Welcome to

DS595/CS525

Reinforcement Learning
Prof. Yanhua Li

Time: 6:00pm —8:50pm R
Location: FL PH Lower
Fall 2019



Quiz 5 Today

% 20 minutes on Policy Gradient (PG)



No Quiz Next Week




Class arrangement

https://users.wpi.edu/~yli15/courses/DS595CS525Fall19/Schedule.html

-12. Week 12 (11/7 R): (Prof Li is on a travel, and invited PhD student
speakers will give research work presentations)

Topic: RL and IRL Applications: Research work presentations from PhD
students from Prof Li's group, by Menghai Pan and Xin Zhang.

Work #1. [SDM'19] Menghai Pan, Yanhua Li, Xun Zhou, Zhenming Liu, Rui
Song, Hui Lu, Jun Luo, Dissecting the Learning Curve of Taxi Drivers: A
Data-Driven Approach. SIAM International Conference on Data Mining,
(SDM'19 Best Applied Data Science Paper Award!) (Paper PDF)

Work #2. [ICDM'19] Xin Zhang, Yanhua Li, Xun Zhou, Jun Luo, Unveiling
Taxi Drivers’ Strategies via cGAIL -- Conditional Generative Adversarial
Imitation Learning, IEEE International Conference on Data Mining (Paper
PDF).

Work #3. A work under double-blind review by Xin Zhang.




Project 3 is available
Due 10/17 Thursday
10 bonus points and a leader board

<+ https://users.wpi.edu/~ylil 5/courses/
DS595CS525Fall19/Assignments.html

< https://github.com/huiminren/DS595CS525-
RL-HW/tree/master/project3



Leader board (as of 5:30PM today)

Leaderboard for Breakout-DQN Update Date: 10/31/2019 17:30

Top

Date

10/31/2019

10/22/2019

10/18/2019

10/28/2019

10/26/2019

10/24/2019

10/20/2019

Name

Mohamed Mahdi
Alouane

Prathyush SP

Prathyush SP

Sapan Agrawal
Vamshi Krishna
Uppununthala

Shreesha Narasimha
Murthy

Sinan Morcel

Score

329.46

142.77

81.07

91.34

79.5

56.79

53.26

Note

Double DQN with 1e-6 learning rate trained for
100K episodes

Conv Network and Priority Buffer trained for 50k
episodes

Simple DQN with Conv Based Architecture for 60k
episodes

Architecture described in the DQN paper for 120k
episodes

Dueling DQN for 50k episodes

Simple DQN with MSE for 40k episodes

Plain DQN with TA's parameters



Project 4 is available
Starts 10/17 Thursday
Due 12/12 Thursday mid-night

« Important Dates

% Project Proposal: Thursday Today

% Project Progress: Thursday | 1/14/2019
+ Final Project: Thursday 12/12/2019



Project 4 Team Assignment

10 teams

Team assignment can be updated by this
weekend.

Proposal is due today
Some sampled cool ideas from you.

1. Real world robot planning
2. Mojuco environment agent training
3. Multi-agent RL

4. Sparse reward problem, etc.



Last Lecture

+ Imitation Learning / Inverse Reinforcement Learning

* Inverse reinforcement learning
* Model-Based, Linear Reward Functions (this time)

+ Policy Gradient

* Intro and Stochastic Policy

» Basic Policy Gradient Algorithm
» Vanilla Policy Gradient

» PPO, TRPO, PPO2



This Lecture

+ Policy Gradient

» PPO, TRPO, PPO2

« Actor-Critic methods

= A2C
= A3C
» Pathwise Derivative Policy Gradient



Reinforcement
Learning

Inverse
Reinforcement Learning

Single Agent

Tabular representation of reward
Model-based control
Model-free control
(MC, SARSA, Q-Learning)

Function representation of reward
1. Linear value function approx
(MC, SARSA, Q-Learning)
2. Value function approximation

Linear reward function learning
Imitation learning
Apprenticeship learning
Inverse reinforcement learning
MaxEnt IRL
MaxCausalEnt IRL
MaxRelEnt IRL

(Deep Q-Learning, Double DON,
prioritized DQN, Dueling DON)
3. Policy function approximation
(Policy gradient, PPO, TRPO)

4. Actor-Critic methods (A2C,
A3C, Pathwise Derivative PG)

Non-linear reward function learning
Generative adversarial
imitation learning (GAIL)

Adversarial inverse reinforcement
learning (AIRL)

Review of Deep Learning
As bases for non-linear function
approximation (used in 2-4).

