Welcome to

DS504/CS586: Big Data Analytics Big Data Clustering II

Prof. Yanhua Li

Time: 6pm – 8:50pm Thu Location: AK 232 Fall 2016

More Discussions, Limitations

Center based clustering

- K-means
- BFR algorithm

Hierarchical clustering

Slides on DBSCAN and DENCLUE are in part based on lecture slides from CSE 601 at University of Buffalo

Example: Picking k=3

Х XX X XX X X Х Х XX х` Х X X XХ ХХ Х Х XX Х Х Х Х

Just right; distances rather short.

> J. Leskovec, A. Rajaraman, J. Ullman: 3 Mining of Massive Datasets, http://

Limitations of K-means

- K-means has problems when clusters are of different
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains
 - outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

K-means Clusters

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points

K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Time and Space requirements

- ✤ O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- $O(N^3)$ time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Sensitivity to noise and outliers

Density-based Approaches

Why Density-Based Clustering methods?

- (Non-globular issue) Discover clusters of arbitrary shape.
- (Non-uniform size issue) Clusters Dense regions of objects separated by regions of low density
- DBSCAN the first density based clustering
- DENCLUE a general density-based description of cluster and clustering

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Proposed by Ester, Kriegel, Sander, and Xu (KDD96)
- Relies on a density-based notion of cluster:
 - A cluster is defined as a maximal set of denselyconnected points.
 - Discovers clusters of arbitrary shape in spatial databases with noise

Density-Based Clustering

₩ Basic Idea:

Clusters are dense regions in the data space, separated by regions of lower object density

Why Density-Based Clustering?

Results of a *k*-medoid algorithm for *k*=4

Different density-based approaches exist (see Textbook & Papers) Here we discuss the ideas underlying the DBSCAN algorithm Density Based Clustering: Basic Concept

Intuition for the formalization of the basic idea

- In a cluster, the local point density around that point has to exceed some threshold
- The set of points from one cluster is spatially connected
- * Local point density at a point p defined by two parameters
 - ε radius for the neighborhood of point p:
 - ε neighborhood:
 - $N_{\varepsilon}(p) := \{q \text{ in data set } D \mid dist(p, q) \le \varepsilon\}$
 - MinPts minimum number of points in the given neighbourhood N(p)

ϵ -Neighborhood

ε-Neighborhood – Objects within a radius of *ε* from an object.

 $N_{\varepsilon}(p): \{q \,|\, d(p,q) \leq \varepsilon\}$

"High density" - ε -Neighborhood of an object contains at least MinPts of objects.

ε-Neighborhood of p
ε-Neighborhood of q
Density of p is "high" (MinPts = 4)
Density of q is "low" (MinPts = 4)

Core, Border & Outlier

$$\varepsilon = 1$$
 unit, MinPts = 5

Given *e* and *MinPts*, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Example

M, P, O, and R are core objects since each is in an Eps neighborhood containing at least 3 points

Minpts = 3 Eps=radius of the circles

Density-Reachability

Directly density-reachable

An object q is directly density-reachable from object p if p is a core object and q is in p' s εneighborhood.

q is directly density-reachable from p
p is not directly density- reachable
from q?

Density-reachability is asymmetric.

MinPts = 4

Density-reachability

Density-Reachable (directly and indirectly):

- A point p is directly density-reachable from p2;
- p2 is directly density-reachable from p1;
- pl is directly density-reachable from q;
- $p \leftarrow p 2 \leftarrow p l \leftarrow q$ form a chain.

- p is (indirectly) density-reachable from q
 - q is not density- reachable from p?

Density-Connectivity

Density-reachability is not symmetric

not good enough to describe clusters

Density-Connectedness

A pair of points p and q are density-connected if they are commonly density-reachable from a point o.

Density-connectivity is symmetric

Formal Description of Cluster

- Given a data set D, parameter ε and threshold MinPts.
- A cluster C is a subset of objects satisfying two criteria:
 - Connected: For any p, q in C: p and q are densityconnected.
 - Maximal: For any p,q: if p in C and q is <u>density-</u> reachable from p, then q in C. (avoid redundancy)

DBSCAN: The Algorithm

- Input: Eps and MinPts
- Arbitrary select a point p
- Retrieve all points density-reachable from p wrt Eps and MinPts.
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3

for each $o \in D$ do if o is not yet classified then if o is a core-object then collect all objects density-reachable from oand assign them to a new cluster. else assign o to NOISE

DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2 \text{ cm}$
- MinPts = 3

for each $o \in D$ do if o is not yet classified then if o is a core-object then collect all objects density-reachable from oand assign them to a new cluster. else assign o to NOISE

- 1. Check the ϵ -neighborhood of p;
- 2. If p has less than MinPts neighbors then mark p as outlier and continue with the next object
- 3. Otherwise mark p as processed and put all the neighbors in cluster C

- 1. Check the unprocessed objects in C
- 2. If no core object, return C
- 3. Otherwise, randomly pick up one core object p_1 , mark p_1 as processed, and put all unprocessed neighbors of p_1 in cluster C

DBSCAN Algorithm

Input: The data set D Parameter: ε, MinPts For each object p in D if p is a core object and not processed then C = retrieve all objects density-reachable from p mark all objects in C as processed report C as a cluster else mark p as outlier end if End For

DBScan Algorithm

Q: Each run reaches the same clustering result?

