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Abstract—Recently, map services (e.g., Googlemaps) and location-based online social networks (e.g., Foursquare) attract a lot of

attention and businesses.With the increasing popularity of these location-based services, exploring and characterizing points of interests

(PoIs) such as restaurants and hotels onmaps provides valuable information for applications such as start-upmarketing research. Due to

the lack of a direct fully access to PoI databases, it is infeasible to exhaustively search and collect all PoIs within a large area using public

APIs, which usually impose a limit on themaximum query rate. In this paper, we propose samplingmethods to accurately estimate PoI

statistics such as sum and average aggregates from as few queries as possible. Experimental results based on real datasets show that

our methods are efficient, and require six times less queries than state-of-the-art methods to achieve the same accuracy.

Index Terms—Points of interests, sampling, measurement
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1 INTRODUCTION

AGGREGATE statistics (e.g., sum, average, and distribu-
tion) of points of interests (PoIs), e.g., restaurants and

hotels on map services such as Google maps [2] and Four-
square [3], provide valuable information for applications
such as marketing decisionmaking. For example, the knowl-
edge of the PoI rating distribution enables us to evaluate
a particular PoI’s relative service quality ranking. Moreover,
a restaurant start-up can infer food preferences of people in a
geographic area by comparing the popularity of restaurant
PoIs serving different cuisines within the area of interest [4].
Meanwhile, it can also estimate its market size based on PoI
aggregate statistics, such as the number of Foursquare users
checked in PoIs within the area. Similarly, a hotel start-up
can utilize hotel PoIs’ properties such as ratings and reviews
to understand its market and competitors.

To exactly calculate the above aggregate statistics, it
requires to retrieve all PoIs within the area of interest. How-
ever most map service providers do not provide the public
with a direct fully access to their PoI databases, so we can
only rely on public map APIs to explore and collect PoIs.
Moreover, public APIs usually impose limits on the maxi-
mum query rate and the maximum number of PoIs returned
in a response to a query, therefore it is costly to collect PoIs
within a large area. For example, Foursquare map API [5]
returns up to 50 PoIs per query and it allows 500 queries
per hour per account. To collect PoIs within 14 cities in
Foursquare, Li et al. [6] spent almost two months using 40
machines in parallel.

To address the above challenge, sampling is required.
That is, a small fraction of PoIs are sampled and used to cal-
culate PoI statistics. Due to the lack of a direct fully access to
PoI databases, one cannot sample over PoIs in a direct man-
ner, so it is hard to sample PoIs uniformly. The existing
sampling methods [7], [8] have been proved to sample PoIs
with biases. After sampling a fraction of PoIs using these
two methods, one has no guarantees whether the PoI statis-
tics obtained directly are to be trusted. To solve this prob-
lem, Dalvi et al. [7] propose a method to correct the
sampling bias. However the method is costly because it
requires a large number of queries for each sampled PoI
(e.g., on average 55 queries are used in their paper). The
method in [8] samples PoIs with unknown bias, so it is diffi-
cult to remove its sampling bias.

In this work we propose a new method random region
zoom-in (RRZI) to eliminate the estimation bias. The basic
idea behind RRZI is to sample a set of sub-regions from an
area of interest at random and then collect PoIs within sam-
pled regions. However, when we query a sampled sub-
region including a large number of PoIs, an unknown sam-
pling bias is introduced if we only collect PoIs returned.
Otherwise, we need to further divide the sampled sub-
region to exhaustively collect all PoIs within it. It requires a
large number of queries. To solve this problem, we divide
the area of interest into fully accessible sub-regions without
overlapping, where a region is defined as a fully accessible
region if it includes PoIs less than the maximum number of
PoIs returned for a query. Then it is efficient to collect PoIs
within a sampled sub-region, which requires just one query.
To sample a fully accessible region, RRZI works as follows:
From a specified area, RRZI divides the current queried
region into two sub-regions without overlapping, and then
randomly selects a non-empty sub-region as the next region
to query. It repeats this process until it observes a fully
accessible region. We show that RRZI is efficient, and it
requires only a few queries to sample a fully accessible
region. Besides its efficiency, the sampling bias of RRZI
is easy to be corrected, which requires no extra queries in
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comparison with the existing methods [7], [8]. To further
reduce the number of queries, we propose a mix method
RRZI_URS, which first picks a small sub-region from the
area of interest at random and then samples PoIs within the
sub-region using RRZI. Moreover, for map services such as
Google maps providing the total number of PoIs within an
input search region, we propose a method to improve the
accuracy of RRZI by utilizing this meta information. We
perform experiments using a variety of real datasets, and
show that our methods dramatically reduce the number of
queries required to achieve the same estimation accuracy of
state-of-the-art methods.

The rest of the paper is organized as follows. The prob-
lem is formulated in Section 2. Section 3 presents our meth-
ods for sampling PoIs on maps and estimating the
aggregate statistics of PoIs within the area of interest. Per-
formance evaluation and real applications on Foursquare,
Google, and Baidu maps [9] are presented in Sections 4
and 5. Section 6 summarizes related work. Concluding
remarks then follow.

2 BACKGROUND

In this section, we first formulate the problem, and then con-
duct an in-depth analysis of several real datasets to show
the challenges of solving the problem.

2.1 Objectives

Our aim is to estimate aggregate statistics (e.g., sum, aver-
age, and distribution) of PoIs’ attributes. Formally, let A be
the area of interest. Denote by P the set of PoIs within A. For
example, P can be the set of hotels within A. We want to
estimate the following statistics over P.

1) Sum aggregate. For any function f : P! R, where R

is the set of real numbers, the sum aggregate is
defined as fsðPÞ ¼

P
p2P fðpÞ. If fðpÞ is the number of

rooms a hotel p has, then fsðPÞ corresponds to the
total number of hotel rooms within A. If fðpÞ is the
constant function fðpÞ ¼ 1, then fsðPÞ corresponds to
jPj, the number of hotels within A.

2) Average aggregate. For any function f : P! R, the

average aggregate is defined as faðPÞ ¼ 1
jPj
P

p2P fðpÞ.
If fðpÞ is the price per room per night for a hotel p,
then faðPÞ corresponds to the average price for hotels
within A.

3) PoI distribution. Let LðpÞ be the label of a PoI p speci-
fying a certain property of p. For example, LðpÞ can
be the star rating of a hotel p. Denote the range of PoI
labels as fl1; . . . ; lJg. Let u ¼ ðu1; . . . ; uJÞ be the distri-
bution of a set of PoIs, where uj (1 � j � J) is the

fraction of PoIs with label lj. Formally, uj ¼ 1
jPj
P

p2P 1
ðLðpÞ ¼ ljÞ; 1 � j � J , where 1ðLðpÞ ¼ ljÞ is the indi-
cator function that equals one when predicate
LðpÞ ¼ lj is true, and zero otherwise. If LðpÞ is the
star rating of p, then u is the star rating distribution
of hotels within A.

As alluded before, we focus on designing sampling meth-
ods to accurately estimate the above statistics from as few
queries as possible.

