

Welcome to

*DS595/CS525*

*Reinforcement Learning*

Prof. Yanhua Li

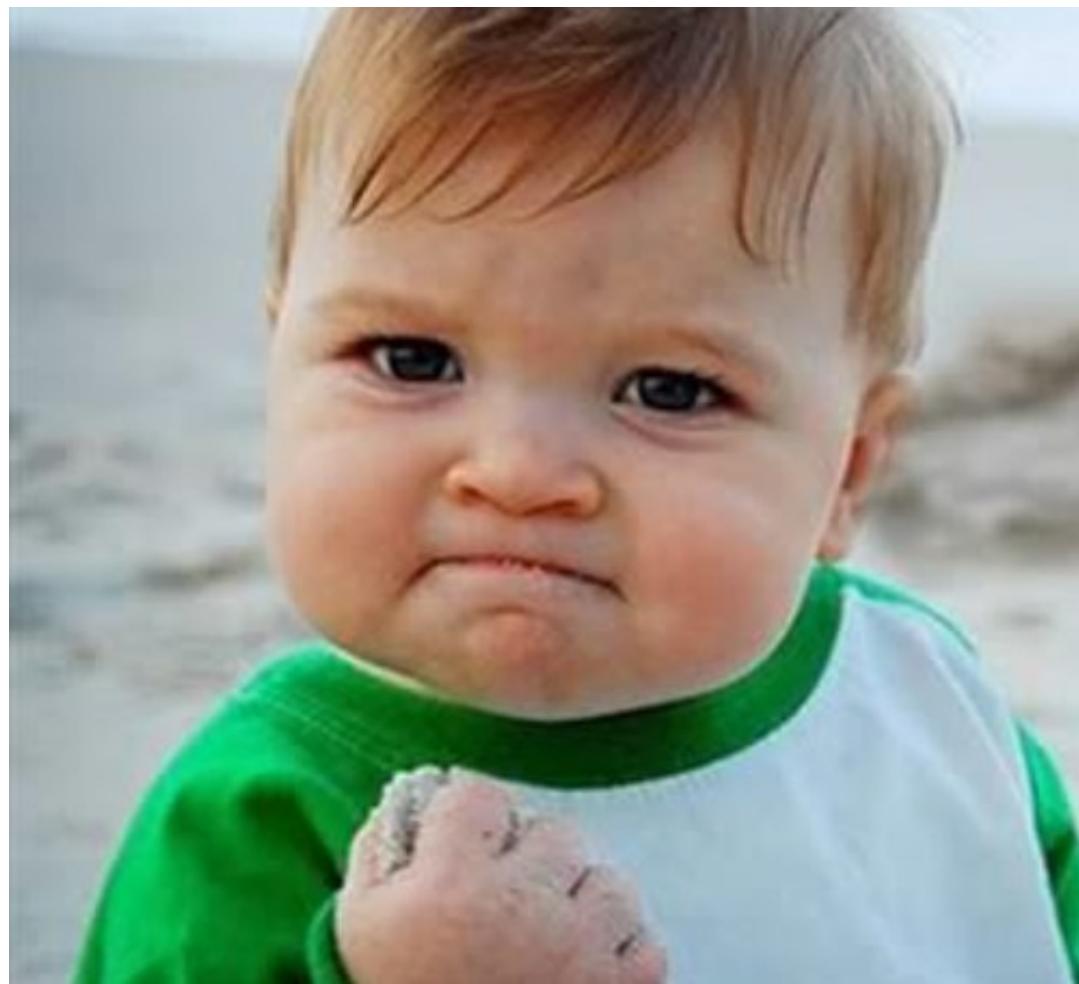


Time: 6:00pm –8:50pm R  
Location: FL PH Lower  
Fall 2019

# Quiz 5 Today

- ❖ 20 minutes on Policy Gradient (PG)

# No Quiz Next Week



# Class arrangement

<https://users.wpi.edu/~yli15/courses/DS595CS525Fall19/Schedule.html>

**-12. Week 12 (11/7 R): (Prof Li is on a travel, and invited PhD student speakers will give research work presentations)**

*Topic: RL and IRL Applications:* Research work presentations from PhD students from Prof Li's group, by Menghai Pan and Xin Zhang.

*Work #1.* [SDM'19] **Menghai Pan**, Yanhua Li, Xun Zhou, Zhenming Liu, Rui Song, Hui Lu, Jun Luo, Dissecting the Learning Curve of Taxi Drivers: A Data-Driven Approach. SIAM International Conference on Data Mining, (SDM'19 Best Applied Data Science Paper Award!) ([Paper PDF](#)).

*Work #2.* [ICDM'19] **Xin Zhang**, Yanhua Li, Xun Zhou, Jun Luo, Unveiling Taxi Drivers' Strategies via cGAIL -- Conditional Generative Adversarial Imitation Learning, IEEE International Conference on Data Mining ([Paper PDF](#)).

*Work #3.* A work under double-blind review by **Xin Zhang**.

Project 3 is available  
Due 10/17 Thursday  
10 bonus points and a leader board

- ❖ <https://users.wpi.edu/~yli15/courses/DS595CS525Fall19/Assignments.html>
- ❖ <https://github.com/huiminren/DS595CS525-RL-HW/tree/master/project3>

# Leader board (as of 5:30PM today)

Leaderboard for Breakout-DQN Update Date: 10/31/2019 17:30

| Top | Date       | Name                        | Score  | Note                                                         |
|-----|------------|-----------------------------|--------|--------------------------------------------------------------|
| 1   | 10/31/2019 | Mohamed Mahdi Alouane       | 329.46 | Double DQN with 1e-6 learning rate trained for 100K episodes |
| 2   | 10/22/2019 | Prathyush SP                | 142.77 | Conv Network and Priority Buffer trained for 50k episodes    |
|     | 10/18/2019 | Prathyush SP                | 81.07  | Simple DQN with Conv Based Architecture for 60k episodes     |
| 3   | 10/28/2019 | Sapan Agrawal               | 91.34  | Architecture described in the DQN paper for 120k episodes    |
| 4   | 10/26/2019 | Vamshi Krishna Uppununthala | 79.5   | Dueling DQN for 50k episodes                                 |
| 5   | 10/24/2019 | Shreesha Narasimha Murthy   | 56.79  | Simple DQN with MSE for 40k episodes                         |
| 6   | 10/20/2019 | Sinan Morcel                | 53.26  | Plain DQN with TA's parameters                               |

Project 4 is available  
Starts 10/17 Thursday  
Due 12/12 Thursday mid-night

- ❖ <https://github.com/huiminren/DS595CS525-RL-HW/tree/master/project4>
- ❖ Important Dates
- ❖ **Project Proposal: Thursday Today**
- ❖ Project Progress: Thursday 11/14/2019
- ❖ Final Project: Thursday 12/12/2019

# Project 4 Team Assignment

10 teams

Team assignment can be updated by this weekend.

Proposal is due today  
Some sampled cool ideas from you.

1. Real world robot planning
2. Mujoco environment agent training
3. Multi-agent RL
4. Sparse reward problem, etc.

# Last Lecture

- ❖ Imitation Learning / Inverse Reinforcement Learning
  - Introduction
  - Behavioral Cloning
  - Inverse reinforcement learning
    - Model-Based, Linear Reward Functions (this time)
- ❖ Policy Gradient
  - Intro and Stochastic Policy
  - Basic Policy Gradient Algorithm
  - Vanilla Policy Gradient
  - PPO, TRPO, PPO2

# This Lecture

- ❖ Policy Gradient

- Intro and Stochastic Policy
- Basic Policy Gradient Algorithm
- REINFORCE and Vanilla Policy Gradient
- PPO, TRPO, PPO2

- ❖ Actor-Critic methods

- A2C
- A3C
- Pathwise Derivative Policy Gradient

|                 | Reinforcement Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inverse Reinforcement Learning                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single Agent    | <p><b>Tabular representation of reward</b></p> <p><i>Model-based control</i><br/><i>Model-free control</i><br/>(MC, SARSA, Q-Learning)</p> <p><b>Function representation of reward</b></p> <ol style="list-style-type: none"> <li>1. <i>Linear value function approx</i><br/>(MC, SARSA, Q-Learning)</li> <li>2. <i>Value function approximation</i><br/>(Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN)</li> <li>3. <i>Policy function approximation</i><br/>(Policy gradient, PPO, TRPO)</li> <li>4. Actor-Critic methods (A2C, A3C, Pathwise Derivative PG)</li> </ol> <p><b>Review of Deep Learning</b></p> <p><i>As bases for non-linear function approximation (used in 2-4).</i></p> | <p><b>Linear reward function learning</b></p> <p>Imitation learning<br/>Apprenticeship learning<br/>Inverse reinforcement learning<br/>MaxEnt IRL<br/>MaxCausalEnt IRL<br/>MaxRelEnt IRL</p> <p><b>Non-linear reward function learning</b></p> <p>Generative adversarial imitation learning (GAIL)<br/><br/>Adversarial inverse reinforcement learning (AIRL)</p> <p><b>Review of Generative Adversarial nets</b></p> <p>As bases for non-linear IRL</p> |
| Multiple Agents | <p><b>Multi-Agent Reinforcement Learning</b></p> <p>Multi-agent Actor-Critic<br/>etc.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <p><b>Multi-Agent Inverse Reinforcement Learning</b></p> <p>MA-GAIL<br/>MA-AIRL<br/>AMA-GAIL</p>                                                                                                                                                                                                                                                                                                                                                         |

***Applications***

# This Lecture

- ❖ Policy Gradient (Review Quickly)
  - Intro and Stochastic Policy
  - Basic Policy Gradient Algorithm
  - REINFORCE and Vanilla Policy Gradient
  - PPO, TRPO, PPO2
- ❖ Actor-Critic methods
  - A2C
  - A3C
  - Pathwise Derivative Policy Gradient

*I don't have candies for you today, but algorithms ☺*

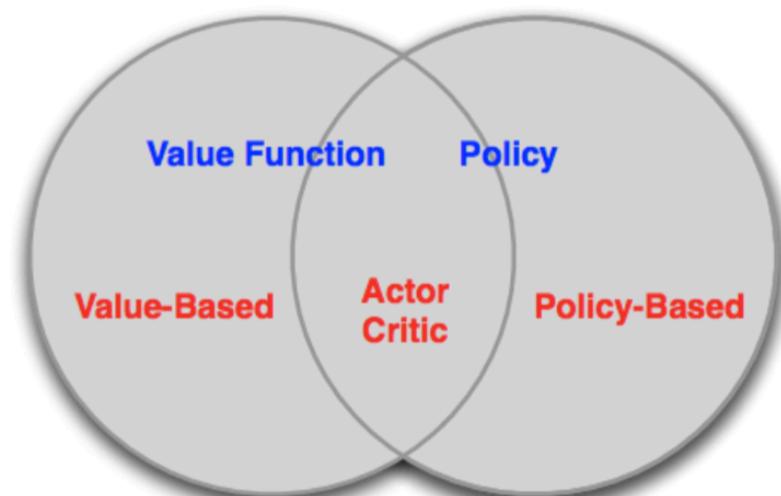
# Value-Based and Policy-Based RL

## Model-Free RL:

Explicit: Value function and/or policy function

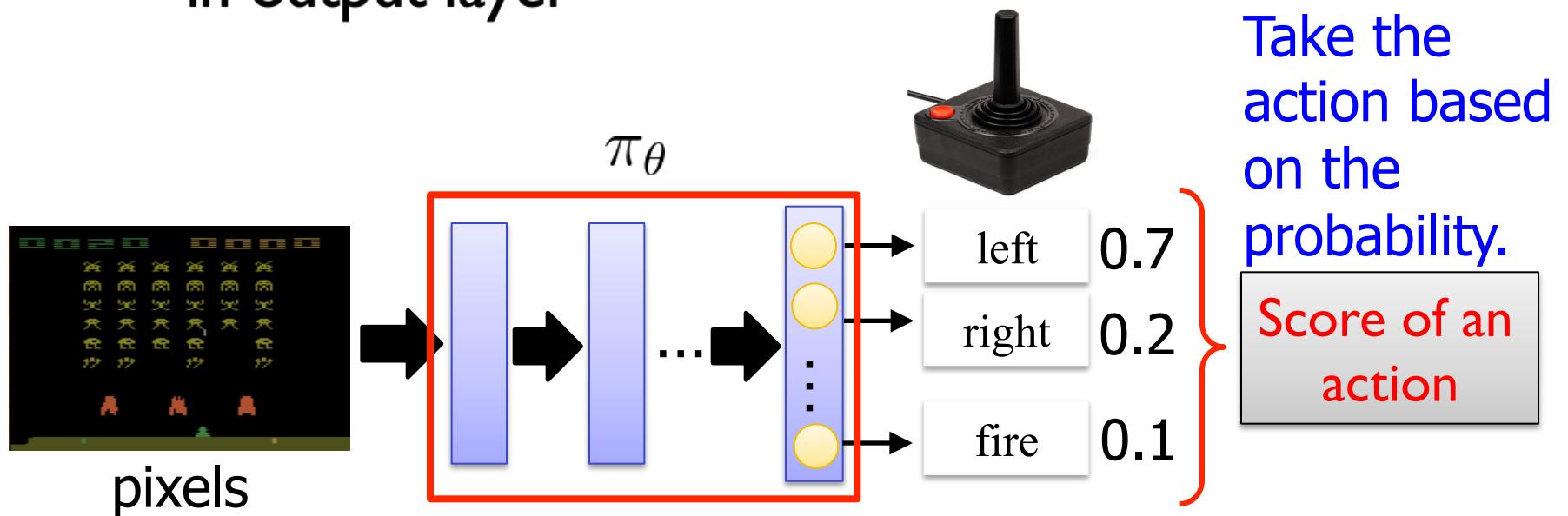
No model

- Value Based
  - Learnt Value Function
  - Implicit policy (e.g.  $\epsilon$ -greedy)
- Policy Based
  - No Value Function
  - Learnt Policy
- Actor-Critic
  - Learnt Value Function
  - Learnt Policy