Original Points

Point types: core, border and outliers

$$\varepsilon = 10$$
, MinPts = 4

When DBSCAN Works Well

Original Points

- Resistant to Noise
- Can handle clusters of different shapes and sizes

Density Based Clustering: Discussion

Advantages

- Clusters can have arbitrary shape and size
- Number of clusters is determined automatically
- Can separate clusters from surrounding noise
- Can be supported by spatial index structures

Disadvantages

- Input parameters may be difficult to determine
- In some situations very sensitive to input parameter setting
- Hard to handle cases with different densities

When DBSCAN Does NOT Work Well

Original Points

- Cannot handle Varying densities
- sensitive to parameters

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

DENCLUE: using density functions

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Major features
 - Pros:
 - Solid mathematical foundation
 - Good for datasets with large amounts of noise
 - Significantly faster than existing algorithm (faster than DBSCAN by a factor of up to 45)
 - Cons: But needs a large number of parameters

Denclue: Technical Essence

Influence Model:

- Model density by the notion of influence
- Each data object has influence on its neighborhood.
- The influence decreases with distance

Example:

- Consider each object is a radio, the closer you are to the object, the louder the noise
- * Key: Influence is represented by mathematical function

Denclue: Technical Essence

 Influence functions: (influence of y on x, σ is a usergiven constant)

• Square :
$$f_{square}^{y}(x) = 0$$
, if dist(x,y) > σ ,
I, otherwise

Density Function

 Density Definition is defined as the sum of the influence functions of all data points.

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

Gradient: The steepness of a slope

$$\text{Example}$$

$$f_{Gaussian}(x,y) = e^{-\frac{d(x,y)^2}{2\sigma^2}}$$

$$f_{Gaussian}^D(x) = \sum_{i=1}^N e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

$$\nabla f_{Gaussian}^D(x,x_i) = \sum_{i=1}^N (x_i - x) \cdot e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

Denclue: Technical Essence

- Clusters can be determined mathematically by identifying density attractors.
- Density attractors are local maximum of the overall density function.

Density Attractor

(a) Data Set

Cluster Definition

- Center-defined cluster
 - A subset of objects attracted by an attractor x
 - density(x) $\geq \xi$
- Arbitrary-shape cluster
 - A group of center-defined clusters which are connected by a path P
 - For each object x on P, density(x) $\geq \xi$.

Center-Defined and Arbitrary

DENCLUE: How to find the clusters

- $\boldsymbol{\ast}$ Divide the space into grids, with size 2σ
- Consider only grids that are highly populated
- For each object, calculate its density attractor
 - Density attractors form basis of all clusters

Features of DENCLUE

- Major features
 - Solid mathematical foundation
 - Compact definition for density and cluster
 - Flexible for both center-defined clusters and arbitraryshape clusters
 - But needs parameters, which is in general hard to set
 - σ : parameter to calculate density
 - Largest interval with constant number of clusters
 - ξ: density threshold
 - Greater than noise level
 - Smaller than smallest relevant maxima

Comparison with DBSCAN

Corresponding setup

* Square wave influence function radius σ models neighborhood ϵ in DBSCAN

• Square :
$$f_{square}^{y}(x) = 0$$
, if dist(x,y) > σ ,

I, otherwise

- * Definition of core objects in DBSCAN involves MinPts = ξ
- Density reachable in DBSCAN becomes density attracted in DENCLUE

Progress Presentation:

Class schedule

One more group presentation

BACKUP SLIDES

Determining the Parameters ε and *MinPts*

- * **Cluster:** Point density higher than specified by ε and *MinPts*
- Idea: use the point density of the least dense cluster in the data set as parameters but how to determine this?
- Heuristic: look at the distances to the k-nearest neighbors

- 3-distance(q):
- Function k-distance(p): distance from p to the its k-nearest neighbor
- **k-distance plot:** k-distances of all objects, sorted in decreasing order

Determining the Parameters ε and *MinPts*

Example k-distance plot

- Fix a value for *MinPts* (default: $2 \times d I$)
- User selects "border object" o from the MinPts-distance plot;
 ε is set to MinPts-distance(o)