2.2 Datasets

Tables 1 and 2 summarize the public datasets used in this
paper. Table 1 shows the statistics of PoI datasets [10] col-
lected from Baidu maps for five areas in China. Each area
spans a degree of longitude and a degree of latitude. They
cover five popular cities in China: Beijing, Shanghai,
Guangzhou, Shenzhen, and Tianjin. Each dataset consists of
more than 200 thousand PoIs. Table 2 shows the statistics of
four Foursquare PoI datasets [6], which are exhaustively
collected from areas in New York City, Belgium, Singapore,
and Seoul.

2.3 Challenges

Fig. 1 shows the geographical distribution of PoIs within
Beijing. We can see that PoIs are not evenly distributed, but
are clustered into sparse and dense areas. The lack of the
PoI geographical distribution makes it challenging to accu-
rately estimate PoI statistics, since it is hard to sample PoIs
from A uniformly. Suppose that one divides A evenly into
non-overlapping sub-regions with size: d degrees of longi-
tude � d degrees of latitude. Then sample a set of sub-
regions at random and collect PoIs within sub-regions sam-
pled. Next, we show that this straightforward method can-
not be implemented in practice.

Let k be the maximum number of PoIs returned for a
query. A region is defined as an inaccessible sub-region
when it includes more than k PoIs. Fig. 2 shows the fraction

TABLE 1
Overview of Baidu PoI Datasets

Area Latitude Longitude PoIs

Beijing 39� N–40� N 116� E–117� E 606,306
Shanghai 30:7� N–31:7� N 121� E–122� E 470,676
Guangzhou 23� N–24� N 113� E–114� E 554,114
Shenzhen 22� N–23� N 114� E–115� E 322,677
Tianjin 39� N–40� N 117� E–118� E 212,838

TABLE 2
Overview of Foursquare PoI Datasets

Area Latitude Longitude PoIs

New York City 40:4�–41:0� N 74:3�–73:6�W 453,070
Belgium 49:4�–51:6� N 2:5�–6:5� E 446,354
Singapore 1:1�–1:5� N 103:6�–104:1� E 400,520
Seoul 37:4�–37:8� N 126:7�–127:2� E 329,120

Fig. 1. (Baidu maps) PoI geographical distributions.
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of inaccessible PoIs, where inaccessible PoIs refer to the PoIs
within inaccessible sub-regions. We can see that the number
of inaccessible PoIs increases with d. When d ¼ 0:001, more
than 30 percent of PoIs are inaccessible for k ¼ 10 and
k ¼ 20. For a sampled inaccessible sub-region r, therefore, it
might include a large number of PoIs. Then we need to
further divide r and explore all PoIs within r, which might
require a large number of queries since rmight include a lot
of PoIs. Otherwise, k PoIs within r are returned by public
APIs and they might not be randomly selected from the
PoIs within r. This introduces unknown errors into esti-
mates of PoI’s statistics. Fig. 2 shows that almost 10 percent
of PoIs are within inaccessible regions even when
d ¼ 0:0001. Thus, a quite small value of d is required to
ensure there is no inaccessible sub-region.

However a small d dramatically increases the number of
queries required to sample a non-empty sub-region (i.e., a
region with at least one PoI). Define r as the fraction of non-
empty sub-regions among all sub-regions. Then, the hit ratio
defined as the probability of sampling a non-empty sub-
region is r. To sample a non-empty sub-region, on average
we need to sample and query 1=r sub-regions at random.
Fig. 3 shows the hit ratios for different d. We can see that r
increases with d. When d ¼ 0:0001, almost 99.8 percent of
sub-regions do not include any PoI. Therefore, on average
more than 500 queries are required to sample a non-empty
sub-region for d � 0:0001.

Results for Foursquare datasets are similar, which are
omitted here. In summary, the above straightforward sam-
pling method is not easy to be implemented, so designing
accurate and efficient sampling methods for estimating PoI
statistics is a much challenging task.

3 RANDOM REGION ZOOM-IN ON MAPS

In this section, we present our sampling methods to esti-
mate PoI aggregate statistics defined in Section 2. We first
propose a random region zoom-in method to sample PoIs
within an area A of interest, and give our estimators of PoI
statistics. To improve the accuracy of RRZI, we then pro-
pose a method RRZIC by utilizing the meta information
(i.e., the total number of PoIs within an input search region)
returned for a query, which is provided by map services
such as Google maps. To further reduce the number of
queries of RRZI and RRZIC required, we propose mix meth-
ods RRZI_URS and RRZIC_URS, which first pick a small
sub-region from A at random and then sample PoIs within
the sub-region using RRZI and RRZIC respectively. Finally,
we show that RRZIC_URS might exhibit larger errors than
RRZIC for estimating PoI statistics. To solve this problem,
we propose a method RRZIC_MHWRS to increase the accu-
racy of RRZIC_URS. For ease of reading, we list notations
used throughout the paper in Table 3.

3.1 Random Region Zoom-in

As shown in Fig. 4, RRZI(A) works as follows: From the ini-
tial region A, RRZI divides the current queried region into
two sub-regions without overlapping, and then randomly
selects a non-empty sub-region as the next region to zoom in
and query. Repeat this procedure recursively until a fully
accessible region is finally observed. The reason of why we
divide the current region into just two sub-regions is because
it minimizes the number of queries required at each step,
which will be discussed later. Algorithm 1 shows the
pseudo-code of RRZI(A). Initially RRZI sets region Q ¼ A.

Fig. 2. (Baidu maps) Fractions of inaccessible PoIs.

Fig. 3. (Baidu maps) Hitting ratios.

TABLE 3
Table of Notations

A area of interest
P set of PoIs within A

k maximum number of PoIs returned in a
response to a query

tðQ;AÞ, Q � A probability of sampling a region Q from A
nðQÞ number of PoIs within a region Q
x0ðQÞ, x1ðQÞ two sub-regions obtained by dividing Q

d minimum acceptable latitude and longitude
precision of map APIs

L parameter to control the size of regions
sampled by URS

BL set of sub-regions obtained by iteratively apply-
ing L times region division operations into A

B�L set of non-empty regions in BL

P ðrÞ set of PoIs within a region r

V set of fully accessible regions obtained by
iteratively applying region division operations
into A

m number of sampled fully accessible regions
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At each step, RRZI uses a query searchPoIðQÞ to explore
PoIs within Q, and then determines whether Q is a fully
accessible region depending on the value of jOj, the num-
ber of PoIs returned by searchPoIðQÞ. When jOj equals k,
Q might not be a fully accessible region, and RRZI divides
Q into two non-overlapping sub-regions Q0 and Q1 to fur-
ther explore. If Q0 and Q1 are both non-empty regions,
RRZI randomly selects one as the next region, that is,
Q randomðQ0; Q1Þ. Otherwise, RRZI sets Q as the non-
empty region among Q0 and Q1. RRZI repeats this proce-
dure until a fully accessible region Q is observed.