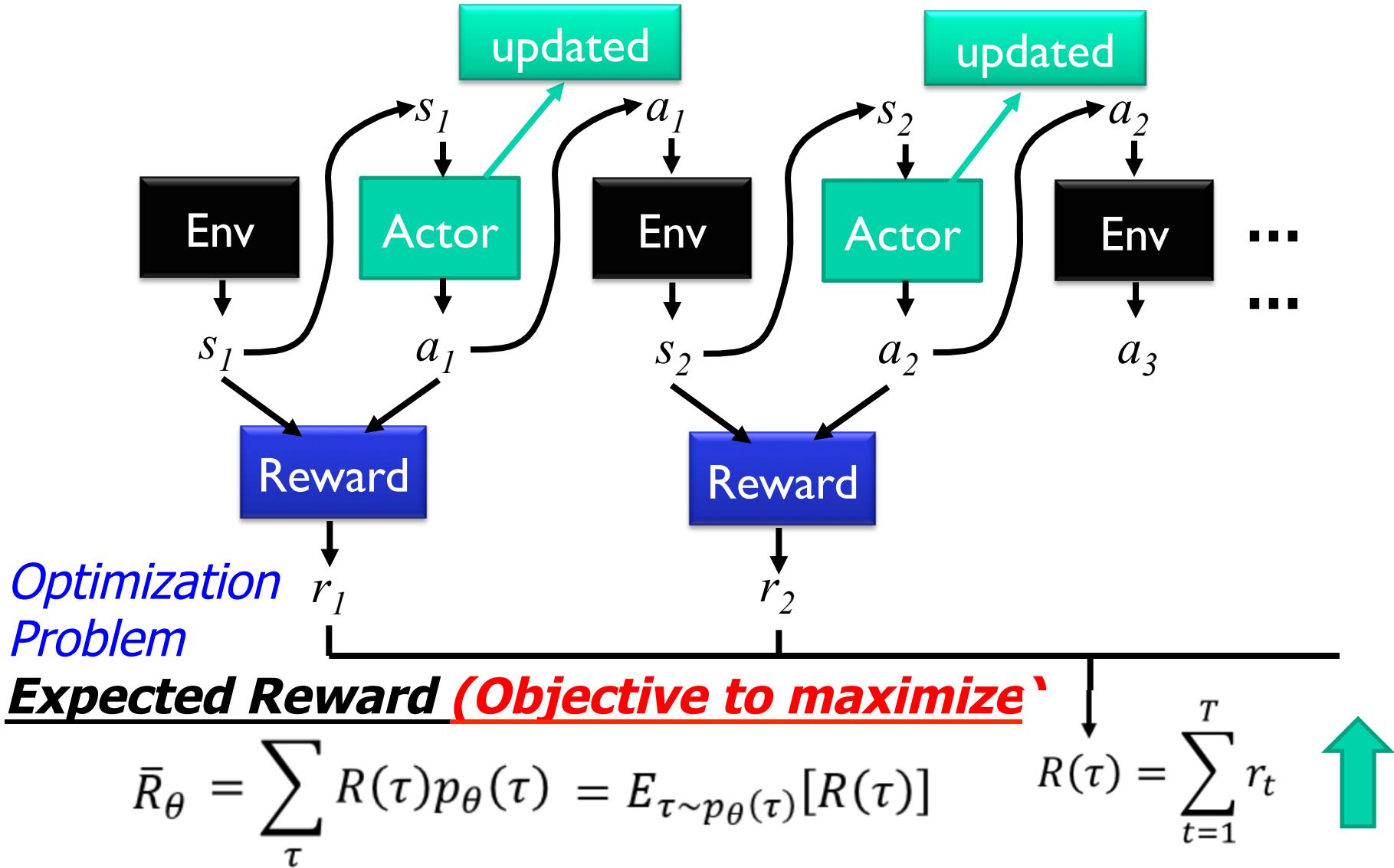


# Policy of Actor

- ❖ Policy  $\pi$  is a network with parameter  $\theta \rightarrow \pi_\theta$ 
  - Input: the observation of machine represented as a vector or a matrix
  - Output: each action corresponds to a neuron in output layer

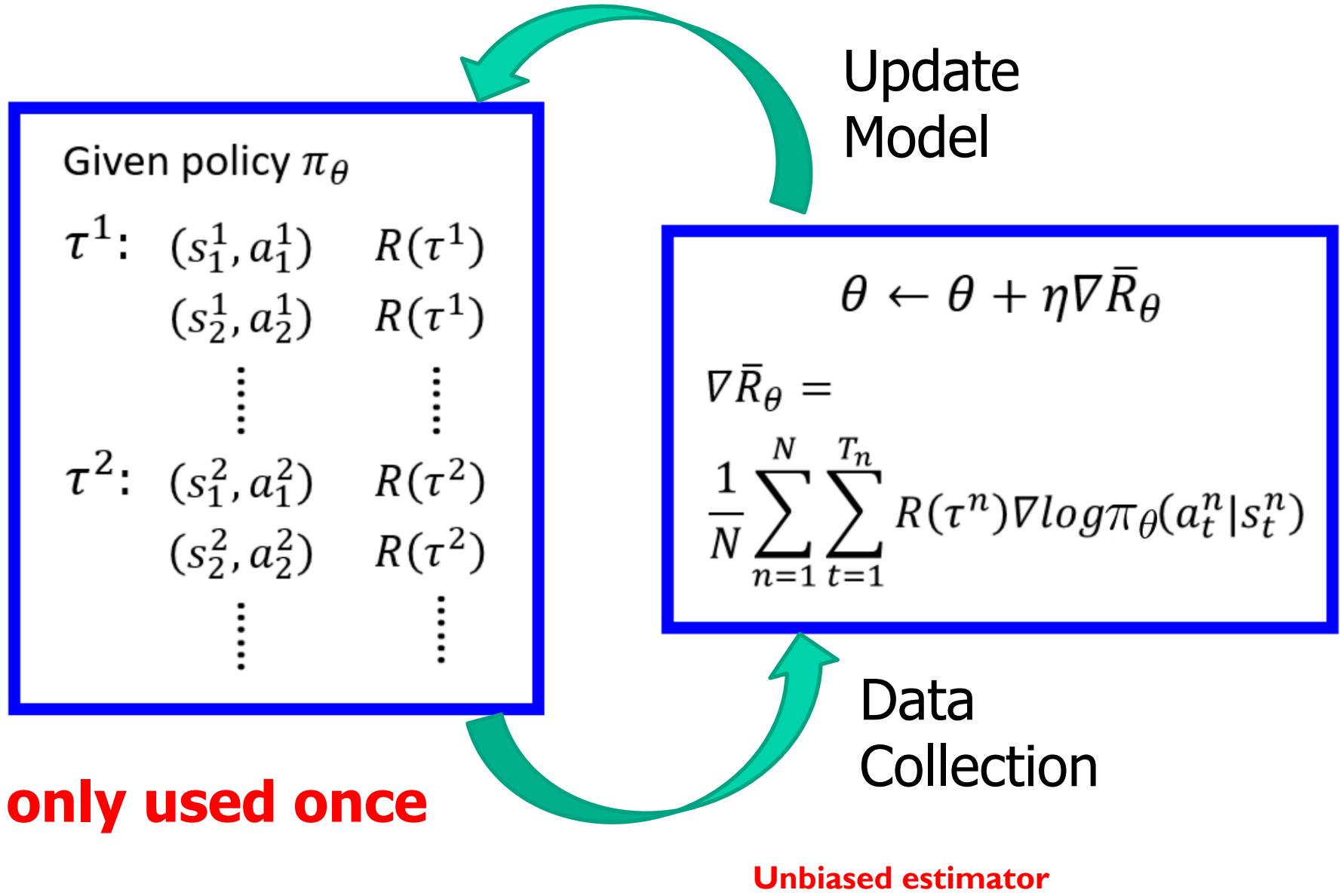


# Actor, Environment, Reward



$$\nabla \bar{R}_\theta = E_{\tau \sim p_\theta(\tau)}[R(\tau) \nabla \log p_\theta(\tau)]$$

# Basic Policy Gradient Algorithm



# From basic PG algorithm to...

- ❖ Issues with the basic PG algorithm
  - TIP 1. Inaccurate update when non-negative rewards
    - Add baseline:
  - TIP 2. Large variance
    - Assign suitable credits
    - REINFORCE and Vanilla Policy Gradient
  - TIP 3. Slow, due to the un-reusable data collection process
    - Use importance sampling to reuse data when training:  
PPO, TRPO, PPO2

# Monte-Carlo Policy Gradient (REINFORCE)

TIP #2: Assign Suitable Credit by using returns

- Leverages likelihood ratio / score function and temporal structure

$$\Delta\theta_t = \eta \nabla_\theta \log \pi_\theta(s_t, a_t) G_t \quad (7)$$

## **REINFORCE:**

Initialize policy parameters  $\theta$  arbitrarily

**for** each episode  $\{s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_\theta$  **do**

**for**  $t = 1$  to  $T - 1$  **do**

$\theta \leftarrow \theta + \eta \nabla_\theta \log \pi_\theta(s_t, a_t) G_t$

**endfor**

**endfor**

**return**  $\theta$

# "Vanilla" Policy Gradient Algorithm

Using both TIP #1 & #2

The simplest way to implement it is using average return of a state  $s_t$ :  $b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \dots + r_{T-1}]$

Initialize policy parameter  $\theta$ , baseline  $b$

**for** iteration=1, 2,  $\dots$  **do**

    Collect a set of trajectories by executing the current policy  $\pi_\theta$

    At each timestep in each trajectory, compute

        the *return*  $R_t = \sum_{t'=t}^{T-1} r_{t'}$ , and

        the *advantage estimate*  $\hat{A}_t = R_t - b(s_t)$ .

    Re-fit the baseline, by minimizing  $\|b(s_t) - R_t\|^2$ ,  
        summed over all trajectories and timesteps.

    Update the policy, using a policy gradient estimate  $\hat{g}$ ,

        which is a sum of terms  $\nabla_\theta \log \pi(a_t | s_t, \theta) \hat{A}_t$ .

        (Plug  $\hat{g}$  into SGD or ADAM)

**endfor**

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} (G_t^n - b) \nabla \log \pi_\theta(a_t^n | s_t^n)$$

# This Lecture

- ❖ Policy Gradient
  - Intro and Stochastic Policy
  - Basic Policy Gradient Algorithm
  - REINFORCE and Vanilla Policy Gradient
  - PPO, TRPO, PPO2
- ❖ Actor-Critic methods
  - A2C
  - A3C
  - Pathwise Derivative Policy Gradient
- ❖ Generative Adversarial Networks (GAN)
- ❖ Deep Inverse Reinforcement Learning

# TIP #3: Importance Sampling + Constraints

- TIP 3. Slow, due to the un-reusable data collection process
  - Relook at
    - Basic PG,
    - REINFORCE PG
    - Vanilla PG

# From on-policy to off-policy

Using the experience more than once

?

