit+vritr1+ 72r,-,t+2 + --- as return from time step t
onwards in ith episode g .. it
@ For|state s visited at time step t |in episode |

o Increment counter of total first visits: N(s) = N(s) + 1
e Update estimate

N(S) —1 I G,"t

N(s) — N(s)
@ Increment total return G(s) = G(s) + G;:
e Update estimate V™ (s) = G(s)/N(s)

L
N(s)

V(s) = V7(s) — V7(s) + ——(Gie — V7(s))

Incremental Monte Carlo (MC) On Policy Evaluation,

Running Mean

Initialize N(s) =0, G(s) =0Vse S

Loop
@ Sample episode | = s;1,ai1,61,5.2,3i2, 12T,
@ Define Gjt =rjt+yrit41+ 'yzr,-,t+2 + .- -va_lr,-,Ti as return from
time step t onwards in ith episode

@ For state s visited at time step t in episode |

o Increment counter of total first visits: N(s) = N(s) + 1
e Update estimate

V7i(s) = V7 (s) + (Gt — V' (s))

@ = N%s): identical to every visit MC
o > N%S): forget older data, helpful for non-stationary domains

S|, d|, Iy, Spy Ay My, Sy, A3, I3y en .t How about o= 1?2

AN \

=, 44

Taxi passenger-seeking process: R=[1,0,0,0,3,0]
For any action, n(s) = a; vs,y = 1.

any action from s1 and s6 terminates episode
Given (53/ a]/ 0/ 53/ a]/ 0/ 52/ a]/ 0/ 5]/ a]/ -Z/ 7)/

Q1: First visit MC estimate of V of each state?
Q2: Every visit MC estimate of s,?

Example: MC on policy evaluation,

AN \

=, 44

Taxi passenger-seeking process: R=[1,0,0,0,3,0]
For any action, n(s) = a; vs,y = 1.

any action from s1 and s6 terminates episode
Given (53/ dj, 0/ 53 dy, 0/ S5y dy 0/ Sy dy -Z/ 7)/
Q1: First visit MC estimate of V of each state?

V =[111000]

Q2: Every visit MC estimate of s,? V(s,)=1

MC policy evaluation
V7(s) = V7(s) + a(Gi — V7(s))

T, terminal

state action state

=

+» MC updates the value estimate using a sample of the
return to approximate an expectation

43

MC policy evaluation limitations
V7(s) = V7(s) + (Gie — V7(s))

T, terminal
state

state action

N P

' ®) TAXI 0]

% Generally high variance
" Reducing variance can require a lot of data

% Requires episodic settings

" Episode must end before data from that episode can be
used to update the value function 4

Model-free Policy Evaluation

% Temporal Difference (TD)
= TD(0)
= Combination of MC and Dynamic Programming

“If one had to identify one idea as central and novel to reinforcement learning, it
would undoubtedly be temporal-difference (TD) learning.” — Sutton and Barto 2017

M C + D P _— T D DP is model based policy evaluation.

% Dynamic Programming (DP) policy evaluation

Vi (s) = Erp [r + yVi_1(s")]

% Monte Carlo (MC) policy evaluation
- V™i(s) = V™(s) + a(Gj+ — V7 (s))

% Temporal Difference (TD)

V7i(s) = V7(s) + allre + vV (st41)] — V7 (s))

Rewritten as

Temporal Difference [TD(0)] Learning

Aim: estimate V™ (s) given episodes generated under policy 7
e S1,a1,n,S»,as, n,... where the actions are sampled from =

Simplest TD learning: update value towards estimated value

V7 (st) = V"(st) + a(lre + 7V (st11)] =V (st))

S/

TD target

TD error:
51‘ = It -+ ’)/VW(St_|_1) — VW(St)

Can immediately update value estimate after (s, a, r,s’) tuple

Don't need episodic setting

47

M C + D P _— T D DP is model based policy evaluation.

nput: «
nitialize V™(s) =0, Vs € S
Loop

e Sample tuple (s;, at, rt, St11)
o V™(s:) = V™(s:) + a(lrt + 7V”(5t+1)l—V”(st))