Algorithm 1. RRZIðAÞ Pseudo-Code
Input: A
/* Q is a sub-region sampled from A at random, and t

records the probability of sampling Q from A. */

Output: Q and t

/* searchPoIðQÞ is the set of PoIs returned for query-

ing the region Q */
Q A, t  1, l 0, and O searchPoIðQÞ;
while jOj ¼ k do

/* x0ðQÞ and x1ðQÞ are the two sub-regions of Q
defined as (1) and (2) */

Q0  x0ðQÞ and Q1  x1ðQÞ;
/* If O includes no PoI in the region Q0/Q1, then

emptyRegionðQ0; Q1; OÞ returns 0/1. Otherwise,

both Q0 and Q1 are non-empty, and

emptyRegionðQ0; Q1; OÞ returns -1 */
i emptyRegionðQ0; Q1; OÞ;
if i 6¼ �1 then
O0  searchPoIðQiÞ;
if jO0j ¼ 0 then
Q Q1�i;

else
/* randomðQ0; Q1Þ returns Q0 and Q1 at random */
Q randomðQ0; Q1Þ;
O O0 and t  t=2;

end
else

Q randomðQ0; Q1Þ;
O searchPoIðQÞ and t  t=2;

end
end

Next, we answer the following three critical questions.

� How to divide Q into two non-overlapping regions Q0

and Q1? For simplicity, we denote Q ¼ ½ðxSW ; ySW Þ;
ðxNE; yNEÞ	 as a quadrangle region with south-west
corner ðxSW ; ySW Þ (latitude and longitude pair) and
north-east corner ðxNE; yNEÞ. Let d be the minimum
acceptable latitude and longitude precision of map
APIs. Let bðxSW ; xNEÞ be a function whose values are
positive real numbers. We define functions x0ðQÞ
and x1ðQÞ as follows: If jxSW � xNEj 
 bðxSW ; xNEÞ
jySW � yNEj, then

x0ðQÞ ¼ ½ðxSW ; ySW Þ; ðdxSWþxNE
2d ed� d; yNEÞ	

x1ðQÞ ¼ ½ðdxSWþxNE
2d ed; ySW Þ; ðxNE; yNEÞ	:

(
(1)

Otherwise,

x0ðQÞ ¼ ½ðxSW ; ySW Þ; ðxNE; dySWþyNE
2d ed� dÞ	

x1ðQÞ ¼ ½ðxSW ; dySWþyNE
2d edÞ; ðxNE; yNEÞ	:

(
(2)

Using functions x0 and x1 we divide Q into two sub-
regions x0ðQÞ and x1ðQÞwithout overlapping, which
almost have the same size. bðxSW ; xNEÞ is used to
control the shape of a sub-region finally sampled.
For instance, we let bðxSW ; xNEÞ ¼ 1= cos ð0:5ðxSW þ
xNEÞÞ, and then the shape of a fully accessible region
sampled by RRZI approaches to a square, since the
physical distance between two points on the earth
with the same latitude x but different longitudes y
and yþ d is 111d� cosx kilometers, and the distance
between two points with the same longitudes y but
different latitudes x and xþ d is 111d.

� How to determine whether x0ðQÞ and x1ðQÞ are empty
regions or not using a minimum number of queries? LetO
be the set of PoIs within the regionQ observed by pre-
vious queries. If O includes PoIs within both x0ðQÞ
and x1ðQÞ, then neither of x0ðQÞ and x1ðQÞ is empty.
Otherwise, we query the sub-region with no PoIs inO
to determine whether it is a truly empty region.
Therefore RRZI needs at most one query at each step.

� Does RRZI sample PoIs uniformly? If not, how to remove
the sampling bias? Fig. 4 shows an example of apply-
ing RRZI into A, where k ¼ 5. We can see that there
exist three fully accessible regions a, b, and c, which
could be observed and sampled by RRZI. The proba-
bilities of sampling a, b, and c are 1=2, 1=4, and 1=4
respectively. The sampling bias might introduce
large errors into the measurement of PoI statistics.
To solve this problem, we use a counter t to record
the probability of sampling a region from A, which
is used to correct the sampling bias later. t is initial-
ized with 1, and updated as follows: At each step,
we set t ¼ t=2 if both x0ðQÞ and x1ðQÞ are non-
empty, otherwise t keeps unchanged. Finally t

records the probability of sampling a fully accessible
sub-region from A.

At last, we analyze the query cost of RRZI and present
our estimators of PoI aggregate statistics under study. We
can easily find that the number of queries required to sam-
ple a fully accessible region is smaller than

Fig. 4. An example of applying RRZI into the area of interest, where
k ¼ 5. The number above a red arrow refers to the probability of
selecting a sub-region of the current queried region to zoom in.
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Hmax ¼ log ðLx=dÞ þ log ðLy=dÞ; (3)

where Lx and Ly are the length and width of the region A.

For instance, Hmax equals 60 when d ¼ 10�6 and A is a
region with size: one degree of longitude � one degree of
latitude. Experimental results in a later section show that
the associated average number of queries required is about
13, which is much smaller thanHmax.

Denote V as the set of fully accessible regions, which can
be observed by RRZI. Define tðQ;AÞ as the probability of
sampling a fully accessible region Q from A. Then we haveP

r2V tðr;AÞ ¼ 1. For the example in Fig. 4, there exist three

fully accessible regions a, b, and c which can be sampled by
RRZI, thus V ¼ fa; b; cg. RRZI(A) returns a region among
a, b, and c according to probabilities tða;AÞ ¼ 1=2,
tðb;AÞ ¼ 1=4, and tðc;AÞ ¼ 1=4 respectively. Let P ðQÞ be
the set of PoIs within Q. Given a set of fully accessible
regions ri (1 � i � m) sampled by calling the function
RRZIðAÞ m times, we collect PoIs within ri, and estimate
the sum aggregate fsðPÞ as

~fsðPÞ ¼ 1

m

Xm
i¼1

X
p2P ðriÞ

fðpÞ
tðri;AÞ :

Note that there might exist duplicated regions among ri.

Theorem 1. ~fsðPÞ is an consistent estimator of fsðPÞ, that is,
E½~fsðPÞ	 ¼ fsðPÞ.

Proof. r1; . . . ; rm are sampled independently, thus

E½~fsðPÞ	 ¼
X
r2V

X
p2P ðrÞ

fðpÞ
tðr;AÞ � tðr;AÞ ¼ fsðPÞ:

The variance of ~fsðPÞ is

Varð~fsðPÞÞ ¼ 1

m

X
r2V

P
p2P ðrÞ fðpÞ

� �2

tðr;AÞ � f2
s ðPÞ

0
B@

1
CA:

We omit the proof due to the limited space.

P
r2V

P
p2P ðrÞ fðpÞ

� �2

tðr;AÞ � f2
s ðPÞ

0
B@

1
CA is constant value and

independent with samples, therefore Varð~fsðPÞÞ is
inversely proportional to m, i.e., the number of sampled

sub-regions. It indicates that the estimator ~fsðPÞ is consis-
tent because Varð~fsðPÞÞ goes to zero whenm!1. tu

Remark 1. In practice it is important to bound an estimate’s
error. However it requires the knowledge of all PoIs’
information to compute Varð~fsðPÞÞ. To solve this prob-
lem, we define

~s2
s ¼

1

m

1

m

Xm
i¼1

P
p2P ðriÞ fðpÞ

� �2

t2ðri;AÞ � ~f2
s ðPÞ

0
B@

1
CA: (4)

Since E½~s2
s	 ¼ Varð~fsðPÞÞ, we compute the 95 percent con-

fidence interval of ~fsðPÞ as ½~fsðPÞ � 2~ss; ~fsðPÞ þ 2~ss	
based on the empirical rule.