# On-policy v.s. Off-policy

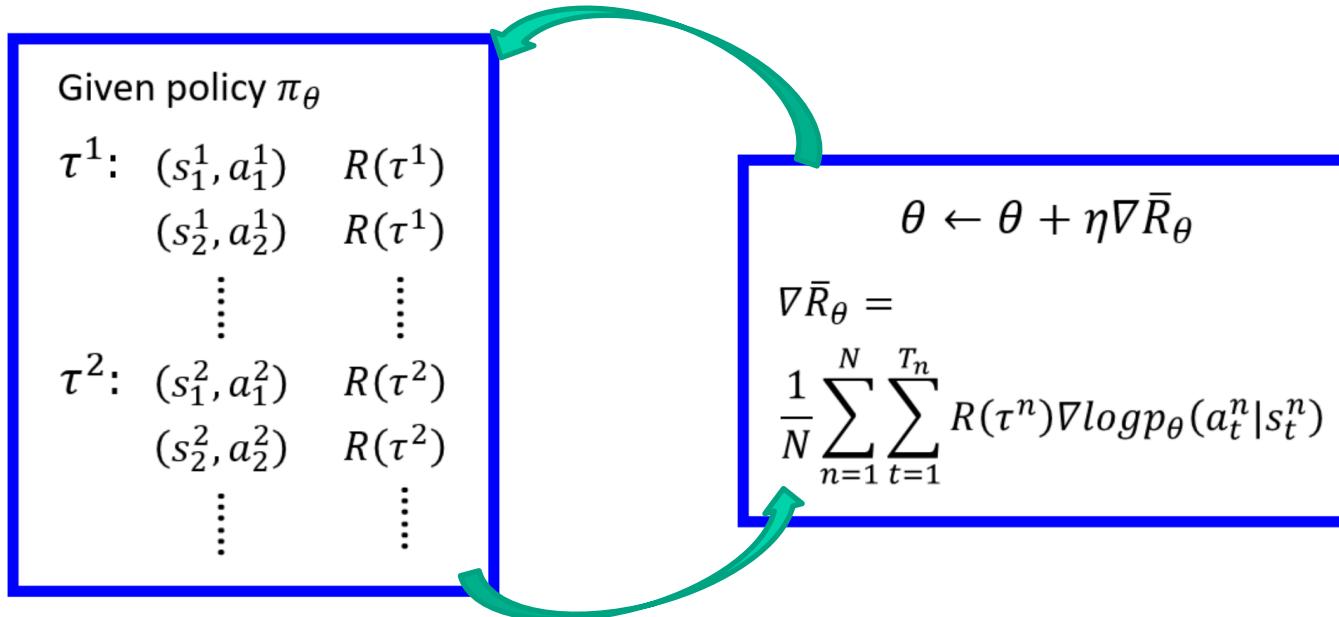
- ❖ On-policy: The agent learned and the agent interacting with the environment is the same.
- ❖ Off-policy: The agent learned and the agent interacting with the environment is different.



# On-policy $\rightarrow$ Off-policy

$$\nabla \bar{R}_\theta = E_{\tau \sim p_\theta(\tau)} [R(\tau) \nabla \log p_\theta(\tau)]$$

- Use  $\pi_\theta$  to collect data. When  $\theta$  is updated, we have to sample training data again.
- Goal: Using the sample from  $\pi_{\theta'}$  to train  $\theta$ .  $\theta'$  is fixed, so we can re-use the sample data.



Hope to use the data to update  $\theta$  multiple times before collecting new data.

# On-policy $\rightarrow$ Off-policy

$$\nabla \bar{R}_\theta = E_{\tau \sim p_\theta(\tau)} [R(\tau) \nabla \log p_\theta(\tau)]$$

- Use  $\pi_\theta$  to collect data. When  $\theta$  is updated, we have to sample training data again.
- Goal: Using the sample from  $\pi_{\theta'}$  to train  $\theta$ .  $\theta'$  is fixed, so we can re-use the sample data.

---

## Importance Sampling

$$E_{x \sim p} [f(x)] \approx \frac{1}{N} \sum_{i=1}^N f(x^i)$$

$x^i$  is sampled from  $p(x)$

We only have  $x^i$  sampled from  $q(x)$

# On-policy $\rightarrow$ Off-policy

$$\nabla \bar{R}_\theta = E_{\tau \sim p_\theta(\tau)}[R(\tau) \nabla \log p_\theta(\tau)]$$

- Use  $\pi_\theta$  to collect data. When  $\theta$  is updated, we have to sample training data again.
- Goal: Using the sample from  $\pi_{\theta'}$  to train  $\theta$ .  $\theta'$  is fixed, so we can re-use the sample data.

---

## ***Importance Sampling***

$$E_{x \sim p}[f(x)] \approx \frac{1}{N} \sum_{i=1}^N f(x^i)$$

$x^i$  is sampled from  $p(x)$

We only have  $x^i$  sampled from  $q(x)$

$$= \int f(x)p(x)dx = \int f(x) \frac{p(x)}{q(x)} q(x)dx = E_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

Importance weight

?

# Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

$$\text{Var}_{x \sim p}[f(x)] = \text{Var}_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

$$VAR[X]$$

$$= E[X^2] - (E[X])^2$$

# Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

$$\text{Var}_{x \sim p}[f(x)] = \text{Var}_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

$$VAR[X]$$

$$= E[X^2] - (E[X])^2$$

$$\text{Var}_{x \sim p}[f(x)] = E_{x \sim p}[f(x)^2] - (E_{x \sim p}[f(x)])^2$$

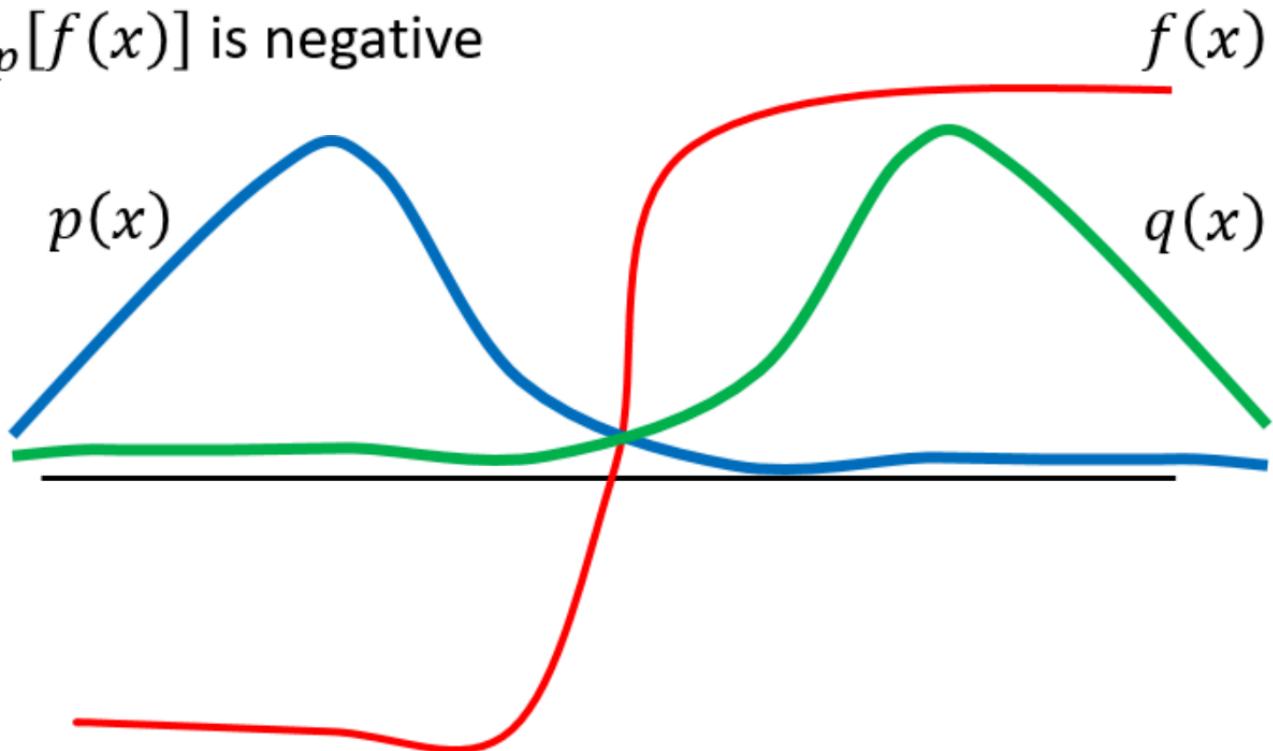
$$\text{Var}_{x \sim q}[f(x) \frac{p(x)}{q(x)}] = E_{x \sim q} \left[ \left( f(x) \frac{p(x)}{q(x)} \right)^2 \right] - \left( E_{x \sim q} \left[ f(x) \frac{p(x)}{q(x)} \right] \right)^2$$

$$= E_{x \sim p} \left[ f(x)^2 \frac{p(x)}{q(x)} \right] - (E_{x \sim p}[f(x)])^2$$

# Issue of Importance Sampling

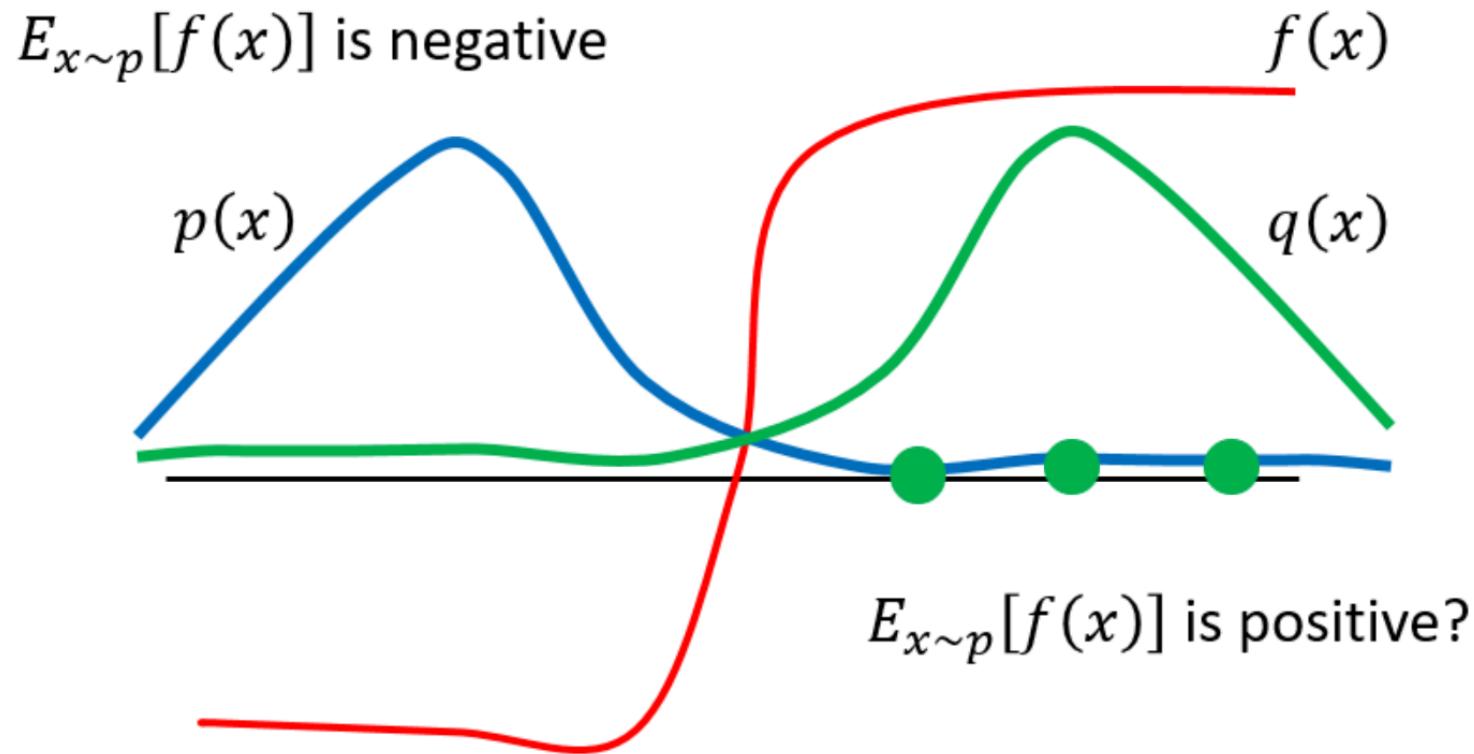
$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

