Welcome to

DS504/CS586: Big Data Analytics
Graph Mining II
Prof. Yanhua Li

Time: 6:00pm – 8:50pm Mon. and Wed.
Location: SL105
Spring 2016
Reading assignments

We will increase the bar a little bit
Please add more of your ideas, and share them with us in the class.
Project 1

Team 1:

Utilizing the data from Allstate to predict the possible Bodily Injury Liability Insurance claim payments that the company may pay in line with the vehicle features.

Team 2:

3D Video Growing Trend on YouTube
Project 1

Team 3:

Designing a sampling method that can estimate the available capacity of hotels in a large area and a certain time range as accurate as possible.

Team 4:

A huge number of professional as well as amateur programmers use Stackoverflow.com to find solutions to their questions regularly. Thus, our team seeks to give such users a general idea of which skills to learn to create their projects and how to manage their skills by offering a project-related heat map of programming languages and knowledge points.
Project 1

Team 5:

MEASURING RESTAURANT DIVERSITY INDEX FOR DIFFERENT CITIES in Yelp

Team 6:

We will estimate the number of valid and invalid users among the population. Lastly, we will analyze other related web site statistics such as passive and active users.
Graphs are everywhere.

- Biological Network
- Ecological Network
- Social Network
- Chemical Network
- Program Flow
- Web Graph
Real-life graph contains complex contents – labels associated with nodes, edges, and graphs.

Node Labels:
- Location
- Gender
- Charts
- Library
- Events
- Groups
- Journal
- Tags
- Age
- Tracks

Example: A user profile on a social media platform such as last.fm.
Large Scale Graphs.

<table>
<thead>
<tr>
<th>Platform</th>
<th># of Users</th>
<th># of Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>400 Million</td>
<td>52K Million</td>
</tr>
<tr>
<td>Twitter</td>
<td>105 Million</td>
<td>10K Million</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>60 Million</td>
<td>0.9K Million</td>
</tr>
<tr>
<td>Last.FM</td>
<td>40 Million</td>
<td>2K Million</td>
</tr>
<tr>
<td>LiveJournal</td>
<td>25 Million</td>
<td>2K Million</td>
</tr>
<tr>
<td>del.icio.us</td>
<td>5.3 Million</td>
<td>0.7K Million</td>
</tr>
<tr>
<td>DBLP</td>
<td>0.7 Million</td>
<td>8 Million</td>
</tr>
</tbody>
</table>
Mining in Big Graphs

- Network Statistic Analysis (last lecture)
 - Network Size
 - Degree distribution.

- Node Ranking (this lecture)
 - Identifying most important/influential nodes
 - Viral Marketing, resource allocation
Characterize Node Importance

- Rank the webpages in search engine.
- Viral Marketing, resource allocation
- Open a new restaurant, find the optimal location
- ...

Ranking nodes on an undirected graph

<table>
<thead>
<tr>
<th>Node Degree</th>
<th>Stationary distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Importance</td>
<td>Global Importance</td>
</tr>
</tbody>
</table>

- **|V| = 6**
- **|E| = 7**
- d(5) = 4
- d(3) = 3
- d(4) = 2
- d(2) = 2
- d(1) = 2
- d(6) = 1
- \(\pi(5) = \frac{4}{14}\)
- \(\pi(3) = \frac{3}{14}\)
- \(\pi(4) = \frac{2}{14}\)
- \(\pi(2) = \frac{2}{14}\)
- \(\pi(1) = \frac{2}{14}\)
- \(\pi(6) = \frac{1}{14}\)

They are equivalent.
Ranking nodes on a directed graph

Node in & out Degree

- **Local Importance**
 - \(d_{in}(3) = 3; d_{out}(5) = 3\);
 - \(d_{in}(5) = 2; d_{out}(3) = 2\);
 - \(d_{in}(1) = 2; d_{out}(1) = 2\);
 - \(d_{in}(2) = 2; d_{out}(4) = 2\);
 - \(d_{in}(4) = 1; d_{out}(2) = 1\);
 - \(d_{in}(6) = 1; d_{out}(6) = 1\);

Stationary distribution

- **Global Importance**
 - \(\pi(5) = ?\)
 - \(\pi(4) = ?\)
 - \(\pi(3) = ?\)
 - \(\pi(2) = ?\)
 - \(\pi(1) = ?\)
 - \(\pi(6) = ?\)

They are equivalent?
Random Walk (Undirected Graph)

- Adjacency matrix

\[
A = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}
\]

\[
D = \begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix}
\]

- Transition Probability Matrix

\[
\frac{P_{ij}}{k_i} = x_{t,i} = \sum_j x_{t-1,j} p_{ji}
\]

- \(|E|\): number of links

- Stationary Distribution

\[
\pi_i = \frac{d_i}{2|E|}
\]

\[
P = A \cdot D^{-1} =
\begin{pmatrix}
0 & 1/3 & 1/3 & 1/3 \\
1/2 & 0 & 1/2 & 0 \\
1/3 & 1/3 & 0 & 1/3 \\
1/2 & 0 & 1/2 & 0
\end{pmatrix}
\]

