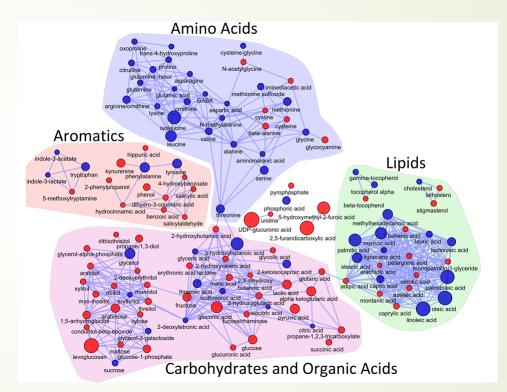
Estimating and Sampling Graphs with Multidimensional Random Walks


Group 2: Mingyan Zhao, Chengle Zhang, Biao Yin, Yuchen Liu

Motivation

Complex Network

Social Network

Biological Network

erence: www.forbe.com imdevsoftware.wordpress.com

Existing Approaches

Random vertex sampling

Random edge sampling

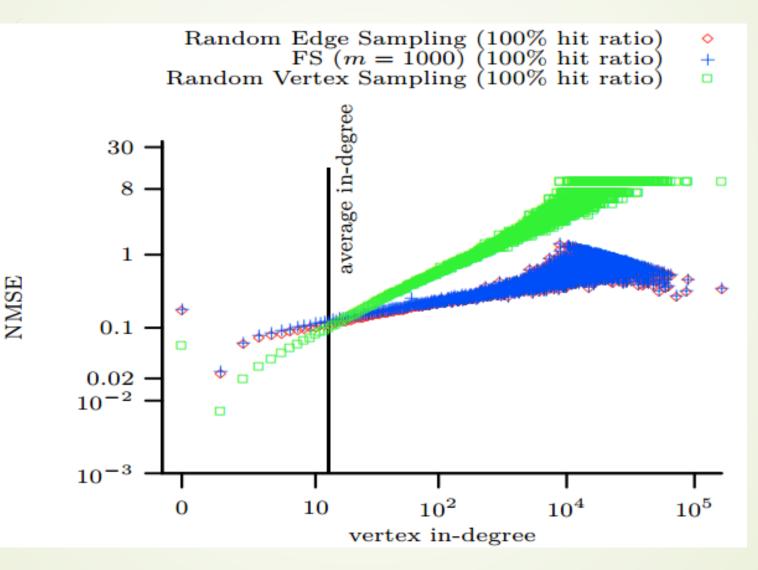
Frontier Sampling

a new *m*-dimensional random walk that uses *m*

dependent random walkers.

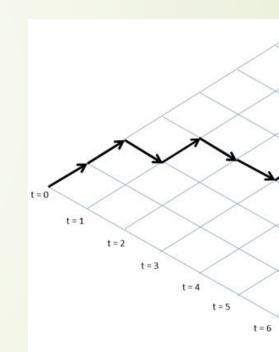
Contribution

Mitigates the large estimation errors caused by disconnected or loosely connected components.


Shows that the tail of the degree distribution is better estimated using random edge sampling than random vertex sampling.

Presents asymptotically unbiased estimators

Definitions


Notation	Meaning		
Gd (V, Ed)	A labeled directed graph representing the (original network graph, where V is set of vertices and Ed is a so of edges		
(∪, ∨)	A connection from <i>u</i> to (a.k.a. edges)		
\mathcal{L}_v and \mathcal{L}_e	Finite set of vertex and edg labels,		
$\mathcal{L}e(\cup,\vee)=\emptyset$	Edge (u, v) is unlabeled		
$\mathcal{L}_{\mathcal{V}}(\vee) = \emptyset$	Vertex v is unlabeled		

Vertex V.S. Edge Sampling

Section 4

- 1. Mathematical theories and conductions on Random Walk Samp
- 2. Strong Law of Large Numbers
- 3. Four estimators will be applied in Section 5
- 4. Deficiency of RW
- 5. Multiple Independent Random Walkers