$E_{x \sim p}[f(x)]$  is negative



# Issue of Importance Sampling

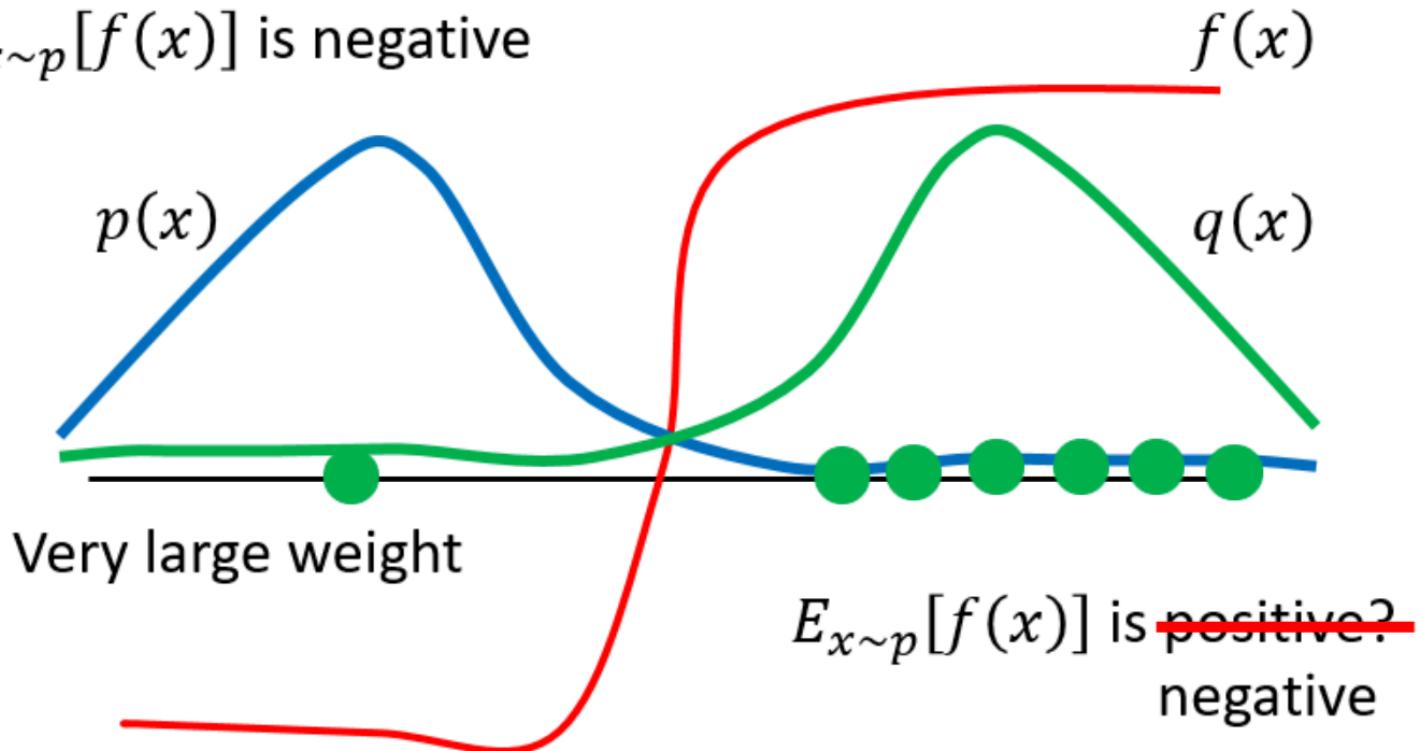
$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$



# Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

$E_{x \sim p}[f(x)]$  is negative



# On-policy $\rightarrow$ Off-policy

$$\nabla \bar{R}_\theta = E_{\tau \sim p_\theta(\tau)} [R(\tau) \nabla \log p_\theta(\tau)]$$

- Use  $\pi_\theta$  to collect data. When  $\theta$  is updated, we have to sample training data again.
- Goal: Using the sample from  $\pi_{\theta'}$  to train  $\theta$ .  $\theta'$  is fixed, so we can re-use the sample data.

$$\nabla \bar{R}_\theta = E_{\tau \sim p_{\theta'}(\tau)} \left[ \frac{p_\theta(\tau)}{p_{\theta'}(\tau)} R(\tau) \nabla \log p_\theta(\tau) \right] \quad \textcolor{red}{\textbf{Basic PG}}$$

- Sample the data from  $\theta'$ .
- Use the data to train  $\theta$  many times.

---

**Importance Sampling**

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x) \frac{p(x)}{q(x)}]$$

# On-policy $\rightarrow$ Off-policy

Gradient for update

$$\nabla f(x) = f(x) \nabla \log f(x)$$

$$= E_{(s_t, a_t) \sim \pi_\theta} [A^\theta(s_t, a_t) \nabla \log \pi_\theta(a_t^n | s_t^n)]$$

$$= E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{P_\theta(s_t, a_t)}{P_{\theta'}(s_t, a_t)} A^\theta(s_t, a_t) \nabla \log \pi_\theta(a_t^n | s_t^n) \right]$$

# On-policy $\rightarrow$ Off-policy

Gradient for update

$$\nabla f(x) = f(x) \nabla \log f(x)$$

$$= E_{(s_t, a_t) \sim \pi_\theta} [A^\theta(s_t, a_t) \nabla \log \pi_\theta(a_t^n | s_t^n)]$$

$$A^{\theta'}(s_t, a_t)$$

This term is from  
sampled data.

$$= E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{P_\theta(s_t, a_t)}{P_{\theta'}(s_t, a_t)} A^\theta(s_t, a_t) \nabla \log \pi_\theta(a_t^n | s_t^n) \right]$$

?

# On-policy $\rightarrow$ Off-policy

Gradient for update

$$\nabla f(x) = f(x) \nabla \log f(x)$$

$$= E_{(s_t, a_t) \sim \pi_\theta} [A^\theta(s_t, a_t) \nabla \log p_\theta(a_t^n | s_t^n)]$$

$$A^{\theta'}(s_t, a_t)$$

This term is from sampled data.

$$= E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{P_\theta(s_t, a_t)}{P_{\theta'}(s_t, a_t)} \cancel{A^\theta(s_t, a_t)} \nabla \log \pi_\theta(a_t^n | s_t^n) \right]$$

$$= E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} \frac{p_\theta(s_t)}{p_{\theta'}(s_t)} A^\theta(s_t, a_t) \nabla \log \pi_\theta(a_t^n | s_t^n) \right]$$

?

# On-policy $\rightarrow$ Off-policy

Gradient for update

$$\nabla f(x) = f(x) \nabla \log f(x)$$

$$= E_{(s_t, a_t) \sim \pi_\theta} [A^\theta(s_t, a_t) \nabla \log p_\theta(a_t^n | s_t^n)]$$

$$A^{\theta'}(s_t, a_t)$$

This term is from sampled data.

$$= E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{P_\theta(s_t, a_t)}{P_{\theta'}(s_t, a_t)} \cancel{A^\theta(s_t, a_t)} \nabla \log \pi_\theta(a_t^n | s_t^n) \right]$$

$$= E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} \cancel{\frac{p_\theta(s_t)}{p_{\theta'}(s_t)}} A^\theta(s_t, a_t) \nabla \log \pi_\theta(a_t^n | s_t^n) \right]$$

$$J^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right] \text{ When to stop?}$$

# Add Constraints

RL — The Math behind TRPO & PPO

[https://medium.com/@jonathan\\_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33](https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33)

TRPO paper:

<https://arxiv.org/pdf/1502.05477.pdf>

PPO paper:

<https://arxiv.org/pdf/1707.06347.pdf>

# PPO / TRPO

## **Proximal Policy Optimization (PPO)**

$$J_{PPO}^{\theta'}(\theta) = J^{\theta'}(\theta) - \beta KL(\theta, \theta')$$

$$\nabla f(x) = f(x) \nabla \log f(x)$$

$$J^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$

# PPO / TRPO

$\theta$  cannot be very different from  $\theta'$

Constraint on behavior not parameters

## Proximal Policy Optimization (PPO)

(2017)

$$J_{PPO}^{\theta'}(\theta) = J^{\theta'}(\theta) - \beta KL(\theta, \theta')$$

$$\nabla f(x) = f(x) \nabla \log f(x)$$

$$J^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$

---

## TRPO (Trust Region Policy Optimization) (2015)

$$J_{TRPO}^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[ \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$

$$KL(\theta, \theta') < \delta$$

# PPO algorithm

- Initial policy parameters  $\theta^0$
- In each iteration
  - Using  $\theta^k$  to interact with the environment to collect  $\{s_t, a_t\}$  and compute advantage  $A^{\theta^k}(s_t, a_t)$
  - Find  $\theta$  optimizing  $J_{PPO}(\theta)$

$$J^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)} A^{\theta^k}(s_t, a_t)$$

$$J_{PPO}^{\theta^k}(\theta) = J^{\theta^k}(\theta) - \beta KL(\theta, \theta^k)$$

Update parameters  
several times

- If  $KL(\theta, \theta^k) > KL_{max}$ , increase  $\beta$
- If  $KL(\theta, \theta^k) < KL_{min}$ , decrease  $\beta$

Adaptive  
KL Penalty

## **PPO algorithm**

$$J_{PPO}^{\theta^k}(\theta) = J^{\theta^k}(\theta) - \beta KL(\theta, \theta^k)$$

$$J^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)} A^{\theta^k}(s_t, a_t)$$

## **PPO2 algorithm**

$$J_{PPO2}^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \min \left( \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)} A^{\theta^k}(s_t, a_t), \right. \\ \left. clip \left( \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)}, 1 - \varepsilon, 1 + \varepsilon \right) A^{\theta^k}(s_t, a_t) \right)$$

## PPO algorithm

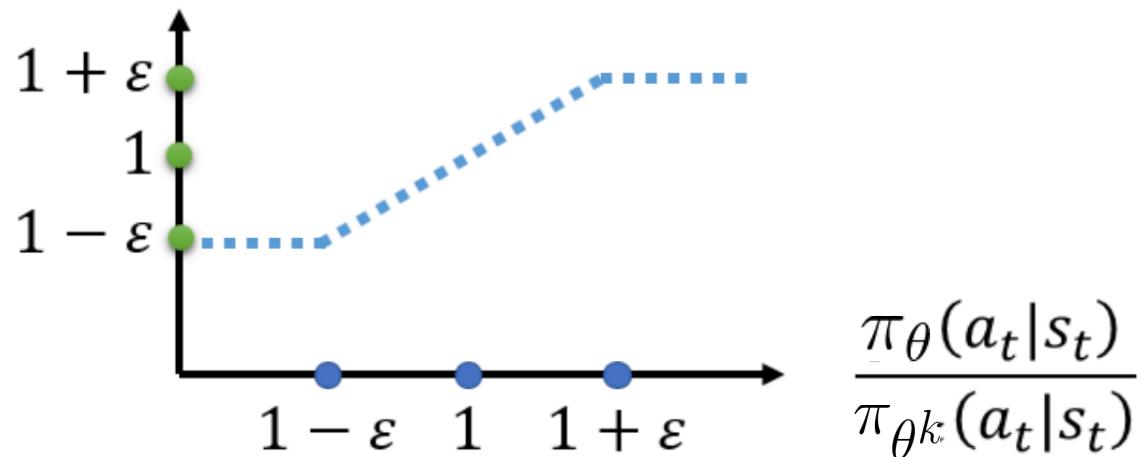
$$J_{PPO}^{\theta^k}(\theta) = J^{\theta^k}(\theta) - \beta KL(\theta, \theta^k)$$

$$J^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)} A^{\theta^k}(s_t, a_t)$$

## PPO2 algorithm

$$J_{PPO2}^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)}$$

$$clip\left(\frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)}, 1 - \varepsilon, 1 + \varepsilon\right) A^{\theta^k}(s_t, a_t)$$



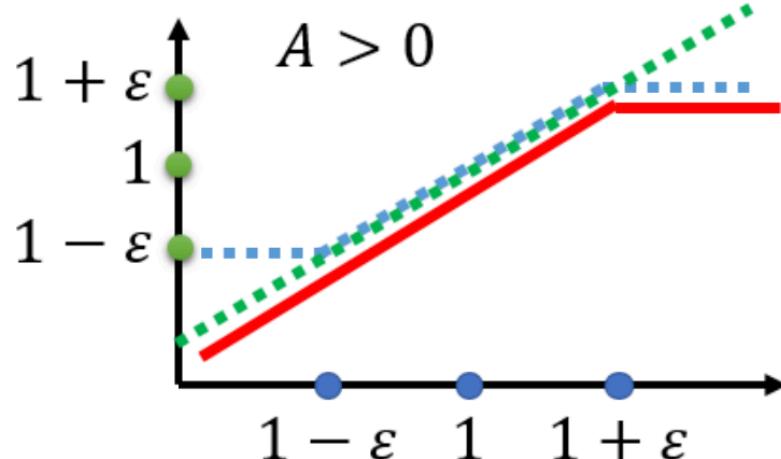
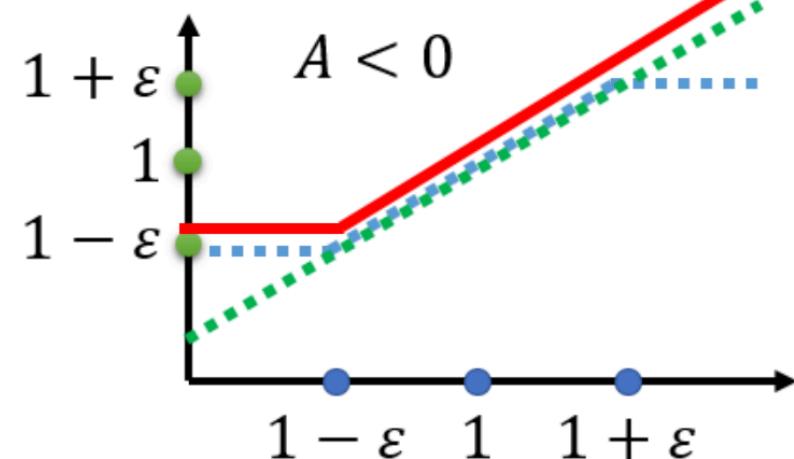
## **PPO algorithm**

$$J_{PPO}^{\theta^k}(\theta) = J^{\theta^k}(\theta) - \beta KL(\theta, \theta^k)$$

$$J^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)} A^{\theta^k}(s_t, a_t)$$