TD target

48

Example: TD policy evaluation
51 52 53 S4 S5 56

L] ﬁ
AN \ ﬂ

oo 1 = —>
Taxi passenger-seeking process: R=[1,0,0,0,3,0]
For any action, n(s) = a; vs,y = 1.
any action from s1 and s6 terminates episode
Given (53/ dy 0/ 53/ dy 0/ S5, dy, 0/ Sy, dy, -Z/ 7)/
Q1: First visit MC estimate of V of each state?
= [111000] V7(se) = V7(st) + al[re £ 7V (se1)] =V7(st)
Q2 Every visit MC estimate of s,? V/(s,)=170 tereet
Q3: TD estimate of all states (init at 0) with a = 1?

Example: TD policy evaluation
51 52 53 S4 S5 56

[PN ﬂ ﬂ A al a2
LT —)
Taxi passenger-seeking process: R=[1,0,0,0,3,0]

For any action, n(s) = a; vs,y = 1.
any action from s1 and s6 terminates episode
Given (53/ dj, 0/ 53 dy, 0/ S5z dy 0/ Sy dy, -Z/ 7)/
Q1 First visit MC estimate of V of each state?
= [111000] Q2: Every visit MC estimate of s,? V(s,)=1
Q3 TD estimate of all states (init at 0) with a = 17?

=[1000000]

TD(0) policy evaluation

V™ (s) = V7(s) + al[re

state action

"

T TAXT
oO™O

YV (st41)] = V7(s))

T, terminal
state

b2

¥

% TD updates the value estimate using a sample of s,
to approximate the expectation

% TD updates the value estimate by bootstrapping

using estimate of V(s.,)

Policy evaluation

Model-free method
Handle non-episodic case

Markovian assumption

DP

MC

D

Policy evaluation

Model-free method
Handle non-episodic case

Markovian assumption

DP
No
Yes
Yes

MC
Yes
No
No

TD
Yes
Yes
Yes

Next Lecture

+» Model-Free Control
= Monte Carlo control
* Temporal-difference (TD) control

= SARSA
" Q-learning control

Quiz 2 Week #6 (2/23 W)

+ Model-free Control

* Model-free policy evaluation
« Monte Carlo policy evaluation
« TD policy evaluation

* Model-free control
« SARSA
» Q-Learning
* Double-Q-Learning

Any Comments & Critiques?

Bias, Variance, MSEA

@ Definition: the bias of an estimator 6 is:
Biasy() = Exw[é] — 0
o Definition: the variance of an estimator 8 is:
Var(9) = Exol(— E[0))’]

o Definition: mean squared error (MSE) of an estimator 8 is:

N\ N\ N\

MSE(9) = Var(0) + Biasy(0)?
< Biased vs unbiased estimator
= Bjas is zero or not,

< Consistent vs inconsistent estimator

" When n goes to infinity, if the estimator goes to ground-
truth

Bias/Variance of Model-free Policy Evaluation Algorithms

Return G; is an unbiased estimate of V7 (s;)
TD target [r: + V7 (st+1)] is a biased estimate of V™ (s;)
But often much lower variance than a single return G;

Return function of multi-step sequence of random actions, states &
rewards

@ 1D target only has one random action, reward and next state

MC

e Unbiased
e High variance
o Consistent (converges to true) even with function approximation

1D

e Some bias
e Lower variance
e TD(0) converges to true value with tabular representation

60

Convergence analysis

Policy Iteration

Delving Deeper Into Policy Improvement Step

Emma Brunskill (CS234 Reinforcement Learn Lecture 2: Making Sequences of Good Decis Winter 2019 37 / 60

Delving Deeper Into Policy Improvement Step

QT (s,a) = R(s,a) +7) _ P(s'ls,a)V7i(s)

s’'eS
max Q™ (s, a) > R(s, mi(s)) +7 Y _ P(s'|s,mi(s)) V™ (s") = V™ (s)
a
s'eS

mir1(s) = argmax Q™ (s, a)
a

@ Suppose we take 7, 1(s) for one action, then follow 7; forever

e Our expected sum of rewards is at least as good as if we had always
followed 7}

@ But new proposed policy is to always follow 741 ...