Similarly, we estimate the PoI distribution u ¼ ðu1; . . . ;
uJÞ as follows

~uj ¼ 1
~H

Xm
i¼1

X
p2P ðriÞ

1ðLðpÞ ¼ ljÞ
tðri;AÞ ; 1 � j � J;

where ~H ¼Pm
i¼1

nðriÞ
tðri;AÞ. Let njðAÞ be the number of PoIs with

label lj. We can easily find that ~nðAÞ ¼ ~H
m and ~njðAÞ ¼

~H~uj
m

are consistent estimators of nðAÞ and njðAÞ respectively,
and their standard errors ~ssð~nðAÞÞ and ~ssð~njðAÞÞ can be
computed similar to (4). Finally, we compute the 95 percent

confidence interval of ~uj as ½~njðAÞ�2~ssð~njðAÞÞ~nðAÞþ2~ssð~nðAÞÞ ;
~njðAÞþ2~ssð~njðAÞÞ
~nðAÞ�2~ssð~nðAÞÞ 	. In

this section, we do not present our method for estimating
the average aggregate faðPÞ. faðPÞ is easily computed based
on our estimates of sum aggregates since faðPÞ ¼
fsðPÞ=nðAÞ. Note that nðAÞ is obtained by estimating the
sum aggregate with the function fðpÞ ¼ 1 when it is not
known in advance.

Remark 2. Clearly, PoIs sampled by RRZI are not indepen-
dent. To eliminate estimation errors introduced by the cor-
relation of samples, we can pick one and only one PoI pi
from a sampled fully accessible region ri at random, and
discards the other PoIs in ri. We can find that each PoI in ri
is sampled with the same probability tðri;AÞ=nðriÞ, and
then sampled PoIs are independent. We denote this
method as RRZI*. RRZI* estimates fsðPÞ and u ¼ ðu1; . . . ;
uJÞ as

~f�s ðPÞ ¼
1

m

Xm
i¼1

nðriÞfðpiÞ
tðri;AÞ :

~u�j ¼
1
~H

Xm
i¼1

nðriÞ1ðLðpiÞ ¼ ljÞ
tðri;AÞ ; 1 � j � J:

Later, our experimental results show that ~f�s ðPÞ and ~u�j
exhibit larger errors than ~fsðPÞ and ~uj, this may because
RRZI* discards most PoIs sampled by RRZI.

3.2 Random Region Zoom-in with Count
Information

In this section we propose a method, named random region
zoom-in with count information (RRZIC), to further improve
the accuracy of RRZI for map services such as Google maps,
where results from a query include the number of PoIs within
the input search region. Compared to RRZI, RRZIC tends to
sample PoIs uniformly, giving us smaller estimation errors
for PoIs statistics. The pseudo-code RRZICðAÞ is shown as
Algorithm 2. Initially we set Q ¼ A. Denote z as the number
of PoIs within the current queried region Q. Let z0 and z1 be
the number of PoIs within the two sub-regions x0ðQÞ and
x1ðQÞ of Q respectively. If z > k, Q is not a fully accessible
region, and RRZIC queries x0ðQÞ to obtain z0. With probabil-
ity z0=z, RRZIC then selects x0ðQÞ to further explore. That is,
set Q ¼ x0ðQÞ and z ¼ z0. Or, RRZIC sets Q ¼ x1ðQÞ and
z ¼ z1 with probability z1=z. RRZIC repeats this procedure
until a fully accessible Q is observed. We can easily find that
RRZIC samples Q from A with probability tðQ;AÞ ¼
nðQÞ=nðAÞ, where nðQÞ is the number of PoIswithinQ.

Given m fully accessible regions ri (1 � i � m) sampled
by RRZIC, we estimate fsðPÞ as
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�fsðPÞ ¼ 1

m

Xm
i¼1

X
p2P ðriÞ

fðpÞnðAÞ
nðriÞ ; (5)

and estimate u ¼ ðu1; . . . ; uJÞ as

�uj ¼ 1

m

Xm
i¼1

X
p2P ðriÞ
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Their variances are

Varð�fsðPÞÞ ¼ 1

m

X
r2V

P
p2P ðrÞ fðpÞ

� �2
nðAÞ

nðrÞ � f2s ðPÞ

0
B@

1
CA

Varð�ujÞ ¼ 1

m

X
r2V

P
p2P ðrÞ 1ðLðpÞ ¼ ljÞ

� �2

nðrÞnðAÞ � u2j

0
B@

1
CA:

Similar to ~fsðPÞ, we can easily prove that �fsðPÞ and �uj are

consistent estimators of fsðPÞ and uj, i.e, E½�fsðPÞ	 ¼ fsðPÞ,
limm!1 Varð�fsðPÞÞ ¼ 0, E½�uj	 ¼ uj, and limm!1 Varð�ujÞ ¼ 0.

Moreover, we estimate Varð�fsðPÞÞ � �s2
s and Varð�ujÞ � �s2

uj
,

where �s2
s and �s2

uj
are defined as
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Algorithm 2. RRZICðAÞ Pseudo-Code
Input: A
/* Q is a sub-region sampled from A at random, and t

records the probability of samplingQ from A. */
Output: Q and t

/* countPoIðQÞ returns the number of PoIs in Q. */
Q A, t  1, and z countPoIðQÞ;
/* k is the maximum number of PoIs returned in a

response to a query. */
while z > k do

/* x0ðQÞ and x1ðQÞ are the two sub-regions of Q
defined as (1) and (2). */

Q0  x0ðQÞ and Q1  x1ðQÞ;
/* z0 and z1 are the numbers of PoIs within the

regions Q0 and Q1 respectively. */
z0  countPoIðQ0Þ and z1 ¼ z� z0;
/* Uð0; 1Þ is a random sample from ð0; 1Þ . */
u Uð0; 1Þ;
if u < z0=z then

Q Q0, t  t � z0=z, and z z0;
else

Q Q1, t  t � z1=z, and z z1;
end

end

3.3 Random Region Zoom-in Combined with
Uniform Region Sampling

Public map APIs might impose a limit on the size of input
regions. For example, Foursquare returns an error message
“Your geographic boundary is too big. Please search a
smaller area.” for a query specified with an input quadran-
gle region with size: 3 degrees of longitude � 3 degrees of
latitude, although it does not literally state any limit on the
input quadrangle region. Thus, RRZI and RRZIC cannot be
directly applied to sample PoIs from a large area on Four-
square. To solve this problem, we propose mix methods,
which first pick a small sub-region from A at random and
then sample PoIs within the sub-region using RRZI and
RRZIC. Moreover, we show that our mix methods also
reduce the number of queries required to sample a fully
accessible region in comparison with RRZI and RRZIC.