## **PPO2 algorithm**

$$J_{PPO2}^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \min \left( \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)} A^{\theta^k}(s_t, a_t), \text{clip} \left( \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^k}(a_t | s_t)}, 1 - \varepsilon, 1 + \varepsilon \right) A^{\theta^k}(s_t, a_t) \right)$$



# Experimental Results

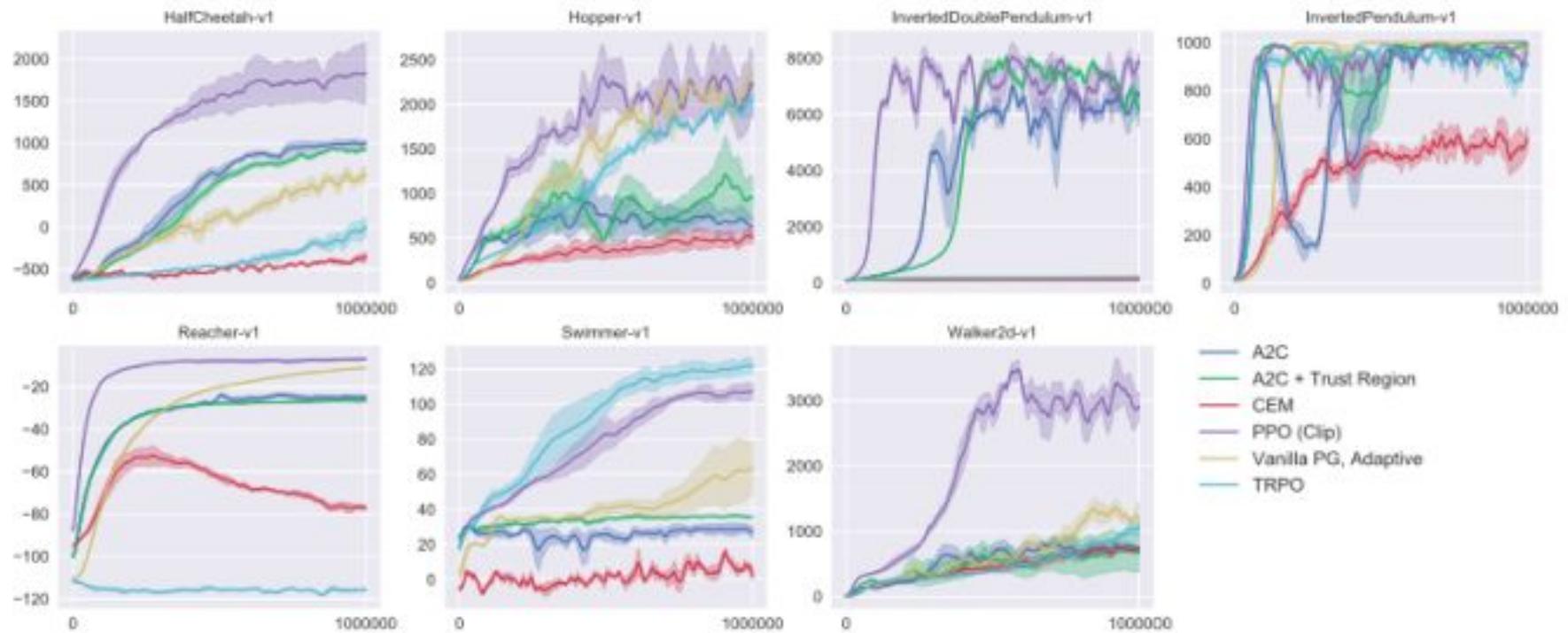


Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.

# This Lecture

- ❖ Policy Gradient
  - Intro and Stochastic Policy
  - Basic Policy Gradient Algorithm
  - REINFORCE and Vanilla Policy Gradient
  - PPO, TRPO, PPO2
- ❖ Actor-Critic methods
  - A2C
  - A3C
  - Pathwise Derivative Policy Gradient
- ❖ Generative Adversarial Networks (GAN)
- ❖ Deep Inverse Reinforcement Learning

# Review – Policy Gradient

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \left( \underbrace{\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n}_{G_t^n} - \text{baseline} \right) \nabla \log p_\theta(a_t^n | s_t^n)$$

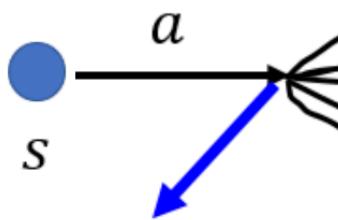
$G_t^n$  : obtained via interaction  
**Very unstable**

# Review – Policy Gradient

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \left( \frac{\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - b}{G_t^n} \right) \nabla \log p_\theta(a_t^n | s_t^n)$$

*baseline*  
 $G_t^n$  : obtained via interaction  
**Very unstable**

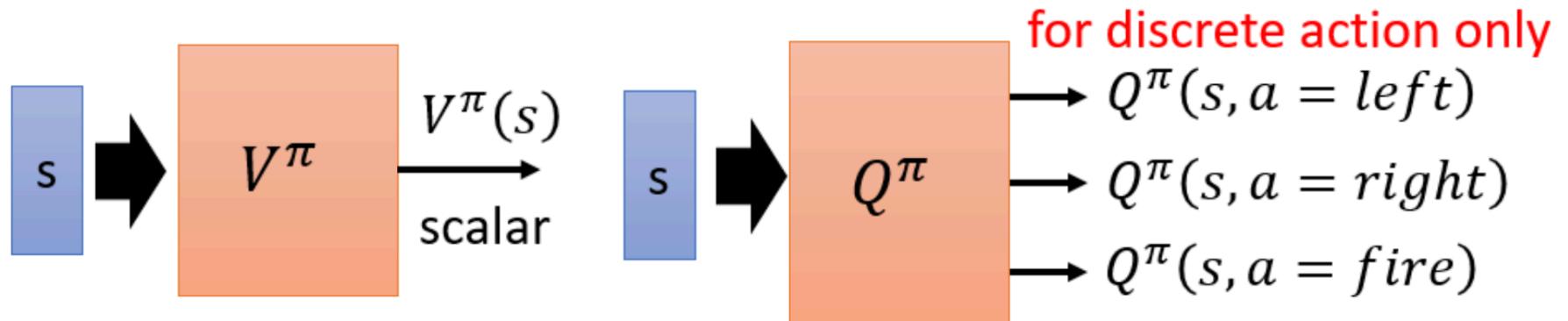
With sufficient samples,  
approximate the expectation of G.

  
Can we estimate the  
expected value of G?

$G = 100$   
 $G = 3$   
 $G = 1$   
 $G = 2$   
 $G = -10$

# Review – Q-Learning

- State value function  $V^\pi(s)$ 
  - When using actor  $\pi$ , the *cumulated* reward expects to be obtained after visiting state  $s$
- State-action value function  $Q^\pi(s, a)$ 
  - When using actor  $\pi$ , the *cumulated* reward expects to be obtained after taking  $a$  at state  $s$



Estimated by TD or MC

# Actor-Critic

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \left( \underbrace{\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b}}_{G_t^n : \text{obtained via interaction}} \right) \nabla \log p_\theta(a_t^n | s_t^n)$$

baseline

# Actor-Critic

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \left( \underbrace{\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b}}_{G_t^n : \text{ obtained via interaction}} \right) \nabla \log p_\theta(a_t^n | s_t^n)$$

baseline

$\downarrow$

$$E[G_t^n] = Q^{\pi_\theta}(s_t^n, a_t^n)$$

# Actor-Critic

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \left( \underbrace{\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - \underline{b}}_{G_t^n : \text{ obtained via interaction}} \right) \nabla \log p_\theta(a_t^n | s_t^n)$$

$V^{\pi_\theta}(s_t^n)$   
baseline  
↓  
 $E[G_t^n] = Q^{\pi_\theta}(s_t^n, a_t^n)$

# Actor-Critic

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \left( \sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - b \right) \nabla \log p_\theta(a_t^n | s_t^n)$$

Diagram illustrating the Actor-Critic update rule:

- The target value  $Q^{\pi_\theta}(s_t^n, a_t^n) - V^{\pi_\theta}(s_t^n)$  is highlighted in orange.
- The value function  $V^{\pi_\theta}(s_t^n)$  is highlighted in blue.
- The term  $\left( \sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - b \right)$  is highlighted in red and labeled "baseline".
- The term  $\nabla \log p_\theta(a_t^n | s_t^n)$  is highlighted in blue.
- The term  $G_t^n$  is labeled "obtained via interaction" and is highlighted in blue.
- The final equation is  $E[G_t^n] = Q^{\pi_\theta}(s_t^n, a_t^n)$ .

# Advantage Actor-Critic

$$Q^\pi(s_t^n, a_t^n) - V^\pi(s_t^n)$$

Estimate two networks? We can only estimate one.

# Advantage Actor-Critic

$$Q^\pi(s_t^n, a_t^n) - V^\pi(s_t^n)$$



$$r_t^n + V^\pi(s_{t+1}^n) - V^\pi(s_t^n)$$

Estimate two networks? We can only estimate one.

Only estimate state value  
A little bit variance

$$Q^\pi(s_t^n, a_t^n) = E[r_t^n + V^\pi(s_{t+1}^n)]$$

$$Q^\pi(s_t^n, a_t^n) = r_t^n + V^\pi(s_{t+1}^n)$$

# Advantage Actor-Critic

(A2C algorithm)

$\pi$  interacts with the environment

$\pi = \pi'$

Policy Gradient

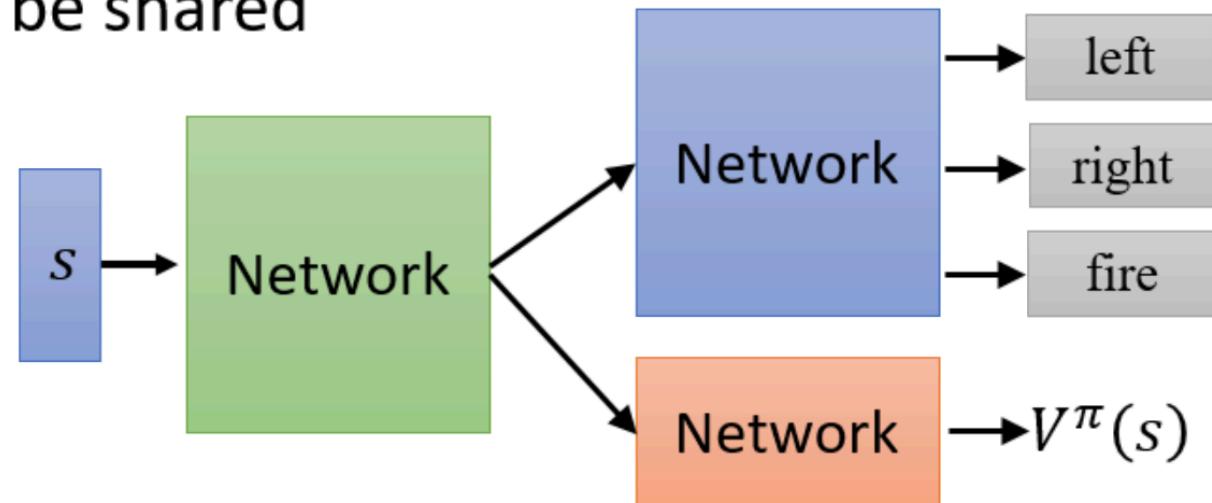
Update actor from  $\pi \rightarrow \pi'$  based on  $V^\pi(s)$

Learning  $V^\pi(s)$

$$\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} (r_t^n + V^\pi(s_{t+1}^n) - V^\pi(s_t^n)) \nabla \log p_\theta(a_t^n | s_t^n)$$