- \(\pi(1) = 3/10\)
- \(\pi(3) = 3/10\)
- \(\pi(2) = 2/10\)
- \(\pi(4) = 2/10\)
Random Walk (directed graph)

Strongly Connected Graphs & Aperiodic

- Adjacency matrix
 \[A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

 Asymmetric

- Transition Probability Matrix
 \[P_{ij} = \frac{1}{k_{out,i}} \]
 \[x_{t,i} = \sum_j x_{t-1,j} p_{ji} \]

- \(|E|\): number of directed links

- Stationary Distribution
 \[\pi_i \neq \frac{d_i}{2|E|} \]

\[P = A \cdot D^{-1} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1 & 0 & 0 & 0 \end{pmatrix} \]

- \(\pi(1) = 6/18 = 1/3\)
- \(\pi(2) = 4/18 = 2/9\)
- \(\pi(3) = 3/18 = 1/6\)
- \(\pi(4) = 5/18\)
Ranking nodes in a directed graph

Node in & out Degree

- **Local Importance**
 - \(d_{in}(3) = 3 \); \(d_{out}(5) = 3 \);
 - \(d_{in}(5) = 2 \); \(d_{out}(3) = 2 \);
 - \(d_{in}(1) = 2 \); \(d_{out}(1) = 2 \);
 - \(d_{in}(2) = 2 \); \(d_{out}(4) = 2 \);
 - \(d_{in}(4) = 1 \); \(d_{out}(2) = 1 \);
 - \(d_{in}(6) = 1 \); \(d_{out}(6) = 1 \);

- **Global Importance**
 - \(\pi(1) = 5/16 \)
 - \(\pi(3) = 1/4 \)
 - \(\pi(2) = 3/16 \)
 - \(\pi(4) = 1/8 \)
 - \(\pi(5) = 3/32 \)
 - \(\pi(6) = 1/32 \)

They are no longer equivalent.

Strongly Connected Graphs & Aperiodic
directed graphs
Strongly Connected Graphs & Aperiodic

- Periodic
 - vs
- Aperiodic Graphs
 - The greatest common divisor of the lengths of its cycles is one or not

- Disconnected graph
 - vs
- Connected graph
 - Strongly Connected
 - vs
 - Weakly Connected

- Ergodic: Strongly Connected and Aperiodic
Why This Order?
Ranking nodes in a directed graph (II)

<table>
<thead>
<tr>
<th>PageRank</th>
<th>HITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk</td>
<td>Hub & Authority</td>
</tr>
<tr>
<td>with Random Jumps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>- $R(3)=?;$</td>
<td>- $R_a(3)=?; R_h(5)=?;$</td>
</tr>
<tr>
<td>- $R(5)=?;$</td>
<td>- $R_a(5)=?; R_h(3)=?;$</td>
</tr>
<tr>
<td>- $R(1)=?;$</td>
<td>- $R_a(1)=?; R_h(1)=?;$</td>
</tr>
<tr>
<td>- $R(2)=?;$</td>
<td>- $R_a(2)=?; R_h(4)=?;$</td>
</tr>
<tr>
<td>- $R(4)=?;$</td>
<td>- $R_a(4)=?; R_h(2)=?;$</td>
</tr>
<tr>
<td>- $R(6)=?;$</td>
<td>- $R_a(6)=?; R_h(6)=?;$</td>
</tr>
</tbody>
</table>

They are no longer equivalent.
Naïve PageRank

- **Adjacency matrix**

 \[A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

- **Transition Probability Matrix**

 \[P_{ij} = \frac{1}{k_{out,i}} \]

 \[R_i = \sum_j R_j p_{ji} \]

- **Stationary Distribution**

 \[R_i = \pi_i \]

- **Disconnected Graph & Random surfing behaviors**

 \[P = A \cdot D^{-1} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1 & 0 & 0 & 0 \end{pmatrix} \]

 - \(\pi(1) = 6/18 = 1/3 \)
 - \(\pi(2) = 4/18 = 2/9 \)
 - \(\pi(3) = 3/18 = 1/6 \)
 - \(\pi(4) = 5/18 \)
Standard PageRank

- **Adjacency matrix**
 \[
 A = \begin{pmatrix}
 0 & 1 & 1 & 0 \\
 0 & 0 & 1 & 0 \\
 1 & 1 & 0 & 1 \\
 1 & 0 & 0 & 0
 \end{pmatrix}
 \quad D = \begin{pmatrix}
 2 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 3 & 0 \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 \]

- **Transition Probability Matrix (d=0.85)**
 \[
 P_{ij} = \frac{1}{k_{out,i}}
 \]

\[
R_i = d \sum_j R_j p_{ji} + (1-d) \frac{1}{n}
\]