We first introduce a uniform region sampling (URS)
method, which is used to sample sub-regions from A uni-
formly. Let L be a parameter to control the size of sub-
regions sampled by URS. Denote BL as the set of sub-
regions of A obtained by iteratively applying L times region
division operations defined as (1) and (2) into A. Formally,

BL ¼ fxi1
ðxi2
ð:::ðxiL

ðAÞÞÞÞ : i1; i2; . . . ; iL 2 f0; 1gg:

BL consists of 2L regions. That is, jBLj ¼ 2L. Regions in BL

are nearly 2L times smaller than A. We assume that they are
small enough to be used as input regions for public APIs.
Let B�L be the set of non-empty regions in BL. To sample a
region from B�L uniformly, URS repeats to sample regions
from BL at random until a non-empty region is observed.

Algorithm 3. RRZI_URS/RRZIC_URS Pseudo-Code

Input: A and L
/* ri, 1 � i � m, are sub-regions sampled from A

randomly, and tðri; biÞ records the probability of

sampling ri from a region bi, where bi is sampled

from B�L at random. */
Output: r1; . . . ; rm and tðr1; b1Þ; . . . ; tðrm; bmÞ.
i 1;
while i � m do

/* URSðAÞ returns a region sampled from the set B�L
at random. */

bi  URSðAÞ;
/* The following statement is used for

RRZI_URS. For RRZIC_URS, it should be

½ri; tðri; biÞ	  RRZICðbiÞ */
½ri; tðri; biÞ	  RRZIðbiÞ and i iþ 1;

end

Our mix methods RRZI_URS and RRZIC_URS are modifi-
cations of RRZI and RRZIC. Algorithm 3 shows their pseudo-
codes. RRZI_URS and RRZIC_URS first randomly select a
non-empty region b from BL using URS, and then sample a
fully accessible region from b using RRZIðbÞ and RRZICðbÞ
respectively. Let jB̂�Lj be an estimate of jB�Lj, which can be eas-
ily estimated based on the hit ratio of sampling a non-empty
region fromBL using URS. Givenm fully accessible regions ri
(1 � i � m) sampled by RRZI_URS or RRZIC_URS, we
estimate fsðPÞ and u ¼ ðu1; . . . ; uJÞ as
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� Estimators for RRZI_URS:

�fsðPÞ ¼ jB̂
�
Lj

m

Xm
i¼1

X
p2P ðriÞ

fðpÞ
tðri; biÞ ;

�uj ¼ 1

�H

Xm
i¼1

X
p2P ðriÞ

1ðLðpÞ ¼ ljÞ
tðri; biÞ ; 1 � j � J;

where �H ¼Pm
i¼1

nðriÞ
tðri;biÞ.

� Estimators for RRZIC_URS:

�fsðPÞ ¼ jB̂
�
Lj

m

Xm
i¼1

X
p2P ðriÞ

fðpÞnðbiÞ
nðriÞ ;

�uj ¼ 1

�H

Xm
i¼1

X
p2P ðriÞ

1ðLðpÞ ¼ ljÞnðbiÞ
nðriÞ ; 1 � j � J;

where �H ¼Pm
i¼1 nðbiÞ.

Compared to RRZIC, although RRZIC_URS reduces the
number of queries required to sample a fully accessible
region, its estimates �fsðPÞ and �uj might exhibit larger errors,
since PoI dense regions might be under-sampled by URS.
Next, we propose a Metropolis-Hastings based weighted
region sampling (MHWRS) to address this problem, which
samples non-empty regions from BL according to the prob-
ability distribution p ¼ ðpb ¼ nðbÞ=nðAÞ : b 2 B�LÞ. Com-
pared to URS, MHWRS draws more samples from dense
regions to reduce the variance of PoI statistic estimates. URS
can be modeled as a Markov chain with transition matrix

P ¼ ½Pb;b� 	, b; b� 2 B�L, where Pb;b� ¼ 1
jB�

L
j is defined as the

probability that a region b� is selected as the next sampled
region given that the current region is b. To generate a
sequence of random samples from a desired stationary dis-
tribution p ¼ ðpb : b 2 B�LÞ, the Metropolis-Hastings tech-
nique [11], [12], [13] is a Markov chain Monte Carlo method
based on modifying the transition matrix of URS as

P
$

b;b� ¼
Pb;b� min

pb�Pb� ;b
pbPb;b�

; 1
� �

if b� 6¼ b;

1�P
b0 6¼b P

$

b;b0 if b� ¼ b:

(

It provides a way to alter the next region selection to produce
any desired stationary distribution p. MHWRS with target
distribution p ¼ ðpb ¼ nðbÞ=nðAÞ : b 2 B�LÞ works as follows:
At each step, MHWRS selects a region b� using URS and then

accepts the move with probability min ðnðb�ÞnðbÞ ; 1Þ. Otherwise,

MHWRS remains at the current region b. The pseudo-code of
our mix method RRZIC_MHWRS is shown as Algorithm 4.
It first randomly samples a non-empty region b from BL

using MHWRS and then samples a fully accessible region
from b using RRZICðbÞ. We can easily find that the probabil-
ity of RRZIC_MHWRS sampling a fully accessible region r
converges to nðrÞ=nðAÞ, which is the same as RRZIC. Given
m fully accessible regions ri (1 � i � m) sampled by
RRZIC_MHWRS, we estimate fsðPÞ and u ¼ ðu1; . . . ; uJÞ
using Eqs. (5) and (6).

Finally, we analyze the query costs of the above mixing
methods. To sample a non-empty region from BL at ran-
dom, on average URS needs to sample and query jBLj=jB�Lj

regions from BL, but RRZI and RRZIC require L queries.
Thus, the mixing methods are more efficient than RRZI and
RRZIC when jBLj=jB�Lj < L, which is true for small values
of L.

Algorithm 4. RRZIC_MHWRS Pseudo-Code

Input: A
/* r1; . . . ; rm are sub-regions sampled from A at

random, and tðri; biÞ records the probability of

sampling ri from a region bi, where bi is sampled

from the set B�L at random. */
Output: r1; . . . ; rm and tðr1; b1Þ; . . . ; tðrm; bmÞ
/* URSðAÞ returns a region sampled from the set B�L at

random. countPoIðbÞ returns the number of

PoIs in b. */
b URSðAÞ, z countPoIðbÞ, and i 1;
while i � m do

bi  b and ½ri; tðri; biÞ	  RRZICðbiÞ;
b�  URSðAÞ and z�  countPoIðb�Þ;
/* Uð0; 1Þ is a random sample from ð0; 1Þ. */
u Uð0; 1Þ and i iþ 1;
if u � minfz�=z; 1g then
b b� and z z�;

end
end

3.4 Comparison

Table 4 compares our methods. In summarize, we can see

1) RRZI and RRZIC are nonparametric, and the mix
methods (i.e., RRZI_URS, RRZIC_URS, and
RRZIC_MHWRS) require a pilot study to set the
parameter L. Compared to RRZI and RRZIC, the
mix methods sample a fully accessible region with
less queries.