Strong Law of Large Numbers

$$\lim_{s \to \infty} \frac{1}{B^{\star}(B)} \sum_{i=1}^{B^{\star}(B)} f(u_i, v_i) \to \frac{1}{|E^{\star}|} \sum_{\forall (u,v) \in E^{\star}} f(u, v)$$

 $n \rightarrow \infty$

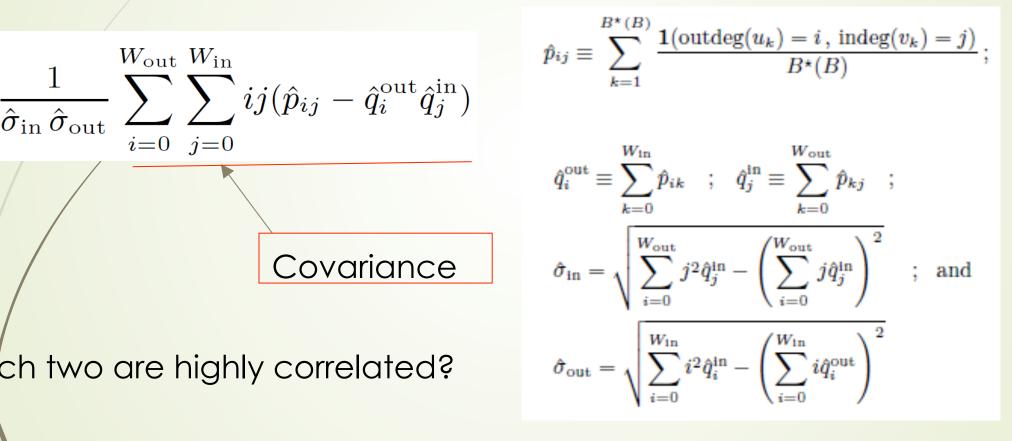
inal statistical Thm:	В	Number of RW step
$\stackrel{ ext{a.s.}}{ o} \mu ext{ when } n o \infty. \qquad ext{ } \Pr\Bigl(\lim_{n o \infty} ar{X}_n = \mu \Bigr) = 1.$	B*(B)	Number of edges ir
ık law:	E*	Total RW Sampled Edges
$\neq \infty$ lim $P(X - \mu \ge \epsilon) = 0$.		

Estimator 1: Edge Label Density

label edges of interest:

$$\mathbf{1}(l \in \mathcal{L}_e(u, v)) = \begin{cases} 1 & \text{if } l \in \mathcal{L}_e(u, v) \\ 0 & \text{otherwise.} \end{cases}$$

he probability of the labelled edges


$$p_l = \sum_{\forall (u,v) \in E^{\star}} \frac{\mathbf{1}(l \in \mathcal{L}_e(u,v))}{|E^{\star}|}$$

estimator based on SLLN

$$\hat{p}_l \equiv \sum_{i=1}^{B^{\star}(B)} \frac{\mathbf{1}(l \in \mathcal{L}_e(u_i, v_i))}{B^{\star}(B)}$$

Estimator 2: Assortative Mixing Coefficient (AMC)

sidering directed G, an asymptotically unbiased estimator of AMC:

Estimator 3: Vertex label Density

postruct an asymptotically unbiased estimator:

$$\hat{\theta}_{l} \equiv \frac{1}{SB} \sum_{i=1}^{B} \frac{\mathbf{1}(l \in \mathcal{L}_{v}(v_{i}))}{\deg(v_{i})}$$
ce:

$$\lim_{t \to \infty} \frac{1}{B} \sum_{i=1}^{B} \frac{\mathbf{1}(l \in \mathcal{L}_{v}(v_{i}))}{\deg(v_{i})} \rightarrow \frac{1}{|E|} \sum_{\forall (u,v) \in E} \frac{\mathbf{1}(l \in \mathcal{L}_{v}(v))}{\deg(v)} \qquad S = \frac{1}{B} \sum_{i=1}^{B} \frac{1}{\deg(v_{i})} \qquad \lim_{B \to \infty} S \rightarrow |V^{\star}|/|E|$$
this estimator converges to:

$$\theta_{l} = \frac{1}{|V|} \sum_{\forall (u,v) \in E} \frac{\mathbf{1}(l \in \mathcal{L}_{v}(v))}{\deg(v)}$$

