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Last Lecture
+What is reinforcement learning?

« Difference from other Al problems
« Application stories.
+ Topics to be covered in this course.

«Course logistics



Reinforcement Learning
What is it?

Reinforcement learning (RL) is an area
of machine learning concerned with
how software agents ought to take actions in an
environment to maximize some notion of
cumulative reward.

1. Model 2. Value function 3. Policy

(From Wikipedia)



RL involves 4 key aspects
1. Optimization. 2. Exeloration.

» Goal is to find an optimal way
to make decisions, with
maximized total cumulated
rewards
P A%
2 Generalization. 4. Delayed consequences

» Programming
all possibilities
IS not possible.




Branches of Machine Learning

Al planning

Unsupervised
Learning
Machine
Learning

Reinforcement
Learning

Supervised
Learning

mitation learning

From David Silver’s Slides



Today's topics

+» Reinforcement Learning Components
» Model, Value function, Policy

+» Model-based Planning
» Policy Evaluation, Policy Search

+» Project 1 demo and description.



Today's topics

+» Reinforcement Learning Components
= State, History, Markov Property
= Stochastic vs deterministic model and policy

= 3 key components: Model, Value function, Policy
+» Model-based Planning

= Policy Evaluation, Policy Iteration, Value lteration
+» Project 1 demo and description.



Reinforcement Learning
Components

State o -H-g Action

Environment



Agent-Environment interactions
over time (sequential decision

process)
State | -

Action

>
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Each time step t: ? ;é
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1. Agent takes an action a;;

2. World updates given action
a;, emits state s; and reward r; ; Reward
3. Agent receives state s; and
reward r;.

Environment



Interaction history, Decision-making
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Environment

History h; = (a4, Sy, Iy, ..., @, Sg, It)

Agent chooses action a;,, based on history h;
State: s;

In many cases, for simplicity, s;is observation at t.




State transition & Markov property

State

Sy

Transition Probability p(s;.,|s,a;)

State s; is Markov if and only if:

P(St+1lSs @t ) = P(Sts1lhy @y
Future is independent of past, given present.




Questions: Markov or not?

A taxi driver seeks for
Passengers:

State (observation):
(Current location,
with or without passenger)

Action: A direction to go
Path 1

Path 2

Path 3

Hypertension control

State:
(current blood pressure)

Action: take medication or not




More on Markov Property

1. Does Markov Property always hold?
1. No

2. What if Markov Property does not hold?




More on Markov Property

1. Does Markov Property always hold?
1. No

2. What if Markov Property does not hold?
1.  Make it Markov by setting state as the history: s; = h;

Again, in practice, we often assume the most recent
observation as s; is sufficient statistic of history.

State representation has big implications for:
1. Computational complexity
2. Data required

3. Resulting performance
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Today's topics

Reinforcement Learning Components
= State, History, Markov Property
» Stochastic vs deterministic model and policy

= 3 key components: Model, Value function, Policy
Model-based Planning

= Policy Evaluation, Policy Iteration, Value lteration
Project 1 demo and description.



Deterministic vs Stochastic
Environment Model

Deterministic: Given
history & action, single
state & reward

Common assumption in
robotics and controls

P(Sts1/ Sy @) =1, Sp.1=S
P(St+1/ Sy @) =0, Sp1#S

1Sy ay) =3, 5;=s, a;=a

Stochastic: Given history
& action, many potential
states & rewards

Common assumption for
customers, patients, hard to
model domains

0= P(Str1] Sy @) < 1

Plr(s; a.) =3]=50%,
Plr(s; a.) =5/=50%,
5:=S, dr=d



Questions:

Deterministic vs Stochastic?

Breakout game
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For both transition and reward

Hypertension control




Example: Taxi passenger-seeking
task as a decision-making process

S; 52 53 S4 S5 56

States: Locations of taxi (s, . . ., S5) on the road
Actions: Left or Right

Rewards:

+1 in state s,

+3 In state s;

0 in all other states



RL components

* Model: Representation of how the world changes in
response to agent’s action

" Policy: function mapping agent’s states to action

" Value function: Future rewards from being in a state
and/or action when following a particular policy




RL components

* Model: Representation of how the world changes in
response to agent’s action



RL components: Model

+» Agent’s representation of how the world
changes in response to agent’s action, with
two parts:

Transition model Reward model
predicts next agent state | predicts immediate reward

P(Sty1 =S’ |St =S, a; =a)|r(st = s,ar = a) = E[rt|s: = s5,ar = 3




Taxi passenger-seeking task
Stochastic Markov Model

57 52 53 S4 S5 56

il |
30% — 50%
Taxi agent’s transition model:
0.5 = p(ss|ss, right) = p(s4lss, right)
0.5 = p(s4]Ss4, right) = P(ss|s,4, right)
Numbers above show RL agent’s reward model ,