Review of Generative Adversarial nets
As bases for non-linear IRL

Multiple
Agents

Multi-Agent Reinforcement Learning
Multi-agent Actor-Critic
etc.

Multi-Agent Inverse Reinforcement
Learning

MA-GAIL

MA-AIRL

AMA-GAIL



This Lecture

+ Policy Gradient (Review Quickly)

» PPO, TRPO, PPO2

« Actor-Critic methods

= A2C
= A3C
» Pathwise Derivative Policy Gradient

| don’t have candies for you today, but algorithms©



Value-Based and Policy-Based RL

Model-Free RL:
Explicit: Value function and/or policy function
No model

@ Value Based
e Learnt Value Function

o Implicit policy (e.g. Value Function  Palicy
e-greedy)
@ Policy Based Value-Based é‘r::t?; Policy-Based

e No Value Function
e Learnt Policy

@ Actor-Critic

e Learnt Value Function
e Learnt Policy




Policy of Actor

% Policy 7T is a network with parameter & — ¢

" Input: the observation of machine represented
as a vector or a matrix

= Output: each action corresponds to a neuron

in output layer
P 4 Take the
action based
. on the

o
» left (.7 | probability.
* ’ > right (.2 . Score of an
action
: » fire 0.1
pixels )




Actor, Environment, Reward
S a, S5 a,
¥ ¥

' } g
Sy a; S a, a;

\ |
r)

Optimization r,

Problem | !

Expected Reward (Objective to maximize' l T
t=

RG = Z R(T)pG (t) = ET"’PO(T) [R(‘[)] R(7) =

1

1



VEG — Er~p9(r) [R (7) Viogpe (T)]

Basic Policy Gradient Algorithm

Update
Given policy g

™ (s},al) R@Y)
(sz,a3)  R(@Y)

9<—9+7’]‘7E9

12 (s2,a?) R(t?)
(s2,a2) R(?)

R(x™)Vlogme(a|st)

Collection
only used once

Unbiased estimator



From basic PG algorithm to---

+ Issues with the basic PG algorithm

= TIP 1. Inaccurate update when non-negative
rewards

» Add baseline:
= TIP 2. Large variance
« Assign suitable credits
« REINFORCE and Vanilla Policy Gradient

= TIP 3. Slow, due to the un-reusable data collection
process

« Use importance sampling to reuse data when training:
PPO, TRPO, PPO2



Monte-Carlo Policy Gradient (REINFORCE)

TIP #2: Assign Suitable Credit by using returns

@ Leverages likelihood ratio / score function and temporal structure

Af: =TV g log mo(st, at) Gt

(7)

REINFORCE:
Initialize policy parameters 6 arbitrarily
for each episode {s1,a1,r, -+ ,sT_1,a7_1,r7} ~ 7 do

fort=1to T —1do
0 < 0+ T1Vglogmy(st,ar)Ge
endfor
endfor
return ¢




"Vanilla” Policy Gradient Algorithm

Using both TIP #1 & #2  The simplest way to implement it , ,
is using average return of a state s;: b(s;) ~ E[ry + re1 + - + rr—1]
i\

Initialize policy parameter 6, baseline b

for iteration=1,2,--- do
Collect a set of trajectories by executing the current policy 7Tg
At each timestep in each trajectory, compute

[the return Ry = tT,;i ry, and
the advantage estimate Ay = Ry — b(s¢).

Re-fit the baseline, by minimizing ||b(s:) — R:||?,
summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate g,
which is a sum of terms V log 7(a¢|st, 0)A:.
I: (Plug g into SGD or ADAM)
endfor

\4

1 N T,
NZ Z Gy —b)Vlogmg(ai'|si)
n=1t=1



This Lecture

+ Policy Gradient

» PPO, TRPO, PPO2

« Actor-Critic methods

= A2C
= A3C
» Pathwise Derivative Policy Gradient

+» Generative Adversarial Networks (GAN)
+ Deep Inverse Reinforcement Learning



TIP #3: Importance Sampling
+ Constraints

= TIP 3. Slow, due to the un-reusable data collection
process

* Relook at
— Basic PG,
— REINFORCE PG
— Vanilla PG



From on-policy
to off-policy

Using the experience more than once



On-policy v.s. Off-policy

% On-policy: The agent learned and the agent
interacting with the environment is the
same.

% Off-policy: The agent learned and the agent

interacting with the environment is
different.