# Advantage Actor-Critic

- Tips
  - The parameters of actor  $\pi(s)$  and critic  $V^\pi(s)$  can be shared



- Use output entropy as regularization for  $\pi(s)$ 
  - Larger entropy is preferred  $\rightarrow$  exploration

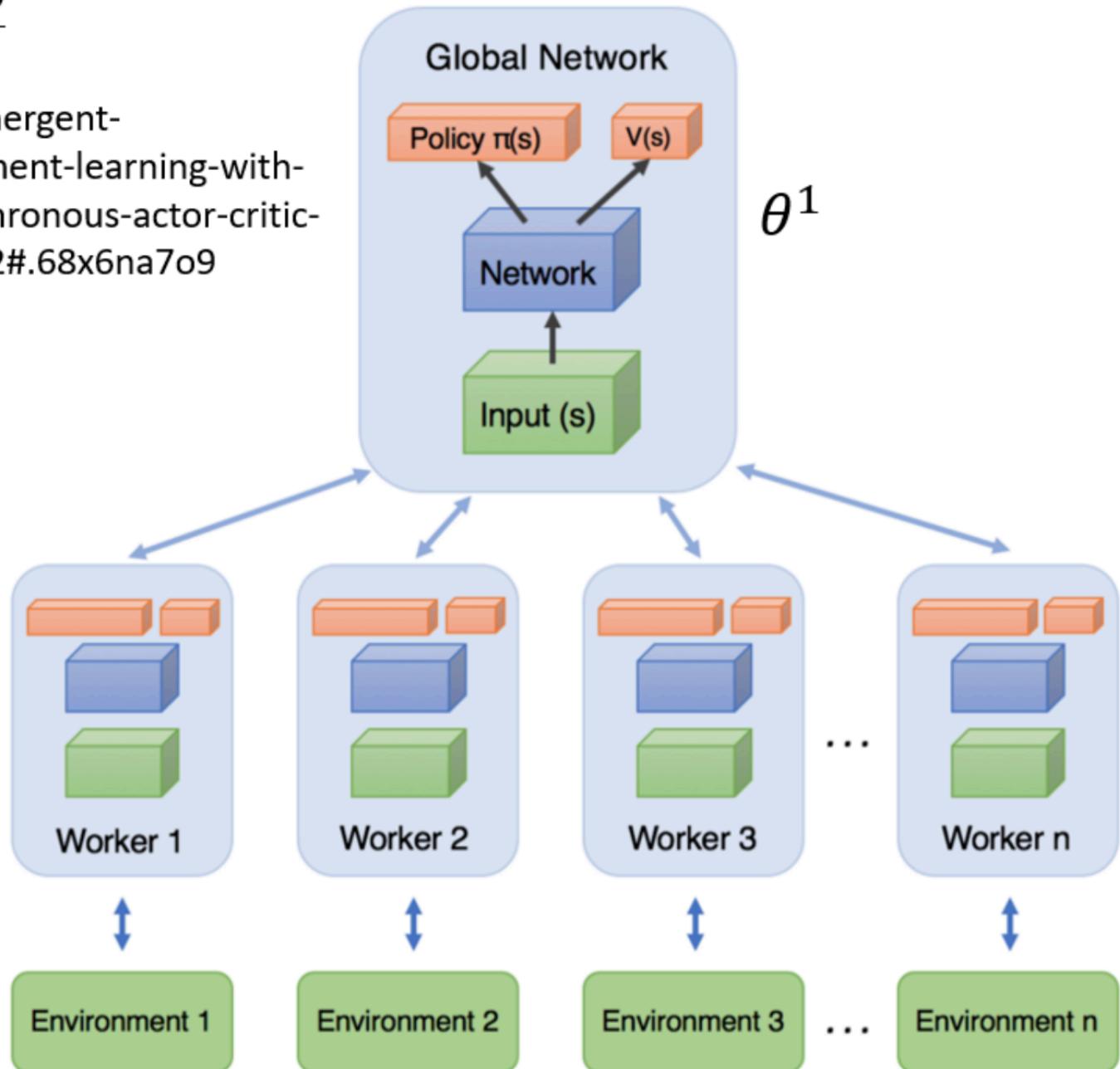
# Asynchronous Advantage Actor-Critic (A3C)



# Asynchronous

Source of image:

<https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-async-actor-critic-agents-a3c-c88f72a5e9f2#.68x6na7o9>

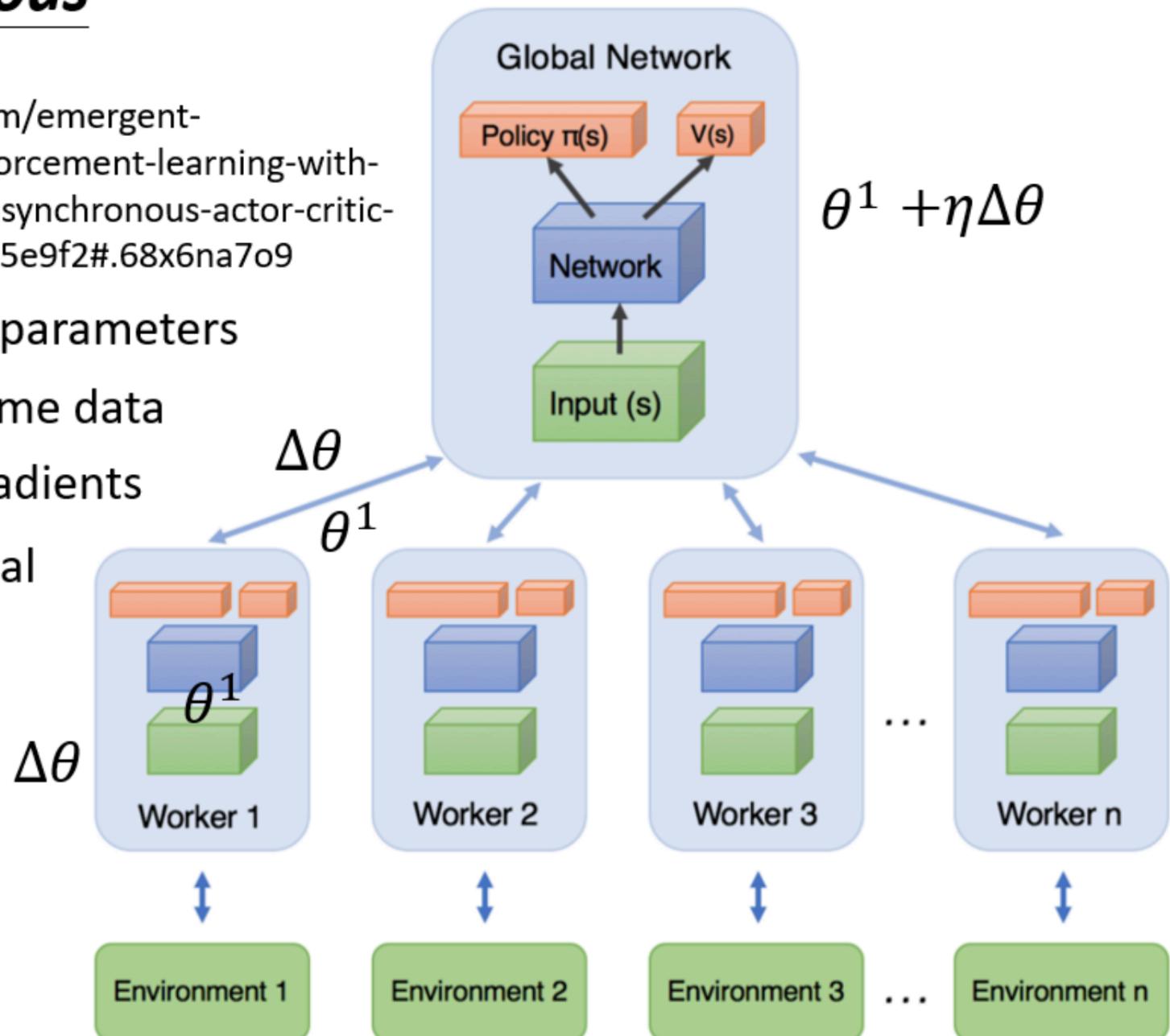


# Asynchronous

Source of image:

<https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-async-actor-critic-agents-a3c-c88f72a5e9f2#.68x6na7o9>

1. Copy global parameters
2. Sampling some data
3. Compute gradients
4. Update global models

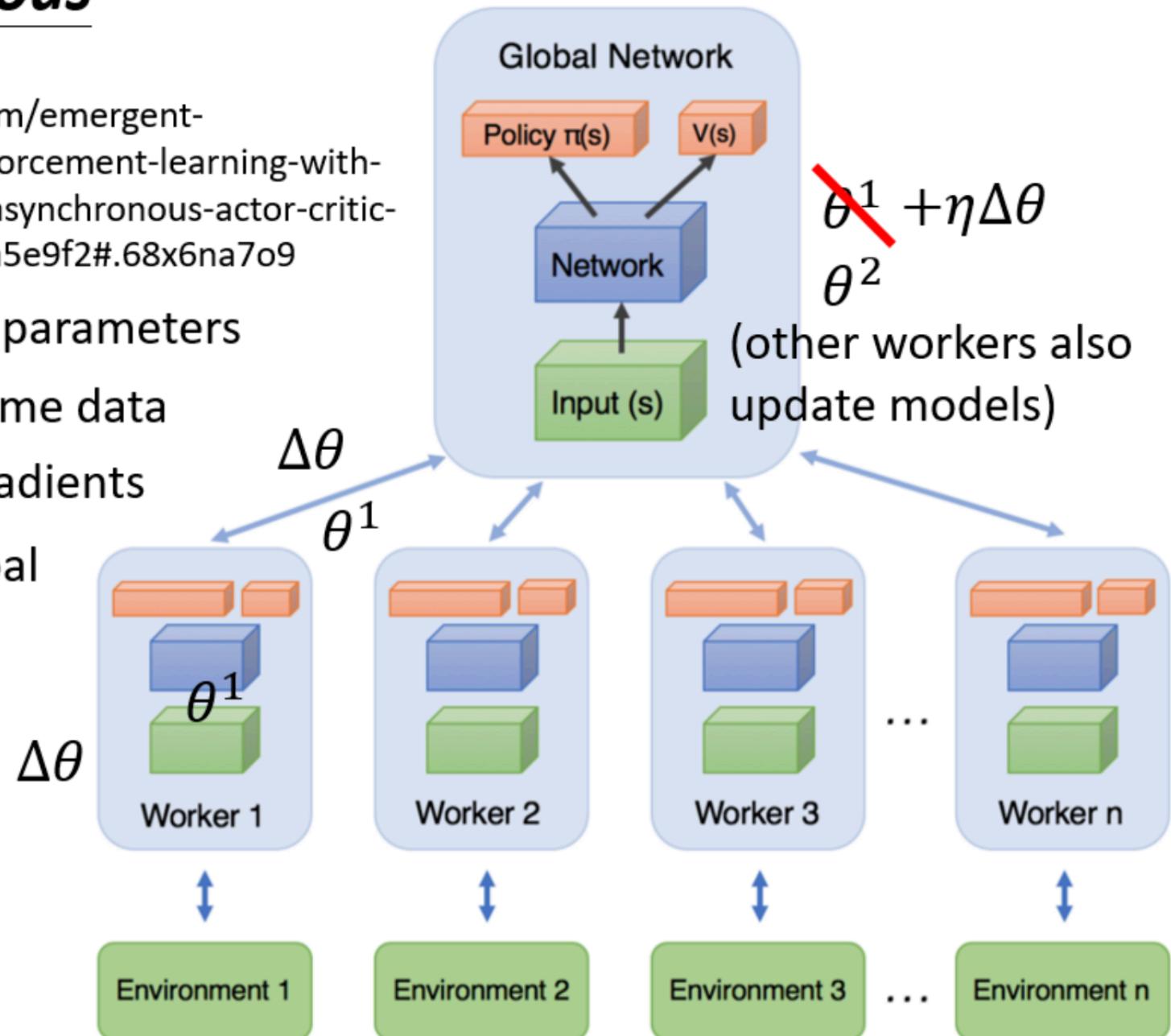


# Asynchronous

Source of image:

<https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-async-actor-critic-agents-a3c-c88f72a5e9f2#.68x6na7o9>