- **Stationary Distribution (J is all-1 matrix).**
 \[
 R_i = \pi_{pr,i}
 \]

\[
P_{pr} = d \cdot P + (1-d) \frac{1}{n} J = \begin{pmatrix}
 0.0375 & 0.4625 & 0.4625 & 0.0375 \\
 0.0375 & 0.0375 & 0.0375 & 0.8875 \\
 0.3208 & 0.3208 & 0.0375 & 0.3208 \\
 0.8875 & 0.0375 & 0.0375 & 0.0375
 \end{pmatrix}
 \]

- **Convergence**
 - Leading eigenvector of \(P_{pr}\)
How to quantify the importance as a hub and authority separately?
Hub & Authority (HITS)

- Adjacency matrix
 \[A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

- Hub and authority
 - Initial Step: \(\text{hub}(p) = 1; \text{auth}(p) = 1; \)

 - Each step with normalization:
 \[
 \begin{align*}
 \text{hub}(p) &= \sum_{i=1}^{n} \text{auth}(i); \\
 \text{hub}(p) &= \frac{\text{hub}(p)}{\sqrt{\sum_{i=1}^{n} \text{hub}(i)^2}}; \\
 \text{auth}(p) &= \sum_{i=1}^{n} \text{hub}(i); \\
 \text{auth}(p) &= \frac{\text{auth}(p)}{\sqrt{\sum_{i=1}^{n} \text{auth}(i)^2}};
 \end{align*}
 \]

- Convergence
 - \text{hub and authority are the left and right singular vector of the adjacency matrix } A.
A Note on Maximizing the Spread of Influence in Social Networks

E. Even-Dar and A. Shapira
Social Influence
Social Influence

- Instant Messaging
- Collaboration networks
- Sharing sites
- Location Based Services
- Social networks
- Microblogs
The Power of Social Recommendation

Kai Fu Lee December 03, 2012

A few days ago, I had a chance to try a particular brand of frozen dessert maker, which was only available in the United States. I sent out a "tweet" in China on Sina Weibo, sharing my experience.

To my surprise, this tweet was retweeted over 100,000 times, as Chinese young people and parents showed great interest in having such a machine. Even more surprising, within 3 hours, Taobao (China's eBay) had hundreds of sellers offering to buy such a machine in the US and shipping it to China for the buyer. Even though the shipping cost was more than the machine, thousands were sold within a day (one store reported 51 sales, and there were over
Voter Influence Model

Opinion diffusions

Word of mouth effect!
Randomly selecting one neighbor to adopt its opinion

Switch opinions back and forth

Influence Maximization

Budget: Selecting k individuals as initial red seeds
Assumption: Uniform cost of selecting each initial seed
Goal: Maximize the number of future red nodes

Formulation

Probability of node i being red at step t: $x_t(i)$

At step $t>0$, $x_t(i) = 1 - x_t(i)$

At step $t+1$, $x_{t+1}(i) = \sum_{j: a_{ij} > 0} x_t(j)p_{ji}$

$p_{ij} = \frac{a_{ij}}{\sum_{j \in V} a_{ij}}$

Influence at step t: $f_t(x_0) = \sum_{i \in V} x_t(i)$

Influence contribution:

Short term \[\max_{x_0} f_t(x_0) - f_0(x_0) \]

Long term \[\max_{x_0} \lim_{t \to \infty} f_t(x_0) - f_0(x_0) \]
Formulation (Random Walk)

Influence at step t:
$$\mathbf{1} \mathbf{x}^T_t$$

Influence contribution:
- Short term
 $$\max_{x_0} : \mathbf{1} \mathbf{x}^T_t$$
- Long term
 $$\max_{x_0} : \lim_{t \to \infty} \mathbf{1} \mathbf{x}^T_t$$

\mathbf{x}^T_t is a column vector, which is the transpose of row vector \mathbf{x}_t

Matrix form:
$$\mathbf{x}_t = x_0 \mathbf{P}^t$$

$$\lim_{t \to \infty} \mathbf{x}_t = \lim_{t \to \infty} x_0 \mathbf{P}^t = \mathbf{\pi}$$

Influence contribution:
- Short term
 $$\max_{x_0} : f_t(x_0) - f_0(x_0)$$
- Long term
 $$\max_{x_0} : \lim_{t \to \infty} f_t(x_0) - f_0(x_0) = x_0 \mathbf{\pi}^T - f_0(x_0)$$
Influence Maximization

Budget: Selecting C for initial red seeds
Assumption: Heterogeneous costs of selecting different initial seeds (c_i)
Goal: Maximize the number of future red nodes

Knapsack problem
Knapsack problem

Weight = Influence Value/ Stationary distribution
Size = Cost c_i of choosing a node n_i
What if directed social graph

One-way connection

Randomly select an out-going neighbor

Adopt the opinion of one of the outgoing neighbors.
Directed and Signed Networks

One-way signed connection

Randomly select an out-going neighbor

Adopt the opposite opinion of foe, the same opinion of friend

Any Comments & Critiques?
Next Class: Graph Mining (Presentation)

- Do assigned readings before class
- Submit reviews/critiques
- Attend in-class discussions