2) RRZIC, RRZIC_URS, and RRZIC_MHWRS require
an API whose results from a query include the num-
ber of PoIs within the input search region. These
methods utilize the meta information returned for a
query to reduce estimation errors.

We expect that the most efficient method is
RRZIC_MHWRS when there exists a publicly available API
with meta information (i.e., the total number of PoIs within
an input search region) returned for a query, and RRZI_URS
otherwise, which is validated by our experiments later.

4 DATA EVALUATION

In this section, we conduct experiments on real world data-
sets listed in Tables 1 and 2 to evaluate the performance of
our methods for estimating PoI aggregate statistics.

TABLE 4
Comparison of Our Methods

Methods API with PoI count Nonparametric

RRZI Not required Yes
RRZIC Required Yes
RRZI_URS Not required No
RRZIC_URS Required No
RRZIC_MHWRS Not required No
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4.1 Results of Estimating nðAÞ
We evaluate the performance of our methods RRZI and
RRZI_URS for estimating nðAÞ, the total number of PoIs
within the area of interest A, which is an important statistic
studied in [7], [8]. In this section, our sampling methods
using the PoI count information (i.e., RRZIC, RRZIC_URS,
and RRZIC_MHWRS ) are not studied, since we assume
that map services do not provide a public API where results
from a query include the number of PoIs within an input
search region (otherwise nðAÞ can be obtained in a direct
manner). We define the normalized root mean square error

(NRMSE), that is NRMSEð ^nðAÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðn̂ðAÞ � nðAÞÞ2	

q
=nðAÞ, be a metric to measure the relative error of the esti-
mate n̂ðAÞ with respect to its true value nðAÞ. In the follow-
ing experiments, we average the estimates and calculate
their NRMSEs over 10,000 runs. Fig. 5 shows the NRMSEs
of estimates of nðAÞ for RRZI with different m, the number
of fully accessible regions sampled. We can see that the
NRMSEs decrease as m increases, and are roughly propor-

tional to 1=
ffiffiffiffiffi
m
p

. Meanwhile, RRZI exhibits smaller errors for
larger k, the maximum number of PoIs returned in a
response to a query. We set k ¼ 20 in the following experi-
ments. Fig. 6 shows the average number of queries required
to sample a fully accessible region for RRZI_URS with dif-
ferent L, where the y-axis is in log scale. We can see that the
query cost of RRZI_URS first decreases with L and then
increases with L. It is because URS needs only one or two
queries to sample a non-empty sub-region for small and
medium L, but a large number of queries is required for
large L, which is shown in Fig. 7. In practice, we can

conduct a pilot study to estimate the optimal value of L.
Fig. 8 shows the compared NRMSEs of estimates of nðAÞ for
RRZI_URS with different L under the same number of
queries (10,000 queries). We can see that the NRMSEs first
decrease with L and then increase with L. RRZI_URS with
L ¼ 10, L ¼ 15, and L ¼ 20 are almost two times more accu-
rate than RRZI_URS with L ¼ 0, which is equivalent to
RRZI. It indicates that RRZI_URS requires nearly four times
less queries than RRZI to achieve the same estimation accu-
racy, since the NRMSEs are roughly proportional to 1=

ffiffiffiffiffi
m
p

,
which is observed in Fig. 5.

We compare our methods with the state-of-the-art meth-
ods nearest-neighbor search (NNS) [7] and random region sam-
pling (RRS) [8]. Fig. 9 shows the average number of queries
required to obtain an estimate of nðAÞ with NRMSE less
than 0.1 for RRZI and RRZI_URS in comparison with NNS
and RRS, where we set L ¼ 15 and k ¼ 20. Here we do not
study the performances of RRZIC, RRZIC URS, and
RRZIC MHWRS, because these three methods assume
nðAÞ can be easily obtained by a query. We can see that
RRZI_URS requires eight and six times less queries than
RRS and NNS respectively. Here the results of NNS are
obtained based on the assumption that a NNS API is sup-
ported by map service providers. When map services such
as Foursquare do not provide such a NNS API, the PoI clos-
est to a randomly sampled point ðx; yÞ can be obtained by
applying a binary search to find a radius r, which ensures at
least one and at most k PoIs are within the circle with center
ðx; yÞ and radius r. Thus, on average log ðW=dÞ queries are
required to get the PoI closest to ðx; yÞ, where d be the mini-
mum acceptable precision for public APIs and W is the

Fig. 5. (Baidu maps) Compared NRMSEs of estimates of nðAÞ for RRZI with differentm, wherem is the number of fully accessible regions sampled.

Fig. 6. (Baidu maps) Average number of queries required to sample a
fully accessible region for RRZI_URS.

Fig. 7. (Baidu maps) Average number of queries required to sample a
non-empty sub-region for URS with different L.
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diameter ofA. LetDðpÞ be the set of points in the planeA that
are closer to p than the other PoIs, which is used to correct the
sampling bias of the NNS method. Table 5 shows that on
average a thousand queries are required to sample a PoI p
and determine DðpÞ, which indicates that the NNS method
requires many more queries than our methods to achieve the
same estimation accuracywhen theNNSAPI is not available.

4.2 Results of Estimating Average
and Distribution Statistics

In this section, we conduct experiments to evaluate the per-
formance of our methods for estimating PoIs’ average and
distribution statistics. For the Baidu PoI datasets we used,
PoIs are classified into different types such as restaurant,
hotel, and shopping. The numbers of restaurant-tpye PoIs
are 75,255, 36,417, 24,353, 16,025, and 10,032 for datasets
Beijing, Shanghai, Guangzhou, Shenzhen, and Tianjin

respectively. We use these restaurant-type PoIs to generate
benchmark datasets for our following experiments. We
manually generate a cost for each restaurant-type PoI using
two different cost distribution schemes CDS_UNI and
CDS_NOR. For CDS_UNI, the cost of a PoI is uniformly
selected from the range (0, 300) at random. For CDS_NOR,
the cost of a PoI is a positive number randomly selected
from (0, +1) according to a normal distribution with mean
150 and stand deviation 100. We also conduct experiments
on Foursquare datasets. Table 6 and Fig. 12 show the real
values of the associated average statistics (i.e., the average
numbers of check-ins, users, and tips) and PoI distributions
(i.e., the distributions of PoIs by the numbers of check-ins,
users, and tips), which are of interest.

Figs. 10 and 11 show our experimental results based on
Baidu PoI datasets. Fig. 10 shows the results for estimating
the average cost of restaurant-type PoIs for different meth-
ods under 1,000 queries, where we set L ¼ 9 for our mix
methods RRZI_URS, RRZIC_URS, and RRZIC_MHWRS.

Fig. 8. (Baidu maps) Compared NRMSEs of estimates of nðAÞ for
RRZI_URS with different L under 10,000 queries.

Fig. 9. (Baidu maps) The number of queries required to obtain an esti-
mate of nðAÞ with NRMSE less than 0.1 for RRZI_URS and RRZI in
comparison with the state-of-the-art methods NNS [7] and RRS [8].