Estimator 4: Global Clustering Coefficient

 $\frac{f(v, u)}{deg(v)}$

$$C \equiv \frac{1}{|V^{\star}|} \sum_{\forall v \in V} c(v) \,,$$

ere

$$c(v) = \begin{cases} \Delta(v) / \binom{\deg(v)}{2} & \text{if } \deg(v) \ge 2\\ 0 & \text{otherwise} \,, \end{cases}$$

ere $\Delta(v) = |\{(u, w) \in E : (v, u) \in E \text{ and } (v, w) \in E\}$

unbigsed estimator by SLLN

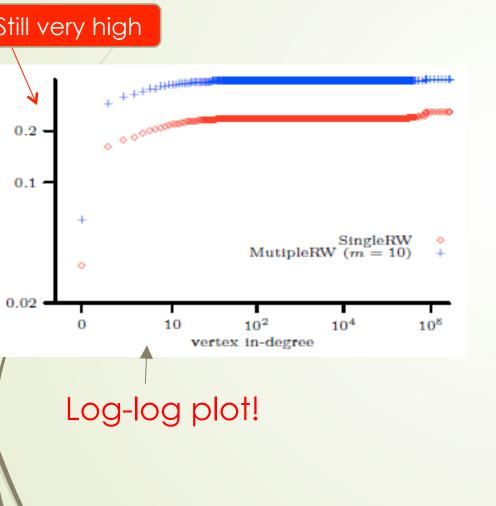
$$\hat{C} \equiv \frac{1}{SB} \sum_{i=1}^{B} \frac{f(v_i, u_i)}{\binom{\deg(v_i)}{2}} \frac{1}{\deg(v_i)}$$

$$S = \frac{1}{B} \sum_{i=1}^{B} \frac{1}{\deg(v_i)}$$

$$\begin{array}{c} \Theta:\\ \lim_{B \to \infty} \frac{1}{B} \sum_{i=1}^{B} \frac{f(v_i, u_i)}{\binom{\deg(v_i)}{2}} \frac{1}{\deg(v_i)} \rightarrow \frac{1}{|E|} \sum_{\forall (v, u) \in E} \end{array}$$

$$\lim_{B \to \infty} S \to |V^\star|/|E|$$

Deficiency of RW from one point

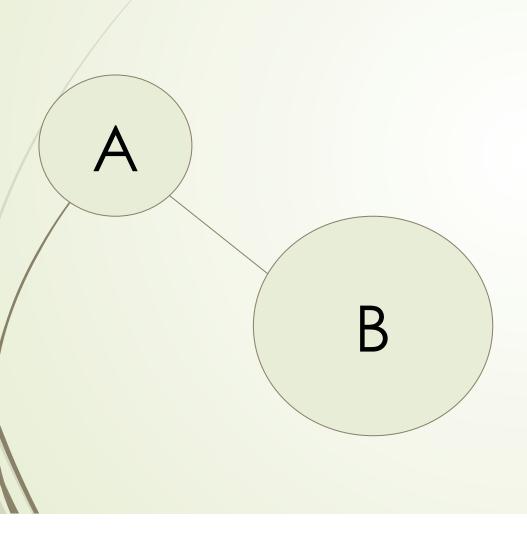

- 1. "Trapped" inside a subgraph (MSE)
- 2. Start from non-stationary (non-steady) state (MSE, Bias)

Byrn-in period: Discard the non-stationary samples

- 1. Just decrease error with non-stationary one
- 2. Discarding in a small sample is not ideal

Multiple Independent Random Walkers cor

Single RW and Multiple RW



Single RW is depend on sample sizes from the estimators provided.

Mutiple RW will split the sample sizes into each path.