On-policy = Off-policy

VRg = Ervpyx)[R(T)VIogpg (7))
* Use 1y to collect data. When 6 is updated, we have
to sample training data again.
* Goal: Using the sample from my/ to train 6. 8 is
fixed, so we can re-use the sample data.

Given policy g
: (si,ad)

0 « 6 +nVRy

VRQ -

: (sf,ad) o -
2 2) =) > R@Vlogpg(afist)
2072 n=1t=1

Hope to use the data to update 8 multiple times before collecting new data.




On-policy = Off-policy

VRg = Evvpy@)[R(1)V0I0gpg (7)]
* Use 1y to collect data. When 6 is updated, we have

to sample training data again.
* Goal: Using the sample from 1y to train 6. 8" is
fixed, so we can re-use the sample data.

Importance Sampling x* is sampled from p(x)

Explf(x)] = z f(x We only have x! sampled
from g (x)



On-policy = Off-policy

VRg = Ez~pym)[R(x)VIogpe (v)]
* Use 1y to collect data. When 6 is updated, we have

to sample training data again.
* Goal: Using the sample from w4/ to train 8. 8’ is
fixed, so we can re-use the sample data.

Importance Sampling ¥t is sampled from p(x)
N .
Explf (x)] = :I%ﬁ(qpﬁ- We only have x' sampled
1=1 from g(x)
p(x)

= [ rewaax = [ ro B awar = Eellr e

Importance weight



Issue of Importance Sampling

- p(x)
Ex-plf (0] = Ex-qlf () 5] VAR[X]
p(x) = E[X?] — (E[X])?

vVaryp [f (x)] Varyqlf (x)——= (%)



Issue of Importance Sampling

p(x)
Exp[f ()] = Exqlf(x)——= 70 VAR[X]
p(x) = E[X?] — (E[X])?

Vary.p [f (x)] Varyq [f (x)——= 7(x)

Alx~p [f(X)] x~p f(.X') (Ex~p f(X)])

p(x)
( xX~q !f(x) (x) )

— Ex~p f(x)z - (Ex~p[f(x)])2

Varx~q[f<x>”8] Bevg (f(@"ﬁx%)




Issue of Importance Sampling

p(x)
q(x)

E.p[f (x)]is negative f(x)

p(x) / q(x)

_J

Ex-p [f ()] = Ex~q [f (x) —=]




Issue of Importance Sampling

p(x)
q(x)

Eyplf (x)] is negative f(x)

p(x) K a(0)

\/ Eyplf (x)]is positive?

Ex-p [f ()] = Ex-q [f (x) —=]




Issue of Importance Sampling

p(x)
q(x)

Eyplf (x)] is negative f(x)

p(x) ////"7 q(x)

Very large weight
Eyplf (x)] is positive-
negative

Ex-p [f ()] = Eyx-q [f (x) —=]




On-policy = Off-policy

VRg = Ezpy(x)[R(1)V00ogpg(7)]
* Use 1y to collect data. When 6 is updated, we have

to sample training data again.
* Goal: Using the sample from my/ to train 6. 8" is
fixed, so we can re-use the sample data.

e (1)
per (1)
« Sample the data from 8".

* Use the data to train & many times.

VRg = Evp (o) R(t)Vlogpe(7) Basic PG

Importance p(x)
sampling Ex~p[f(x)] = x~q[f(x) 7(x)




On-policy = Off-policy
Gradient for update ’Vf(x) = f(x)Vlogf(x)}
— E(st,at)~n9 [AG(SD at)WOQf’Te(a?lS?)]

Pgo(s¢, ar)

A%(s;, a)Vlogmo(al|sh)
P (s, ) tr At gre(ar|si)]

= E(st,at)~n61 [



On-policy = Off-policy
Gradient for update ‘Vf(x) = f(x)Vlogf(x)‘

= E(spapn~mg [A° (¢, a)Viogmg(af|st)]
This term is from
(St» ac) - sampled data.

P 2 (St; at)
= E(s,ay~r,| Aesmerd) V10 g o (al|sT)]

' "Pgr(s¢, ag)




On-policy = Off-policy
Gradient for update lVf(x) = f(x)Vlogf(x)‘

- E(st,at)~n9 [Aa(st' at)Vlogp9 (a?lsn)]
- This term is from
(St' a) sampled data.