;=1 with 30% chance, and 0 with 70% chance
r==3 with 50% chance, and 0 with 50% chance



RL components

" Policy: function mapping agent’s states to action



RL components: Policy

+ Policy T determines how the agent chooses
actions
"1T:S — A, mapping from states to actions

Q-
% Deterministic policy: > ,
"TI(S) = a L] ‘ i

" |n the other word, ‘ L,
da

* i(als) = 0, ‘ d

* TI(a’|s) = mm(a”|s)=0,

<+ Stochastic policy: sl O
" T(als) = Pr(a, = al|s, = s) ‘ 57



Taxi passenger-seeking task

Action set: {left, right}
Policy presented by arrow.
Q1: Is this a deterministic or stochastic policy?

Q2: Give an example of another policy type?



RL components

* Value function: Future rewards from being in a state
and/or action when following a particular policy



P

RL components: Value Function

+ Value function V™ expected discounted sum of
future rewards under a particular policy T

V™ (st = 5) = Ep[re + Yres1 + Vreso + Y regz + -+ |se = s
+ Discount factor y weighs immediate vs future
rewards, with y in [0, [].

+ |t can be used to quantify goodness/badness of states
and actions

+ And decide how to act by comparing policies

®?
S ®




Taxi passenger-seeking task:
Value function

o™ "o CLEE
V(s = s) = Ex|[re + yre41 + Voreso + 7 g3+ st = s]
Discount factor, y = 0

Policy #1: n(s{) = n(sy) = *** = nN(sg) = right

Q: v?

Policy #2: n(left|s) = n(right|s) = 50%, for i=1,...,6
Q: v?



Taxi passenger-seeking task:
Value function

o™ 144
V™ (st = 5) = Exlre + yres1 + 7 res2 + Y ress + -« |se = ]
Discount factor, y = 0

Policy #1: n(s{) = n(sy) = *** = nN(sg) = right

Q: V"? [V(sy), ..., V(s¢)]=[1,0,0,0,3,0]

Policy #2: n(left|s,) = n(right|s;) = 50%, for i=1,...,6
Q: V? [V'(sy), ..., V7(se)]=[1,0,0,0,3,0]



Types of RL agents/algorithms

Model-Free

Actor
Critic

Value Function Policy

Value-Based Policy-Based

&odel-based Mel-ﬁee: (Next Week)

Model
Explicit: Model Explicit: Value function

and/or policy function

May or may not have policy
\and/or value function No model




Today's topics

+» Model-based Planning
*MDP model

» Policy Evaluation, Policy Iteration, Value lteration



MDP

+ Markov Decision Process



Markov Decision Process (MDP)

@ Markov Decision Process is Markov Reward Process + actions
@ Definition of MDP

o S is a (finite) set of Markov states s € S

o Ais a (finite) set of actions a € A

e P is dynamics/transition model for each action, that specifies
P(s;x1 = s'|st = s,ar = a)

o R is a reward function!

R(st = s,a; = a) = E[r¢|s; = s, ar = a]

o Discount factor Ve [O’ 1] Transition Model
@ MDP is a tuple: (S,A,P,R,7) Reward Model

Policy function
Value function

l'Reward is sometimes defined as a function of the current state, or as a function of
the (state, action, next state) tuple. Most frequently in this class, we will assume reward
is a function of state and action




Taxi passenger-seeking task: "

Policy function

M D P Value function

R R B = R = R -
-

o R s Y s Y s Y N
s R s s Y I s R -
R s R R e R s R -

0
0
|
0
0
0

deterministic transition model



MDP Policies

Transition Model
Reward Model
Policy function
Value function

@ Policy specifies what action to take in each state
e Can be deterministic or stochastic

@ For generality, consider as a conditional distribution
e Given a state, specifies a distribution over actions

e Policy: m(als) = P(a; = als; = s)




MDP Policy Evaluation, lterative Algorithm

203

Transition Model
Reward Model

Policy function
Value function

e Initialize Vp(s) =0 for all s
@ For k =1 until convergence
e Forall sin$S

Vi (s) = )+ ) p(s'ls, m(s) Vils(s)

s’eS

@ This is a Bellman backup for a particular policy




Taxi passenger-seeking task:

MDP Policy Evaluation&= ==
Sy S, 5S> Sy Sy S¢

A0

oo
+ Letn(s) = a,vs.y =0.
+ What is the value of this policy?

Vi (s) = r(s,m(s)) +7 D p(s's,m(s)) Vil (s)




Taxi passenger-seeking task:
MDP Policy Evaluatlon —

A0

oo
+ Letn(s) = a,vs.y =0.
+ What is the value of this policy?