1. Copy global parameters
2. Sampling some data
3. Compute gradients
4. Update global models



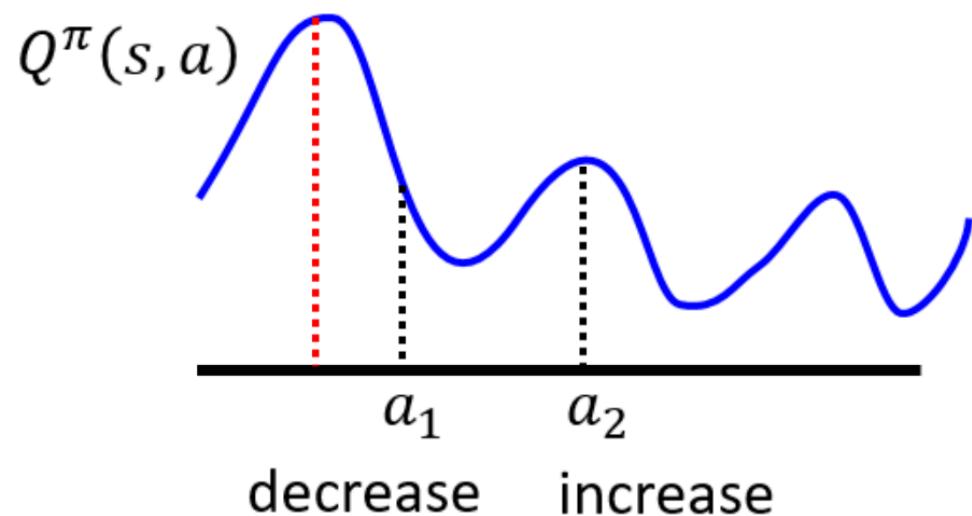
# Pathwise Derivative Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degrif, Daan Wierstra, Martin Riedmiller,  
"Deterministic Policy Gradient Algorithms", ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,  
Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, "CONTINUOUS CONTROL WITH DEEP  
REINFORCEMENT LEARNING", ICLR, 2016