Pe (S¢, ag)
= E(sa-m, | Aldesprep) Viogmo(at|st)]

0" "Pgr(S¢, at)

mo(ac|se) po(se)
Tor(a|se) per(se)

A® (s, ap)Viogme(ar'|st)]

(St,at)~7t91 [



On-policy = Off-policy
Gradient for update ’Vf(x) = f(x)Vlogf(x)‘

= E(s,.a)~mg [AG (se,al)Vlogpe(ar|si)]
o This term is from
A7 (s, ar) - sampled data.

P 2 (St» at)
= E(s,ayon | A Vio g g(al|sP)]

0" "Pgr(S¢, ar)

mo(aclse) Pe(st)
= E(St at)~11' [ — 2%149 (St' at)Vlogﬂg(aﬁls,?)]

To(ag|se)

Wﬂ(atlst) 9
‘W@/(atlst)

J9(8) = E(s,a)~n

o (S, at)l When to stop?



Add Constraints

RL — The Math behind TRPO & PPO

TRPO paper:
https://arxiv.org/pdf/1502.05477.pdf

PPO paper:
https://arxiv.org/pdf/1707.06347.pdf



PPO / TRPO

Proximal Policy Optimization (PPO)

| | 7f(x) = f(0)Vlogf (x)
Jppo(8) =] (8) — BKL(8,8")

mo(ac|se)
6" | Tpr(ac|se)

—

A9 (s,, a,)

]9 (9) — E(St,at)"'n'




8 cannot be very different from 8’

PPO / TRPO

Constraint on behavior not parameters

: : . (2017)
Proximal Policy Optimization (PPO)

, , Vf(x) =f(x)Viogf (x)
J8po(8) = J%'(8) — BKL(H,6")
mo(ag|se)
779/(at|5t)

]9 (6) = E(st,at)~n

9’

AO’(SD at)]

TRPO (Trust Region Policy Optimization)  (2015)

mo(ag|se)
To/(ag|se)

]?RPO(Q) = E(St,at)"'ﬂgl

Ael(st' at)]

KL(8,0") <&



PPO algorithm

* Initial policy parameters 8°

* In each iteration
« Using 6 to interact with the environment to collect
{s;, a,;} and compute advantage 48" (s¢, ap)
* Find 6 optimizing Jppo (6)

gk gk .\ Update parameters
Jppo(8) =] (9)_BKL(9'9 ) several times

 If KL(Q, 9") > KL,,q, iNncrease 8 Adaptive
* If KL(6,0%) < KL,yin, decrease B | | KL Penalty




PPO algorithm

J8p0(8) = J¢*(8) — BKL(6,6%)
mo(ac|se)

RO~ ) i3 AT (ua)
PPO2 algorithm Goany 07T
gk _ [ molaclse)  pr
]PPOZ (8) - (;t) min (7'('9/{' (CltlSt) (St, at)
| mo(ae|se) gk
cli (Wek(at|5t) 1—¢1+ 8) A" (s, at)>



PPO algorithm

J8r0(8) = 1" (6) — BKL(6, ek)

o (

PPO2 algorithm

JEpoa®) = )

(s¢,.at) |
clip (
1+ 81 R
1¢
1—c¢ Pennns




PPO algorithm

J8ro(8) = J°" (8) — BKL(8,6)

LT mo(ae|se)
] (9) ~ ‘7-‘-6)]{ (at |St) (Stt at)
PPOZ algorlthm (s¢,at)
_ . ﬂ@(at |St) gk
fppoz (6) =~ (Stzat) min (ng (as|se) (Se,ae),

mo(ae|s
cllp( o(aclse) ,1—3,1+£>A9k(st,at))

Tk (ac|se)




https://arxiv.org/abs/1707.06347

Experimental Results

0 1000200 0 000000 o 1000000

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.



This Lecture

+ Policy Gradient

» PPO, TRPO, PPO2

« Actor-Critic methods

= A2C
= A3C
» Pathwise Derivative Policy Gradient

+» Generative Adversarial Networks (GAN)
+ Deep Inverse Reinforcement Learning



Review — Policy Gradient

baseline

(Zt,_t Ut - b) Viogpe(at'|st’)

G[' : obtained via interaction
Very unstable

Tn_

N
D
N

n=1t=1




Review — Policy Gradient

T baseline

1 1Tn P
(Z‘t,_tyt i - 2) Viogpe (at'|st)

n=1t=1

G[' : obtained via interaction

Very unstable
With sufficient samples,

approximate the expectation of G.

Can we estimate the
expected value of G?