So, error in the total CNMSE

Why not M-independent RW ?

MIRW is hard to sample m independent vertex with p proportional to their degrees.

$$\deg(v)/\mathrm{vol}(V)$$

Section 5

Motivation

We want an m-dimensional random walk that, in steady state, samples edges uniformly at random but, unlike MultipleRW, can benefit from starting its walkers at uniformly sampled vertices.

Frontier Sampling

prithm 1: Frontier Sampling (FS).

 $n \leftarrow 0$ {n is the number of steps} Initialize $L = (v_1, \ldots, v_m)$ with m randomly chosen vertices (uniformly)

repeat

Select $u \in L$ with probability $\deg(u) / \sum_{\forall v \in L} \deg(v)$ Select an outgoing edge of u, (u, v), uniformly at random

Replace u by v in L and add (u, v) to sequence of sampled edges

$$n \leftarrow n \pm 1$$

until $n \ge B - mc$

$$= \deg(u) / \sum L \uparrow \operatorname{deg}(\frac{1}{\sum_{\forall v \in L_n} \deg(v)}.$$

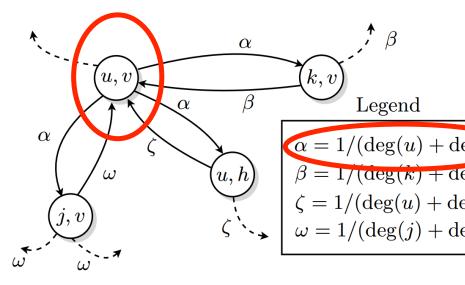
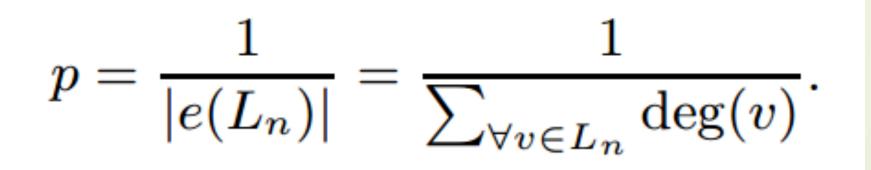
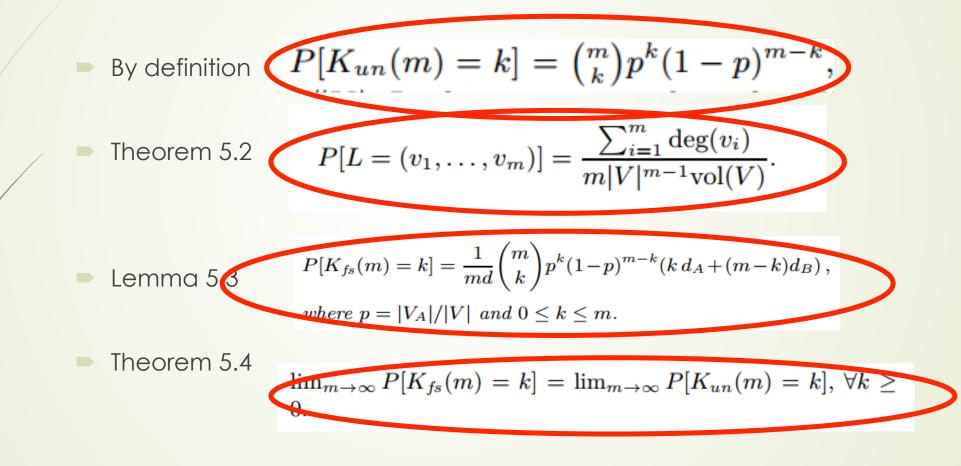



Figure 2: Illustration of the Markov chain associated to tier sampler with dimension m = 2.

Frontier Sampling: A m-dimensional Random W

- The frontier sampling process is equivalent to the sampling process of a single random walker over *G1m*. (Lemma 5.1)
 - P(selecting a vertex and its outgoing edge in FS) = P(randomly sampling an edge from e(Lin) in single random walker over G1m).