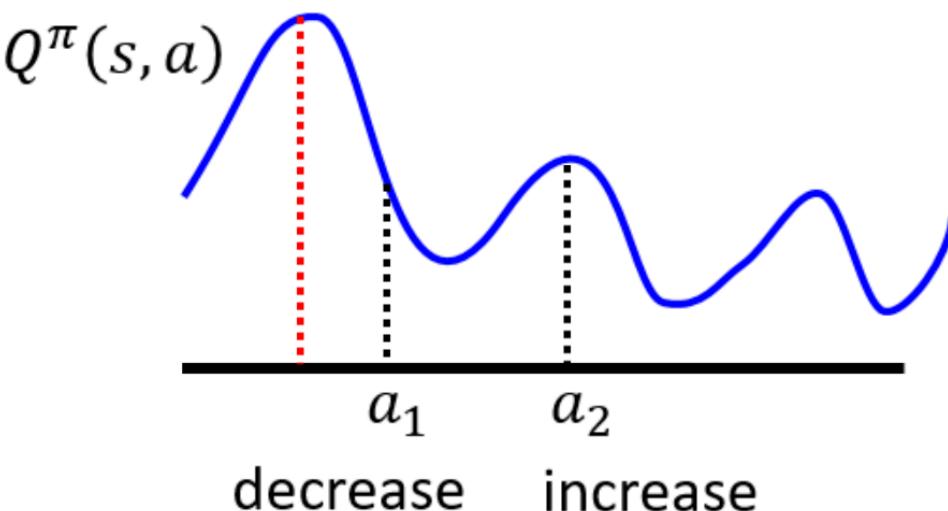
# Another Way to use Critic

**Original Actor-critic**



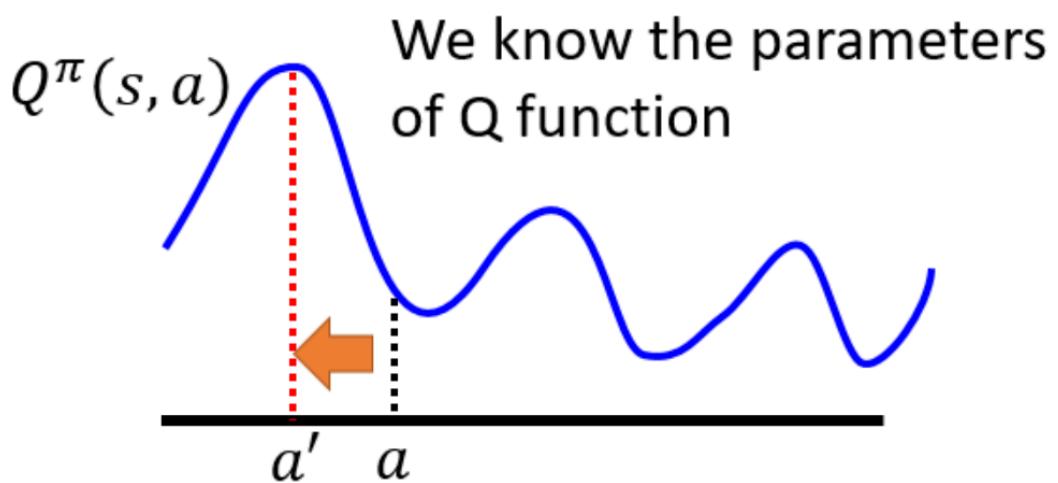
# Another Way to use Critic

## Original Actor-critic



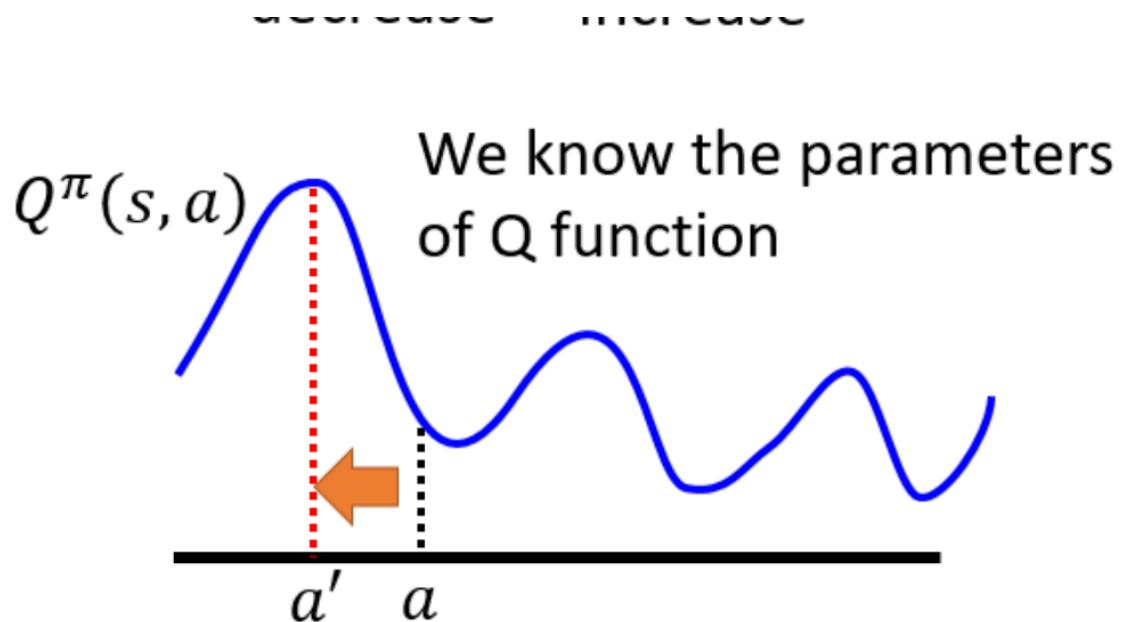
## Pathwise derivative policy gradient

From Q function we know that taking  $a'$  at state  $s$  is better than  $a$



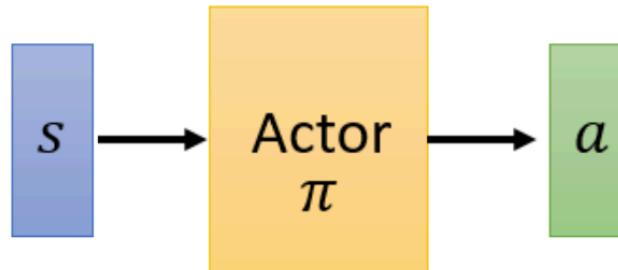
## Pathwise derivative policy gradient

From Q function we know that taking  $a'$  at state  $s$  is better than  $a$



Action  $a$  is a *continuous vector*

$$a = \arg \max_a Q(s, a)$$



Actor as the solver of this optimization problem

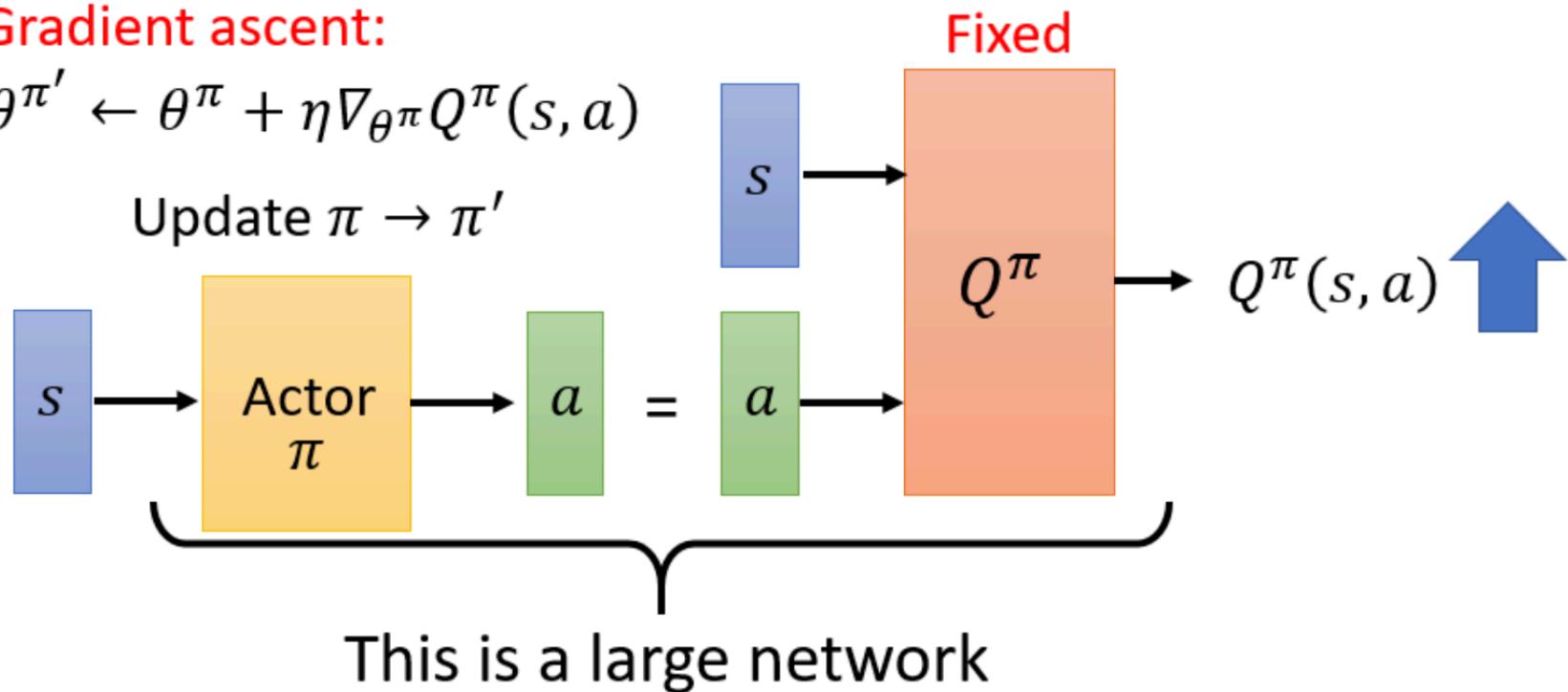
# Pathwise Derivative Policy Gradient

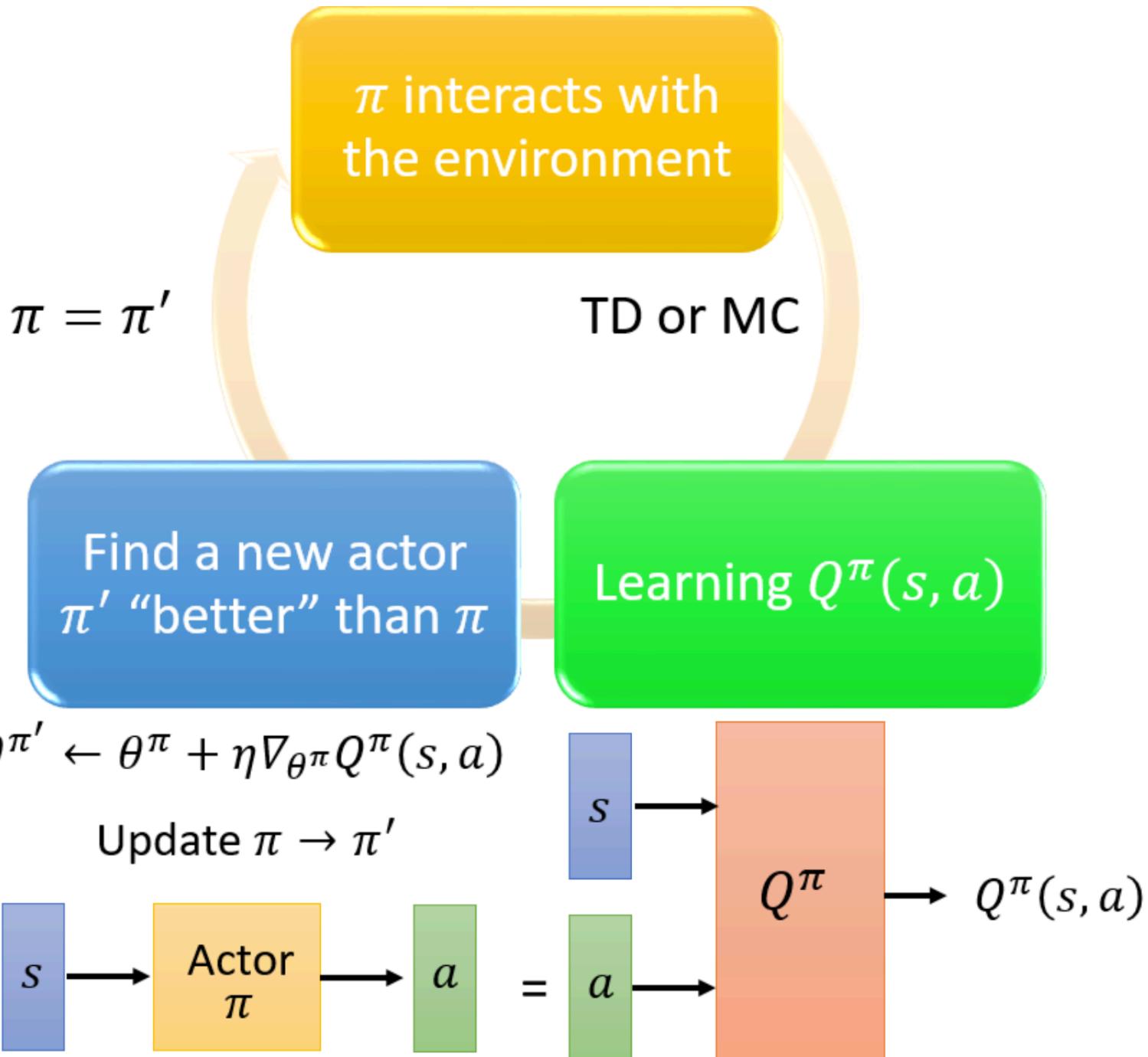
$$\pi'(s) = \arg \max_a Q^\pi(s, a) \quad \text{a is the output of an actor}$$

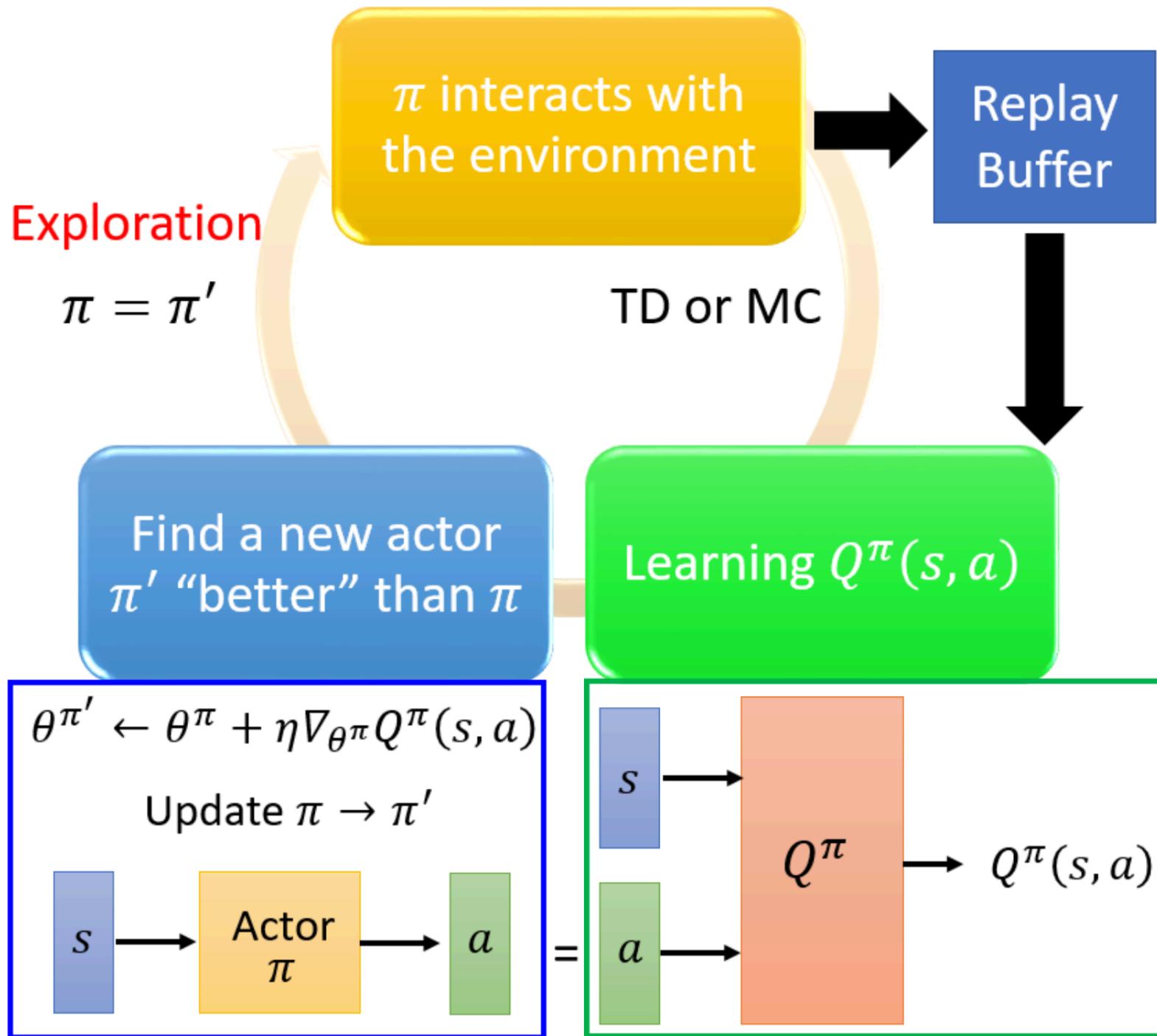
Gradient ascent:

$$\theta^{\pi'} \leftarrow \theta^\pi + \eta \nabla_{\theta^\pi} Q^\pi(s, a)$$

Update  $\pi \rightarrow \pi'$







## *Q-Learning Algorithm*

- Initialize Q-function  $Q$ , target Q-function  $\hat{Q} = Q$
- In each episode
  - For each time step  $t$ 
    - Given state  $s_t$ , take action  $a_t$  based on  $Q$  (exploration)
    - Obtain reward  $r_t$ , and reach new state  $s_{t+1}$
    - Store  $(s_t, a_t, r_t, s_{t+1})$  into buffer
    - Sample  $(s_i, a_i, r_i, s_{i+1})$  from buffer (usually a batch)
    - Target  $y = r_i + \max_a \hat{Q}(s_{i+1}, a)$
    - Update the parameters of  $Q$  to make  $Q(s_i, a_i)$  close to  $y$  (regression)
  - Every  $C$  steps reset  $\hat{Q} = Q$

## *Q-Learning Algorithm* $\rightarrow$ *Pathwise Derivative Policy Gradient*

- Initialize Q-function  $Q$ , target Q-function  $\hat{Q} = Q$ , actor  $\pi$ , target actor  $\hat{\pi} = \pi$   
*Replaced  $\varepsilon$ -greedy policy with  $\pi$  network.*
- In each episode
  - For each time step  $t$ 
    - 1 • Given state  $s_t$ , take action  $a_t$  based on  $Q$   $\pi$  (exploration)
      - Obtain reward  $r_t$ , and reach new state  $s_{t+1}$
      - Store  $(s_t, a_t, r_t, s_{t+1})$  into buffer
      - Sample  $(s_i, a_i, r_i, s_{i+1})$  from buffer (usually a batch)
    - 2 • Target  $y = r_i + \max_a \hat{Q}(s_{i+1}, a) \hat{Q}(s_{i+1}, \hat{\pi}(s_{i+1}))$ 
      - Update the parameters of  $Q$  to make  $Q(s_i, a_i)$  close to  $y$  (regression)
    - 3 • Update the parameters of  $\pi$  to maximize  $Q(s_i, \pi(s_i))$ 
      - Every C steps reset  $\hat{Q} = Q$
    - 4 • Every C steps reset  $\hat{\pi} = \pi$

# Connection with GAN

| Method                   | GANs | AC  |
|--------------------------|------|-----|
| Freezing learning        | yes  | yes |
| Label smoothing          | yes  | no  |
| Historical averaging     | yes  | no  |
| Minibatch discrimination | yes  | no  |
| Batch normalization      | yes  | yes |
| Target networks          | n/a  | yes |
| Replay buffers           | no   | yes |
| Entropy regularization   | no   | yes |
| Compatibility            | no   | yes |

David Pfau, Oriol Vinyals, “Connecting Generative Adversarial Networks and Actor-Critic Methods”, arXiv preprint, 2016

# Next Lecture

-12. Week 12 (11/7 R): (Prof Li is on a travel, and invited PhD student speakers will give research work presentations)

*Topic: RL and IRL Applications:* Research work presentations from PhD students from Prof Li's group, by Menghai Pan and Xin Zhang.

*Work #1.* [SDM'19] **Menghai Pan**, Yanhua Li, Xun Zhou, Zhenming Liu, Rui Song, Hui Lu, Jun Luo, Dissecting the Learning Curve of Taxi Drivers: A Data-Driven Approach. SIAM International Conference on Data Mining, (SDM'19 Best Applied Data Science Paper Award!) ([Paper PDF](#)).

*Work #2.* [ICDM'19] **Xin Zhang**, Yanhua Li, Xun Zhou, Jun Luo, Unveiling Taxi Drivers' Strategies via cGAIL -- Conditional Generative Adversarial Imitation Learning, IEEE International Conference on Data Mining ([Paper PDF](#)).

*Work #3.* A work under double-blind review by **Xin Zhang**.

# The Lecture after next week

- ❖ Advanced deep reinforcement learning approaches
  - Sparse Reward Problems/Techniques
  - Generative Adversarial Networks (GANs) Review
  - Deep Inverse reinforcement learning
    - Entropy based IRL
    - GAN (Generative adversarial networks)
    - GAIL (Generative adversarial imitation learning)

|                 | Reinforcement Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inverse Reinforcement Learning                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single Agent    | <p><b>Tabular representation of reward</b></p> <p><i>Model-based control</i><br/><i>Model-free control</i><br/>(MC, SARSA, Q-Learning)</p> <p><b>Function representation of reward</b></p> <ol style="list-style-type: none"> <li>1. <i>Linear value function approx</i><br/>(MC, SARSA, Q-Learning)</li> <li>2. <i>Value function approximation</i><br/>(Deep Q-Learning, Double DQN, prioritized DQN, Dueling DQN)</li> <li>3. <i>Policy function approximation</i><br/>(Policy gradient, PPO, TRPO)</li> <li>4. Actor-Critic methods (A2C, A3C, Pathwise Derivative PG)</li> </ol> <p><b>Review of Deep Learning</b></p> <p><i>As bases for non-linear function approximation (used in 2-4).</i></p> | <p><b>Linear reward function learning</b></p> <p>Imitation learning<br/>Apprenticeship learning<br/>Inverse reinforcement learning<br/>MaxEnt IRL<br/>MaxCausalEnt IRL<br/>MaxRelEnt IRL</p> <p><b>Non-linear reward function learning</b></p> <p>Generative adversarial imitation learning (GAIL)<br/><br/>Adversarial inverse reinforcement learning (AIRL)</p> <p><b>Review of Generative Adversarial nets</b></p> <p>As bases for non-linear IRL</p> |
| Multiple Agents | <p><b>Multi-Agent Reinforcement Learning</b></p> <p>Multi-agent Actor-Critic<br/>etc.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <p><b>Multi-Agent Inverse Reinforcement Learning</b></p> <p>MA-GAIL<br/>MA-AIRL<br/>AMA-GAIL</p>                                                                                                                                                                                                                                                                                                                                                         |

***Applications***

# Questions?