Review — Q-Learning

* State value function V™ (s)
* When using actor m, the cumulated reward expects to
be obtained after visiting state s
* State-action value function Q™ (s, a)

* When using actor i, the cumulated reward expects to
be obtained after taking a at state s
for discrete action only

VT (s) — Q" (s,a = left)
S » e —— S » Q" — Q"(s,a =right)

scalar
— Q" (s,a = fire)

Estimated by TD or MC



Actor-Critic

T, baseline

(Z t"trt'} — b) Viogpg(alt|sl)
t'=t —

G" obtained via interaction

N
0D
N

n=1t=1




Actor-Critic

. N T, baseline
PRy =y > (D - g) 7logpe(afs?)
n=1t=1 L=t

G" obtained via interaction

l

ElG] = Q™0 (st ar)



Actor-Critic

V™o (st)
. N T, baseline
VRy = Z Z (Zt By yt' =t — 2) Vlogpg(at|s)

n=1t=1
: obtained via interaction

|

ElG] = Q™ (st ar)



Actor-Critic

Qro(sP,af) —V™o(sP) V™o (st

G[' : obtained via interaction

l

ElGe] = Q™ (s’ ar)



Advantage Actor-Critic

Estimate two networks? We

(st a®) — VT (s? :
Q ( t t) ( t) can only estimate one.



Advantage Actor-Critic

Estimate two networks? We

(st al) — VT (st :
Q ( t t) ( t) can only estimate one.

4

i+ VT(si1) — V()

Only estimate state value

A little bit variance

Q™ (s, at) = E[r* + V™ (s¢y1)]

Q™ (st ar) =1 + V(sih1)



Advantage Actor-Critic ~ (A2C algorithm)

1T interacts with

the environment Value function
Approximation

T = 11’ TD or MC

Policy Gradient

Update actor from |

m — 1 based on Learning V™ (s)

V7= (s)

N\
. N T,
VRo ~ Z Z(Tt" + V™ (sf41) — VT (s{))Viogpe (af|st)
n=1t=1



Advantage Actor-Critic

* Tips

* The parameters of actor w(s) and critic V™ (s)

can be shared

S — Network

-

Network

AN

Network

—> |eft
— right

—» fire

—V7(s)

* Use output entropy as regularization for w(s)
* Larger entropy is preferred — exploration



Asynchronous
Advantage Actor-Critic

(A3C)




Asynchronous

Source of image: Global Network
https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na709




Asynchronous

Source of image: Global Network

https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na709

01 +nAb

1. Copy global parameters

2. Sampling some data

3. Compute gradients /' / \ \

4. Update global
PAAtegiObAl e =

modes o o o

Worker 1 Worker 3 Worker n

! 1 ! !

AO



Asynchronous

Source of image: Global Network

https://medium.com/emergent-
future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2#.68x6na709

Policy ris) | V(s)

1. Copy global parameters (other workers also

2. Sampling some data update models)

3. Compute gradients

4. Update global - =

models g & o9 o
AG

Worker 1 Worker 2 Worker 3 Worker n

! ! ! !

s s s




Pathwise Derivative Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller,
“Deterministic Policy Gradient Algorithms”, ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, “CONTINUOUS CONTROL WITH DEEP
REINFORCEMENT LEARNING”, ICLR, 2016



Another Way to use Critic

Original Actor-critic

decrease increase



Another Way to use Critic

Original Actor-critic

decrease increase

Pathwise derivative

policy gradient - _ We know the parameters
Q*(s,a)/” of Q function

From Q function we
know that taking a’ at :
state s is better than a <:,



TRTE TR T R TR e e FE TN T S W W N

Pathwise derivative

policy gradient _ We know the parameters
:\ of Qfunction

From Q function we
know that taking a’ at :
state s is better than a <:

Action a is a continuous vector
S — Actor — a

T

a=argmaxQ(s,a)
a

Actor as the solver of this optimization problem



Pathwise Derivative Policy

Gradient

n'(s) = argmax Q™ (s, a) « a is the output of an actor
a

Gradient ascent:
O™ — O™ + nVy=Q" (s, @)

Update T — m’

Fixed

QTl'

~ o

S — Actor — a =
T
) Y

This is a large network



1T interacts with

the environment

TD or MC

Find a new actor

' “better” than T

\

O™ — T + nVerQ™ (s, a)

Update m — 7’

I

Actor

T

Learning Q™ (s, a)

Q" (s, a)



Exploration

T=T1

T interacts with
the environment -

Find a new actor

' “better” than i

N

™ — 9™ + nVerQ™ (s, a)