FS Steady State v.s Uniform Distribution

- $K\downarrow fs$ (m) be a random variable that denotes the number of random walkers in $V\downarrow A$ in steady state.
- Let $K\downarrow un$ (m) be a random variable that denotes the number of sampled vertices, out of m uniformly sampled vertices from V, that belong to $V\downarrow A$.

$$\lim_{m \to \infty} P[K_{fs}(m) = k] = \lim_{m \to \infty} P[K_{un}(m) = k], \ \forall k \ge 0.$$
(9)

Proving this to be true indicates that the FS algorithm starting with m random walkers at m uniformly sampled vertices approaches the steady state distribution. This means FS benefits from starting its walkers at uniformly sampled vertices by reducing transient of RW.

FS Steady State V.S. Uniform Distribution

MultipleRW Steady State V.S. Uniform Distributio

 $K\downarrow mw(m)$ be a random variable that denotes the steady state number of MultipleRW random walkers in $V\downarrow A$.

$$E[K_{mw}(m)] = \frac{m |V_A| d_A}{|V| d}$$
$$E[K_{un}(m)] = \frac{m |V_A|}{|V|}$$

$$\alpha_A = E[K_{mw}(m)]/E[K_{un}(m)] = d_A/d.$$

Note: $d\downarrow A$ (average degree of vertices in $V\downarrow A$)

Conclusion: If we initialize m random walkers with uniformly sampled vertices, FS starts closer to steady state than MultipleRW.

Distributed Frontier Sampling

- Frontier Sampling can also be parallelized.
- A MultipleRW sampling process where the cost of sampling a vertex v is an exponentially distributed random variable with parameter deg(v) is equivalent to a FS process. (Theorem 5)

Experiment and Result

Data:

- "Flickr", "Livejournal", and "YouTube"
- Barabási-Albert [5] graph
- Goal:
 - Compare FS to MultipleRW, SingleRM
 - Compare FS on random vertex and edge sampling
- Result: FS is constantly more accurate

Assortative Mixing Coefficient

$$\hat{r} \equiv \frac{1}{\hat{\sigma}_{\rm in} \, \hat{\sigma}_{\rm out}} \sum_{i=0}^{W_{\rm out}} \sum_{j=0}^{W_{\rm in}} ij(\hat{p}_{ij} - \hat{q}_i^{\rm out} \hat{q}_j^{\rm in}) \,,$$

Graph	r	\mathbf{FS}		MultipleRW		SingleRW	
		Bias	NMSE	Bias	NMSE	Bias	NMSE
Flickr	0.007	8%	1.08	752%	7.65	-619%	27.32
LiveJournal	0.07	-0.5%	0.11	-12%	0.16	1%	0.17
Internet RLT	0.17	3%	0.33	2%	0.32	17%	0.44
Youtube	-0.03	0.001%	0.02	2%	0.03	-1%	0.1
G_{AB}	0.08	0.01%	0.12	70%	0.72	100%	1.00

In-degree Distribution Estimates

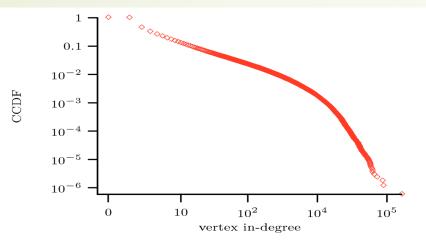


Figure 3: (Flickr) Log-log plot of the in-degree CCDF.

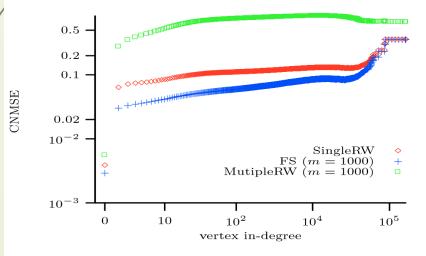


Figure 4: (LCC of Flickr) The log-log plot of the CNMSE of the in-degree distribution estimates with budget B = |V|/100.