TABLE 5
(Baidu Maps) Average Number of Queries Required for
Sampling a PoI p and DeterminingDðpÞWhen the NNS

API is Not Available

Area k ¼ 10 k ¼ 20 k ¼ 50

Beijing 1,196 1,079 995
Shanghai 1,176 1,076 982
Guangzhou 1,172 1,043 969
Shenzhen 1,154 1,038 931
Tianjin 1,106 1,034 909

TABLE 6
Average Statistics of Foursquare Datasets

Dataset Average statistics (per PoI)

# tips # users # check-ins

New York City 1.23 63.2 151
Belgium 0.27 13.8 47
Singapore 0.55 37.5 102
Seoul 0.46 16.1 37

Fig. 10. (Baidu maps) Compared NRMSEs of estimates of restaurant
PoIs’ average cost for different methods under 1; 000 search queries.
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We can see that RRZI_URS is almost two times more accu-
rate than RRZI. RRZIC, RRZIC_URS, and RRZIC_MHWRS
utilizing PoI count information are more accurate than RRZI
and RRZI_URS. RRZIC_MHWRS samples fully accessible
regions according to the PoI density distribution, which is
the same as RRZIC. Meanwhile it requires less queries than
RRZIC. Therefore RRZIC_MHWRS outperforms RRZIC and
RRZIC_URS, which is consistent with our experimental
results. Next, we evaluate the performance of our methods
for estimating the cost distribution of restaurant-type PoIs.
For simplicity, we divide the values of PoIs’ costs into six
intervals: 1) (0, 50], 2) (50, 100], 3) (100, 150], 4) (150, 200], 5)
(200, 250], and 6) (250, +1). Denote by u ¼ ðu1; . . . ; u6Þ the
cost distribution, where ui is the fraction of PoIs with cost

within the jth interval, 1 � j � 6. For CDS_UNI and
CDS_NOR, their associated distributions are

uðUNIÞ ¼ f1=6; . . . ; 1=6g and uðNORÞ ¼ ð0:09; 0:016; 0:20; 0:21;
0:16; 0:18Þ respectively. Fig. 11 shows the NRMSEs of esti-

mates of uðUNIÞ and uðNORÞ for different methods under 1,000
queries, where we set L ¼ 8. Similar to the average statistic,
we can see that 1) RRZI_URS is more accurate than RRZI; 2)
RRZIC_URS does not improve the accuracy of RRZIC; 3)
RRZIC_MHWRS exhibits the smallest errors.

Next, we conduct experiments based on Foursquare
PoI datasets. Figs. 12a, 12c, and 12e show the NRMSEs of
estimates of the average statistics for different methods
under 10,000 queries. We can see that RRZI_URS is almost
two times more accurate than RRZI. RRZIC and
RRZIC_MHWRS utilizing the PoI count information have
smaller errors in comparison with RRZI and RRZI_URS. Let
u ¼ ðu0; u1; . . . ; Þ be the PoI distribution of interest. For exam-
ple, uj, j 
 0, can be defined as the fraction of PoIs with j

check-ins. We define RMSEðûÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½P1

j¼0ðûj � ujÞ2	
q

as a

metric to measure the error of a PoI distribution estimate

û ¼ ðû0; û1; . . . ; Þ with respect to its true value u. Figs. 12b,
12d, and 12f show the RMSEs of estimates of the PoI distri-
butions for different methods under 10,000 queries.
Similarly, we can see that RRZI_URS is almost 1.5 times
more accurate than RRZI. Meanwhile, RRZIC and
RRZIC_MHWRS have smaller errors in comparison with
RRZI and RRZI_URS. Fig. 13 shows the average number of
queries required to obtain an estimate of the average num-
ber of check-ins with NRMSE less than 0.1 for our methods
in comparison with the state-of-the-art method NNS [7]. We
can see that our methods significantly outperform the
method NNS. We omit the similar compared results for esti-
mating the other PoI average and distribution statistics.

Table 7 shows the NRMSEs of estimates of the average
number of check-ins and the RMSEs of estimates of the PoI

Fig. 11. (Baidu maps) Compared NRMSEs of estimates of restaurant
PoIs’ cost distribution for different methods under 1;000 search queries.

Fig. 12. (Foursquare) ComparedNRMSEsandRMSEs of estimates of PoIs’ average and distribution statistics for differentmethods under 10;000 queries.
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check-in count distribution for RRZI and RRZI* under
10,000 queries. We can see that RRZI* exhibits larger errors
than RRZI. It may because RRZI* discards most PoIs sam-
pled by RRZI.

5 REAL APPLICATIONS

In this section, we present our real applications on Four-
square, Google, and Baidu maps. The following results are
obtained based on PoIs sampled on April 21-30, 2013. Four-
square provides a public API [5], which allows developers
to explore a particular category of PoIs by setting the
parameter “categoryId”. It defines a three-level hierarchical
structure of PoIs categories. The nine top-level categories
are listed in Table 8. If “categoryId” is specified as a top-
level category, all sub-categories will also match the query.
Let A be the area with latitude from 26� N to 49� N and lon-
gitude from 125�W to 67�W, which covers almost the entire
US territory. We apply our method RRZI_URS to sample
PoIs within A. For each top-level category, we sampled

about 1:0� 105 fully accessible regions. Table 8 shows our
estimated statistics of PoIs within A. In terms of the average
statistics (i.e., the average numbers of check-ins, tips, and
users), Food, Nightlife Spot, and Shop & Service are the top-3
popular categories. Moreover, we can see that 25.8 percent
of PoIs belong to the Residence category, which includes four
sub-categories: Living, Home (Private), Housing Development,
and Residential Buildings (Appartments/Condos). It indicates
that a large number of users have revealed their exact living
places to Foursquare.

Similarly we apply our methods to sample and character-
ize food-type PoIs within US on Google maps. The Google
public API [14] returns results including PoIs’ ratings and
price levels. A PoI’s rating and price level are calculated based

on its user reviews,where a PoI’s rating ranges from 1.0 to 5.0,
and a PoI’s price level is an integer with the range 0 (most
affordable) to 4 (most expensive). Among 4.7 million food-
typed PoIs sampled, 15.5 and 18.2 percent of PoIs’ ratings and
price levels are available respectively. Based on these PoIs,
we estimate the PoI price level distribution and find that 0.05,
72.5, 25.8, 1.6, and 0.06 percent of PoIs’ price levels are 0 to 4
respectively. Fig. 14 shows our estimate of the PoI rating dis-
tribution. We can see that most PoIs have high ratings. The
average rating is 3.9, and nearly 90 percent of PoIs have rat-
ings larger than 3.0. Thus, it is hard to evaluate a PoI’s relative
service quality just depending on its rating value.