Vi(s) = r(s,m(s)) +v Y p(s'|s, m(s)) Vi_1(s)
1 =[10003 0]




MDP Control

@ Compute the optimal policy
7*(s) = arg max V" (s)
s

@ There exists a unique optimal value function

@ Optimal policy for a MDP in an infinite horizon problem is
deterministic




Taxi passenger-seeking task:
MDP Control S

144

P [ BN

LER =

+ 6 discrete states (location of the taxi)
+ 2 actions: Left or Right
+ How many deterministic policies are there!

<+ |s the optimal policy for a MDP always unique!?



Taxi passenger-seeking task:
MDP Control S

144

AN \

oo

+ 6 discrete states (location of the taxi)

+ 2 actions: Left or Right

+ How many deterministic policies are there!
Y-

<+ |s the optimal policy for a MDP always unique!?

No, there may be two states that have the same optimal
value function



MDP Control

@ Compute the optimal policy
7" (s) = argmax V" (s)
v

@ There exists a unique optimal value function

e Optimal policy for a MDP in an infinite horizon problem (agent acts
forever is

e Deterministic

o Stationary (does not depend on time step)

e Unique? Not necessarily, may have state-actions with identical optimal
values




Policy Search

@ One option is searching to compute best policy
o Number of deterministic policies is |A|l°!

@ Policy iteration is generally more efficient than enumeration



MDP Policy Iteration (PI)
2°3

@ Set =0

@ Initialize my(s) randomly for all states s

@ While i == 0 or ||7; — mj_1]|/1 > 0 (L1-norm, measures if the policy
changed for any state):

o V™ < MDP V function policy evaluation of ;
e w11 < Policy improvement
o I=1+1




New Definition: State-Action Value Q

@ State-action value of a policy

Q™ (s,a) = sa+vz s'|s,a) V™ (s)

@ Take action a, then follow the policy 7



Policy Improvement

203

@ Compute state-action value of a policy 7;
e Forsin S and ain A:

Q" (s,a) = R(s,a) +7 ) P(s'ls,a)V™i(s")

s’eS

@ Compute new policy 71, forall s S

mir1(s) = argmax Q" (s,a) Vs € S
a




MDP Policy Iteration (PI)

@ Set =0

@ Initialize my(s) randomly for all states s

@ While i == 0 or ||7; — mj_1]|/1 > 0 (L1-norm, measures if the policy
changed for any state):

o V™ < MDP V function policy evaluation of ;
e w11 < Policy improvement
o I=1+1




MDP Policy Iteration (PI)

@ Set i =0
e Initialize mo(s) randomly for all states s

@ While i == 0 or ||7; — mj_1]|/1 > 0 (L1-norm, measures if the policy
changed for any state):

o V™ < MDP V function policy evaluation of 7;
e w11 < Policy improvement
o I =1+1

If policy doesn’t change, can it ever change again?

Is there a maximum number of iterations of policy iteration?




MDP Policy Iteration (PI)

@ Set =0
e Initialize mo(s) randomly for all states s

@ While i == 0 or ||7; — mj_1]|/1 > 0 (L1-norm, measures if the policy
changed for any state):
o V™ < MDP V function policy evaluation of 7;
e w11 < Policy improvement
o I=1/+1

If policy doesn’t change, can it ever change again?
No

Is there a maximum number of iterations of policy iteration?

|A|!SI since that is the maximum number of policies, and as the policy
improvement step is monotonically improving, each policy can only appear in
one round of policy iteration unless it is an optimal policy.




MDP: Computing Optimal Policy and Optimal Value

@ Policy iteration computes optimal value and policy

@ Value iteration is another technique

e ldea: Maintain optimal value of starting in a state s if have a finite
number of steps k left in the episode
e lterate to consider longer and longer episodes




Bellman Equation and Bellman Backup Operators

@ Value function of a policy must satisfy the Bellman equation

Viia(s) = maax{R(s, )+ P(s']s, a)vk(s')]
s'eS

@ Bellman backup operator

e Applied to a value function
e Returns a new value function
e Improves the value if possible

BV(s) = mgx{R(s, a)+~ Z p(s’|s, a) V(s')}
s'eS

e BV yields a value function over all states s



Going Back to Value Iteration (VI)

@ Set k=1

o Initialize Vp(s) = 0 for all states s

@ Loop until [finite horizon, convergence]:
e For each state s

Vk+1()_max{ (s,a —I-’yz s'ls,a)Vi(s )]

@ To extract optimal policy if can act for kK + 1 more steps,

m(s) = arg maax{R(s, a)+ Z P(s'|s, a) Vk+1(5’)}
s'eS



Project 1 starts today
Due 2/9 mid-night

+~https://users.wpi.edu/~yli| 5/courses/DS5955S
pring22/Assignments.html



Any Comments & Critiques?