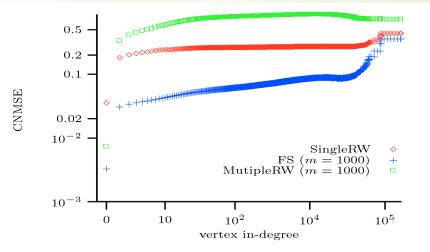
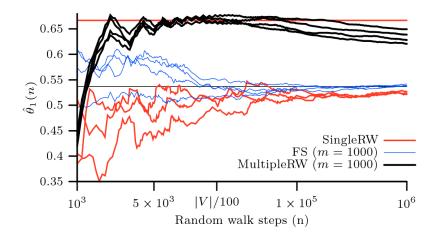
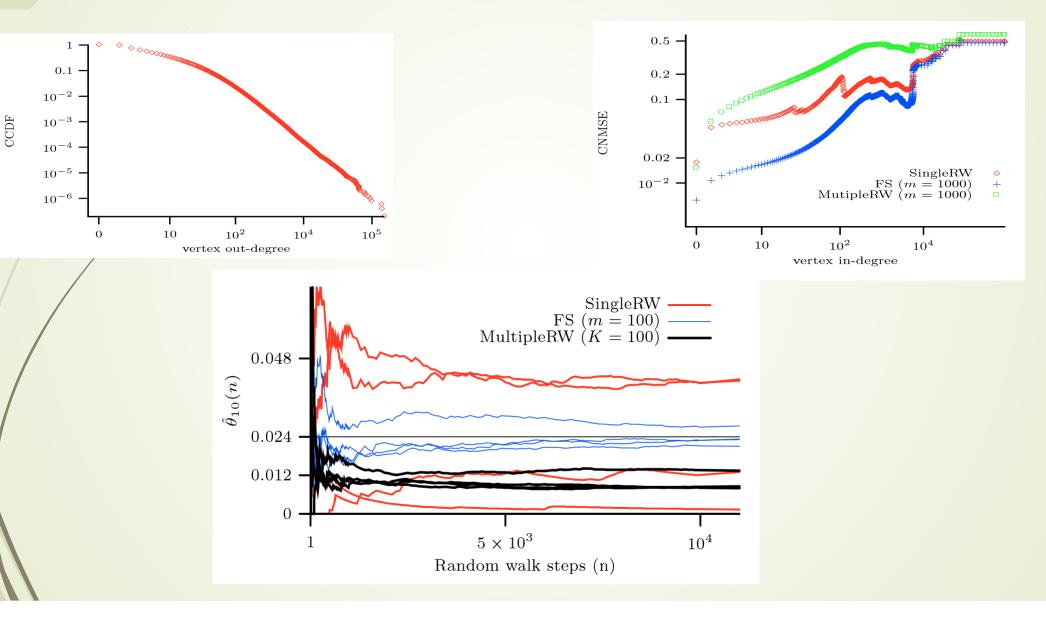
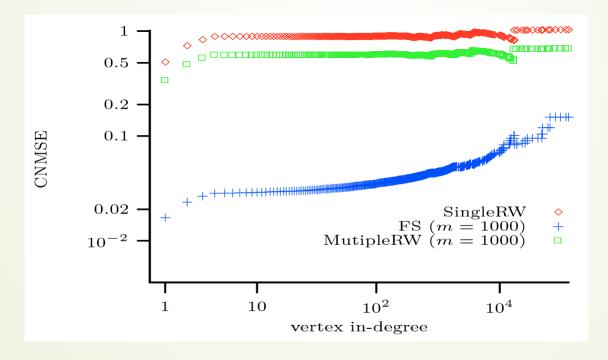
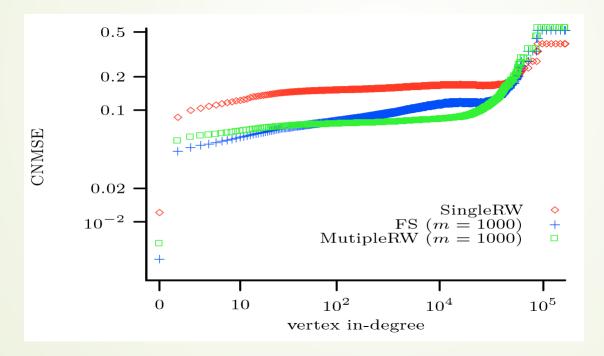


Figure 5: (Flickr) The log-log plot of the CNMSE of the in-degree distribution estimates with budget B = |V|/100.