Next, we sample and characterize hotel-type PoIs in the
following three areas on Baidu maps: 1) quadrangle region
[(116� E, 40:5� N), (117� E, 39:5� N)], covering Beijing city; 2)
quadrangle region [(121� E, 32� N), (122� E, 30:5� N)], cover-
ing Shanghai city; 3) quadrangle region [(113� E, 23:5� N),
(114� E, 22:5 N)], covering cities Guangdong, Dongguan,
and Foshan. We apply RRZIC_MHWRS to sample 1,000
fully accessible regions for each of above three regions
based on the public API [15]. 51.8, 41.7, and 42.2 percent of
sampled hotel-type PoIs’ prices are available on Baidu
maps for areas Beijing, Shanghai, and Guangzhou respec-
tively. Based on these PoIs, we estimate the average and dis-
tribution of hotel prices. From Fig. 15, we can see that more
than 20, and 50 percent of hotels’ prices are in the intervals
(0, 100] and (100, 200] RMB respectively, and 80 percent of
hotels’ prices are lower than 300 RMB. Moreover, Fig. 15
shows that Guangzhou has more hotels with price in (100,
200] RMB than Beijing and Shanghai. The average price of
hotels in Beijing is 200 RMB, which is higher than Shanghai
(187 RMB), and Guangzhou (168 RMB). We also use the

Fig. 13. (Foursquare) The number of queries required to obtain an esti-
mate of the average number of check-ins with NRMSE less than 0.1 for
our methods in comparison with NNS [7].

TABLE 7
Compared Errors of RRZI and RRZI* for Estimating the Average

Value and Distribution Statistics

Dataset Average Distribution

RRZI RRZI* RRZI RRZI*

New York City 0.43 1.14 0.03 0.13
Belgium 0.46 1.21 0.04 0.16
Singapore 0.50 1.31 0.03 0.12
Seoul 0.42 1.03 0.03 0.14

TABLE 8
(Our Real Application on Foursquare) Statistics of

PoIs within US

Category Fraction Average statistics (per PoI)

(%) # tips # check-ins # users

Food 10.4 6.6 757 304
Nightlife Spot 6.4 3.4 422 166
Shop & Service 14.1 1.9 526 141
Travel & Transport 7.3 0.8 278 77
Arts & Entertainment 3.7 1.8 370 194
College & University 2.2 1.0 353 59
Outdoors & Recreation 16.0 0.7 207 64
Residence 25.8 0.2 83 5
Professional & Others 14.0 0.7 237 45

Fig. 14. (Our real application on Google maps) Rating distribution of
food-type PoIs within US.
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bootstrap method to compute confidence intervals of these
three estimates of average prices. The 95 percent confidence
intervals of average price estimates are [169, 231] RMB,
[159, 215] RMB, and [139, 197] RMB for Beijing, Shanghai,
and Guangzhou respectively.

6 RELATED WORK

Recently a lot of attention has been paid to study hidden
databases using public search interfaces. Previous work
focuses on crawling, retrieving, and mining information
from web search engines [16], [17], [18], [19], text-based
databases [20], [21], [22], [23], [24], [25], [26] and form-
based [27], [28], [29], [30], [31], [32], [33], [34], [35] databases.
Several sampling methods are given in [18], [36], [37], [38],
[39], [40] to estimate a form-based hidden database’s size
(i.e., the number of tuples, refer to Khelghati et al. [41] for a
good survey). These methods are designed for search
engines with inputs specified as categorical data, and their
performances depend on the range of input values, so they
cannot be directly applied to sample PoIs using map-based
search engines, which have a quite large number of input
values (latitude and longitude pairs within the area of inter-
est). To address this challenge, two methods in [7] and [8]
are given to sample PoIs using public map APIs. Next we
discuss them in detail.

6.1 Nearest-Neighbor Search

Dalvi et al. [7] propose a method to sample PoIs using the
nearest-neighbor search API, which returns the several clos-
est PoIs to an input location specified as a pair of latitude
and longitude. Their method works as follows: At each
step, it first randomly selects a point ðx; yÞ from A, the area
of interest. Then it finds and samples the closest PoI p to
ðx; yÞ using a NNS query. Denote by DðpÞ the points in the
plane A that are closer to p than the other PoIs. Dalvi
et al. [7] prove that their method samples PoIs with biases,

and the probability of sampling p is gðpÞ ¼ areaðDðpÞÞ
areaðAÞ . To

remove the sampling bias, a large number of NNS queries
(e.g., on average 55 queries are used in [7]) are required to
determine the boundary of DðpÞ for each sampled PoI p.
Therefore the method in [7] is quite expensive especially for
service providers such as Foursquare, which does not pro-
vide a NNS API to the public.

6.2 Random Region Sampling

Li et al. [8] propose a random region sampling method to
estimate the number of PoIs within A. RRS first picks a point

ðx; yÞ from A at random. Then, it computes an estimate d̂ of
the PoI density around ðx; yÞ based on the PoI densities of
regions sampled previously, and initializes a new search

region as a square with center ðx; yÞ and length
ffiffiffiffiffiffiffiffi
k=d̂

q
,

where k is the maximum number of PoIs returned for a
query. If the new region has overlapping with any region
sampled previously, then RRS cuts the new region to make
it not collide with any sampled regions. At last RRS exhaus-
tively searches and collects PoIs within the new region. Let
nðQÞ be the number of PoIs within a region Q. Givenm > 0
sampled regions Qi (1 � i � m), Li et al. [8] estimate nðAÞ as
follows n̂ðAÞ ¼ areaðAÞ

m

Pm
i¼1

nðQiÞ
areaðQiÞ. We find that RRS has fol-

lowing drawbacks: 1) At the beginning of RRS, its PoI den-
sity estimate might exhibit a large error, so a large and
dense region might be determined to explore. It requires a
large number of queries to collect all PoIs within this region.
2) A very small region might be sampled from sparse areas
due to RRS’ region cutting operation. Then the number of
PoIs within this small region is overestimated. 3) n̂ðAÞ is not
a consistent estimator of nðAÞ and it might exhibit a large
error. As shown in Fig. 16, A is specified as an 1� T quad-
rangle, where T � 1. A has two PoIs p1 and p2. Suppose
that k ¼ 1 and the distance between p1 and p2 is larger than
1. Let Q1 and Q2 be the regions sampled by RRS, which
include p1 and p2 respectively. Clearly areaðQ1Þ and
areaðQ2Þ are not larger than 1. Therefore, we have n̂ðAÞ 

T � nðAÞ ¼ 2.

7 CONCLUSIONS

In this paper, we propose methods to sample PoIs on maps,
and give consistent estimators of PoI aggregate statistics.
We show that the mix method RRZI_URS is more accurate
than RRZI under the same number of queries used. When
PoI count information is provided by public APIs,
RRZIC_MHWRS utilizing this meta information is more
accurate than RRZI_URS. The experimental results based
on a variety of real datasets show that our methods are effi-
cient, and they sharply reduce the number of queries
required to achieve the same estimation accuracy of state-
of-the-art methods.
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version of the paper appeared in IEEE ICDE 2014 [1]. In this
journal version, we propose a newmethod RRZIC_MHWRS
to improve the accuracy of RRZIC_URS proposed in the
conference version, and conduct new experiments to evalu-
ate the performance of our method based on a publicly
available Foursquare dataset. Moreover, in this paper,
we apply our methods to study characterisers of PoIs in
Chinese metropolises.
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