Monotonic Improvement in Policy

@ Definition
V™ > V7T VTi(s) > V™2(s),Vs € S

@ Proposition: V7i+1 > V7 with strict inequality if 7; is suboptimal,
where ;1 is the new policy we get from policy improvement on 7;

Monotonic Improvement in Policy

V™(s) <max Q™ (s, a)

—max R(s,a) + v Z P(s'|s,a)V™i(s")
s'eS

Proof: Monotonic Improvement in Policy

V™i(s) <max Q™ (s, a)

=max R(s,a) + v Z P(s'|s,a)V™i(s")
? s'eS
=R(s,mi11(s)) + Z P(s'|s, mi+1(s))V™(s") //by the definition of 7,
s'eS

<R(s,mit+1(s)) + Z P(5/|57 mit1(s)) (ma?x QW"(S/, a/))

s’eS

=R(s,mi1(s) +7 3 P(sls, misa(s)
s’eS

(R(S’,mH(S')) +7) P(S”IS’,7ri+1(5’))V”"(5"))

SNES

— V7Ti+1 (S)

Convergence analysis

Value Iteration

Policy Iteration as Bellman Operations

@ Bellman backup operator B™ for a particular policy is defined as

B™V(s) = R™(s)+~ » _ P7(s'|s)V(s)
s'eS
@ Policy evaluation amounts to computing the fixed point of B™

@ To do policy evaluation, repeatedly apply operator until V' stops

changing
V" =B"B".--B"V

Policy lteration as Bellman Operations

@ Bellman backup operator B™ for a particular policy is defined as

B™V(s) = R™(s)+~ Y _P"(s|s)V(s)
s'eS
@ To do policy improvement

mi+1(s) = argmax R(s, a) + E P(s'|s,a) V™ (s")
a
s’'eS

Going Back to Value Iteration (VI)

@ Set k=1

o Initialize Vj(s) = 0 for all states s

@ Loop until [finite horizon, convergence]:
o For each state s

Vicra(s) = max R(s,a) + 7 > P(s'ls.) Vi(s')
s’eS

e Equivalently, in Bellman backup notation
Vi1 = BV

@ To extract optimal policy if can act for kK + 1 more steps,

m(s) = argmax R(s,a) + v E P(s'|s,a)Vii1(s)
a
s'eS

Contraction Operator

@ Let O be an operator,and |x| denote (any) norm of x
o If |OV — OV'| < |V — V|, then O is a contraction operator

Will Value lteration Converge?

@ Yes, if discount factor v < 1, or end up in a terminal state with
probability 1

@ Bellman backup is a contraction if discount factor, v < 1

e If apply it to two different value functions, distance between value
functions shrinks after applying Bellman equation to each

Proof: Bellman Backup is a Contraction on V for v <1

@ Let |V — V| = maxs |V(s) — V/(s)| be the infinity norm

1BV — BVl =

max (R(s, a)+v > P(s|s, a)vk(s’)) — max (R(s,a') +v > P, a’)vj(s’)) H

s’es s’es

Proof: Bellman Backup is a Contraction on V for v <1

@ Let ||V — V|| = maxs |V(s) — V/(s)| be the infinity norm

— . /
|BV), — BVj|| = maax(sa-l—’yZP |s, a) V(s))—rr;e;x(s,a’ +’yZP s, a’)))H

s’es s'es

< maax(sa—}—’yZP |s, a) Vi (s)—R(s,a)—'yZP |s, a)V,)H
s'es s’es

= max'yZP |s, a)(()—\/J(s'))‘

s'es
< max'yZP |sa||Vk—V||)H

= {[YIVk = Vjlimax > P(s'[s, a))

s’es

=V = Vjli

@ Note: Even if all inequalities are equalities, this is still a contraction if v < 1