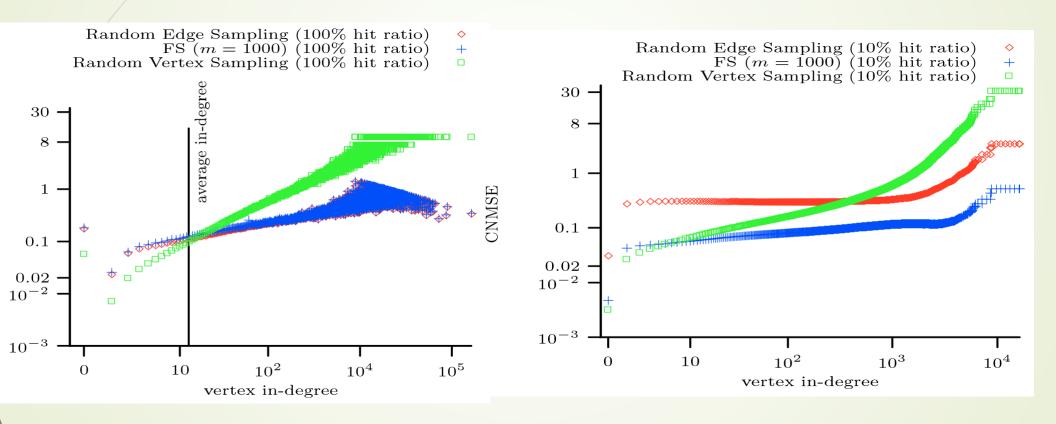




Figure 6: (LCC of Flickr) Four sample paths of $\hat{\theta}_1$ ($\theta_1 = 0.53$) as a function of the number of steps n (horizontal axis in log scale).

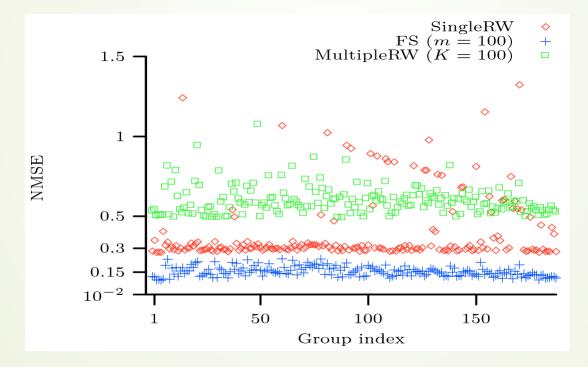
Out-degree Distribution Estimates


In-degree Distribution loosely connected components

Barabási-Albert Graph



FS V.S. Stationary MultipleRW & SingleRW


MultipleRW and SingleRW start with steady state

FS V.S. Random Independent Samplin

Density of Special Interest Group

Global Clustering Coefficient Estimates

Global Clustering Coefficient

a measure of the degree to which nodes in a graph tend to cluster together.

			$E[\hat{C}]$ (NMSE)			
Graph	B	C	FS	SingleRW	MultipleRW	
Flickr LiveJournal	$1\% \\ 1\%$		$egin{array}{l} 0.13 \ (0.04) \ 0.16 \ (0.02) \end{array}$	$egin{array}{l} 0.12 \; (0.33) \ 0.16 \; (0.02) \end{array}$	$0.16\ (0.18)\ 0.17\ (0.06)$	

Conclusion

In almost all of the tests, FS is better.

Juture Work

estimating characteristics of dynamic networks design of new MCMC-based approximation algorithms

Thank you!