Updater —» '

I

Actor
T

I

TD or MC

Learning Q™ (s, a)

Q" (s, a)




Q-Learning Algorithm

* |nitialize Q-function Q, target Q-function Q =Q

* In each episode
* For each time step t

* Given state s;, take action a; based on Q
(exploration)

* Obtain reward 1, and reach new state sy,
Store (s¢, a¢, ¢, Sg+1) into buffer
Sample (s;, a;, 17, S;4+1) from buffer (usually a batch)

Target y = r; + max Q(s;41, @)
a

Update the parameters of Q to make Q(s;, a;) close
to y (regression)

Every C steps reset Q = Q



Q-Learning Algorithm wmy Pathwise Derivative Policy Gradient

« Initialize Q-function Q, target Q-function Q = Q, actor 7,
targetactorm =n

. Replaced e-greedy policy with s network.
* In each episode P Jreedy porey

* For each time step t

G * Given state s;, take action a; based on€& T
(exploration)

* Obtain reward 1, and reach new state s, 1
 Store (s¢, ag, ¢, S¢+1) into buffer
* Sample (s;, a;, 17, S;4+1) from buffer (usually a batch)

0 * Targety =1; + mg*é—@s,—.,.—va% Q(si+1,(5141))

* Update the parameters of Q to make Q(s;, a;) close
to y (regression)

e * Update the parameters of m to maximize Q(si,n(si))
* Every C steps reset Q = Q
 Every Cstepsreset =1




Connection with GAN

Method GANs AC
Freezing learning yes yes
Label smoothing yes no

Historical averaging yes no
Minibatch discrimination = yes no
Batch normalization yes yes
Target networks n/a yes
Replay bufters no yes
Entropy regularization no yes
Compatibility no yes

David Pfau, Oriol Vinyals, “Connecting Generative Adversarial

Networks and Actor-Critic Methods”, arXiv preprint, 2016




Next Lecture

-12. Week 12 (11/7 R): (Prof Li is on a travel, and invited PhD student
speakers will give research work presentations)

Topic: RL and IRL Applications: Research work presentations from PhD
students from Prof Li's group, by Menghai Pan and Xin Zhang.

Work #1. [SDM'19] Menghai Pan, Yanhua Li, Xun Zhou, Zhenming Liu, Rui
Song, Hui Lu, Jun Luo, Dissecting the Learning Curve of Taxi Drivers: A
Data-Driven Approach. SIAM International Conference on Data Mining,
(SDM'19 Best Applied Data Science Paper Award!) (Paper PDF)

Work #2. [ICDM'19] Xin Zhang, Yanhua Li, Xun Zhou, Jun Luo, Unveiling
Taxi Drivers’ Strategies via cGAIL -- Conditional Generative Adversarial
Imitation Learning, IEEE International Conference on Data Mining (Paper
PDF).

Work #3. A work under double-blind review by Xin Zhang.




The Lecture after next week

+~ Advanced deep reinforcement learning
approaches

* Sparse Reward Problems/Techniques
* Generative Adversarial Networks (GANs) Review
" Deep Inverse reinforcement learning

* Entropy based IRL

* GAN (Generative adversarial networks)

* GAIL (Generative adversarial imitation learning)



Reinforcement
Learning

Inverse
Reinforcement Learning

Single Agent

Tabular representation of reward
Model-based control
Model-free control
(MC, SARSA, Q-Learning)

Function representation of reward
1. Linear value function approx
(MC, SARSA, Q-Learning)
2. Value function approximation

Linear reward function learning
Imitation learning
Apprenticeship learning
Inverse reinforcement learning
MaxEnt IRL
MaxCausalEnt IRL
MaxRelEnt IRL

(Deep Q-Learning, Double DON,
prioritized DQN, Dueling DON)
3. Policy function approximation
(Policy gradient, PPO, TRPO)

4. Actor-Critic methods (A2C,
A3C, Pathwise Derivative PG)

Non-linear reward function learning
Generative adversarial
imitation learning (GAIL)

Adversarial inverse reinforcement
learning (AIRL)

Review of Deep Learning
As bases for non-linear function
approximation (used in 2-4).

Review of Generative Adversarial nets
As bases for non-linear IRL

Multiple
Agents

Multi-Agent Reinforcement Learning
Multi-agent Actor-Critic
etc.

Multi-Agent Inverse Reinforcement
Learning

MA-GAIL

MA-AIRL

AMA-GAIL



Questions?



